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Multiplicity fluctuations in relativistic nuclear collisions:
Statistical model versus experimental data
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The multiplicity distributions of hadrons produced in central nucleus-nucleus collisions are studied within the
hadron-resonance gas model in the large-volume limit. The microscopic correlator method is used to enforce
conservation of three charges—baryon number, electric charge, and strangeness—in the canonical ensemble.
In addition, in the microcanonical ensemble energy conservation is included. An analytical method is used to
account for resonance decays. The multiplicity distributions and the scaled variances for negatively, positively, and
all charged hadrons are calculated along the chemical freeze-out line of central Pb + Pb (Au + Au) collisions
from GSI Schwerionen Synchrotron to CERN Large Hadron Collider energies. Predictions obtained within
different statistical ensembles are compared with the preliminary NA49 experimental results on central Pb + Pb
collisions in the SPS energy range. The measured fluctuations are significantly narrower than the Poisson ones
and clearly favor expectations for the microcanonical ensemble. Thus this is the first observation of the recently
predicted suppression of the multiplicity fluctuations in relativistic gases in the thermodynamical limit owing to
conservation laws.
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I. INTRODUCTION

For more than 50 years statistical models of strong
interactions [1–3] have served as an important tool to in-
vestigate high-energy nuclear collisions. The main subject of
the past study has been the mean multiplicity of produced
hadrons (see, e.g., Refs. [4–7]). Only recently, owing to
a rapid development of experimental techniques, have first
measurements of fluctuations of particle multiplicity [8] and
transverse momenta [9] been performed. The growing interest
in the study of fluctuations in strong interactions (see, e.g.,
the reviews in Ref. [10]) is motivated by expectations of
anomalies in the vicinity of the onset of deconfinement [11]
and in the case when the expanding system goes through the
transition line between the quark-gluon plasma and the hadron
gas [12]. In particular, a critical point of strongly interacting
matter may be signaled by a characteristic power-law pattern
in fluctuations [13]. Apart from being an important tool in an
effort to study the critical behavior, the study of fluctuations
in the statistical hadronization model constitutes a further
test of its validity. In this paper we make, for the first
time, predictions for the multiplicity fluctuations in central
collisions of heavy nuclei calculated within the microcanonical
formulation of the hadron-resonance gas model. Fluctuations
are quantified by the ratio of the variance of the multiplicity
distribution and its mean value, the so-called scaled variance.
The model calculations are compared with the correspond-
ing preliminary results [14] of NA49 on central Pb + Pb
collisions at the CERN Super Proton Synchrotron (SPS)
energies.

There is a qualitative difference in the properties of the mean
multiplicity and the scaled variance of multiplicity distribution
in statistical models. In the case of the mean multiplicity results
obtained with the grand canonical ensemble (GCE), canonical
ensemble (CE), and microcanonical ensemble (MCE) ap-
proach each other in the large-volume limit. One refers here to
the thermodynamical equivalence of the statistical ensembles.
It was recently found [15,16] that corresponding results for the
scaled variance are different in different ensembles, and thus
the scaled variance is sensitive to conservation laws obeyed
by a statistical system. The differences are preserved in the
thermodynamic limit.

The paper is organized as follows. In Sec. II the microscopic
correlators for a relativistic quantum gas are calculated in the
MCE in the thermodynamical limit. This allows us to take into
account conservation of baryon number, electric charge, and
strangeness in the CE formulation and, additionally, energy
conservation in the MCE. In Sec. III the relevant formulas for
the scaled variance of multiplicity fluctuations are presented
for different statistical ensembles within the hadron-resonance
gas model. The scaled variance of negative, positive, and all
charged hadrons is then calculated along the chemical freeze-
out line in the temperature-baryon chemical potential plane.
The fluctuations of hadron multiplicities in central Pb + Pb
(Au + Au) collisions are presented for different collision
energies from the GSI Schwerionen Synchrotron (SIS) to
the CERN Large Hadron Collider (LHC). The results for the
GCE, CE, and MCE are compared. In Sec. IV the statistical
model predictions for the scaled variances and multiplicity
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distributions of negatively and positively charged hadrons are
compared with the preliminary NA49 data of central Pb + Pb
collisions in the SPS energy range. A summary, presented in
Sec. V, closes the paper. New features of resonance decays
within the MCE are discussed in Appendix A, and the
acceptance procedure for all charged hadrons is considered
in Appendix B.

II. MULTIPLICITY FLUCTUATIONS IN STATISTICAL
MODELS

The mean multiplicities of positively, negatively, and all
charged particles are defined as

〈N−〉 =
∑

i,qi<0

〈Ni〉, 〈N+〉 =
∑

i,qi>0

〈Ni〉,

〈Nch〉 =
∑

i,qi �=0

〈Ni〉, (1)

where the average final-state (after resonance decays) multi-
plicities 〈Ni〉 are equal to

〈Ni〉 = 〈N∗
i 〉 +

∑
R

〈NR〉〈ni〉R. (2)

In Eq. (2), N∗
i denotes the number of stable primary hadrons of

species i, the summation
∑

R runs over all types of resonances
R, and 〈ni〉R ≡ ∑

r bR
r nR

i,r is the average over resonance decay
channels. The parameters bR

r are the branching ratios of the
rth branches, and nR

i,r is the number of particles of species
i produced in resonance R decays via a decay mode r .
The index r runs over all decay channels of a resonance R,
with the requirement

∑
r bR

r = 1. In the GCE formulation of
the hadron-resonance gas model the mean number of stable
primary particles, 〈N∗

i 〉, and the mean number of resonances,
〈NR〉, can be calculated as

〈Nj 〉 ≡
∑

p

〈np,j 〉 = gjV

2π2

∫ ∞

0
p2dp 〈np,j 〉, (3)

where V is the system volume and gj is the degeneracy
factor of particle of species j (number of spin states). In the
thermodynamic limit, V → ∞, the sum over the momentum
states can be substituted by a momentum integral. The 〈np,j 〉
denotes the mean occupation number of a single quantum state
labeled by the momentum vector p,

〈np,j 〉 = 1

exp [(εpj − µj )/T ] − αj

, (4)

where T is the system temperature, mj is the mass of a

particle j , and εpj =
√

p2 + m2
j is a single particle energy.

The value of αj depends on quantum statistics, being +1 for
bosons and −1 for fermions, while αj = 0 gives the Boltzmann
approximation. The chemical potential µj of a species j equals

µj = qjµQ + bjµB + sjµS, (5)

where qj , bj , and sj are the particle electric charge, baryon
number, and strangeness, respectively, with µQ,µB, and µS

the corresponding chemical potentials, which regulate the

average values of these global conserved charges in the
GCE. Equations (3)–(5) are valid in the GCE. In the limit
V → ∞, Eqs. (3)–(5) are also valid for the CE and MCE,
if the energy density and conserved charge densities are the
same in all three ensembles. This is usually referred to as
the thermodynamical equivalence of all statistical ensembles.
However, the thermodynamical equivalence does not apply to
fluctuations.

In statistical models a natural measure of multiplicity fluc-
tuations is the scaled variance of the multiplicity distribution.
For negatively, positively, and all charged particles the scaled
variances read

ω− = 〈(�N−)2〉
〈N−〉 , ω+ = 〈(�N+)2〉

〈N+〉 , ωch = 〈(�Nch)2〉
〈Nch〉 .

(6)

The variances in Eq. (6) can be presented as a sum of the
correlators:

〈(�N−)2〉 =
∑

i,j ;qi<0,qj <0

〈�Ni�Nj 〉,

〈(�N+)2〉 =
∑

i,j ;qi>0,qj >0

〈�Ni�Nj 〉, (7)

〈(�Nch)2〉 =
∑

i,j ;qi �=0,qj �=0

〈�Ni�Nj 〉,

where �Ni ≡ Ni − 〈Ni〉. The correlators in Eqs. (7) include
both the correlations between primordial hadrons and those of
final-state hadrons resulting from the resonance decays (where
resonance decays obey charge as well as energy-momentum
conservation).

In the GCE the final-state correlators can be calculated
as [17]

〈�Ni�Nj 〉g.c.e. = 〈�N∗
i �N∗

j 〉g.c.e. +
∑
R

[〈
�N2

R

〉〈ni〉R〈nj 〉R

+ 〈NR〉〈�ni�nj 〉R
]
, (8)

where 〈�ni�nj 〉R ≡ ∑
r bR

r nR
i,rn

R
j,r − 〈ni〉R〈nj 〉R . The occu-

pation numbers, np,j , of single quantum states (with fixed
projection of particle spin) are equal to np,j = 0, 1, . . . ,∞ for
bosons and np,j = 0, 1 for fermions. Their average values are
given by Eq. (4), and their fluctuations read

〈(�np,j )2〉 ≡ 〈(np,j − 〈np,j 〉)2〉 = 〈np,j 〉(1 + αj 〈np,j 〉)
≡ v2

p,j . (9)

It is convenient to introduce a microscopic correlator,
〈�np,j�nk,i〉, which in the GCE has a simple form

〈�np,j�nk,i〉g.c.e. = υ2
p,j δij δpk. (10)

Hence there are no correlations between different particle
species, i �= j , and/or between different momentum states,
p �= k. Only the Bose enhancement, v2

p,j > 〈np,j 〉 for αj = 1,
and the Fermi suppression, v2

p,j < 〈np,j 〉 for αj = −1, exist for
fluctuations of primary particles in the GCE. The correlator in
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Eq. (8) can be presented in terms of microscopic correlators
(10):

〈�N∗
j �N∗

i 〉g.c.e. =
∑
p,k

〈�np,j�nk,i〉g.c.e. = δij

∑
p

v2
p,j . (11)

In the case of i = j this equation gives the scaled variance of
primordial particles (before resonance decays) in the GCE.

In the MCE, the energy and conserved charges are fixed
exactly for each microscopic state of the system. This
leads to two modifications in a comparison with the GCE.
First, additional terms appear for the primordial microscopic
correlators in the MCE. They reflect the (anti)correlations
between different particles, i �= j , and different momentum
levels, p �= k, owing to charge and energy conservation in the
MCE:

〈�np,j�nk,i〉m.c.e. = υ2
p,j δij δpk − υ2

p,j v
2
k,i

|A|
× [qiqjMqq + bibjMbb + sisjMss

+ (qisj + qj si)Mqs − (qibj + qjbi)Mqb

− (bisj + bj si)Mbs + εpj εkiMεε

− (qiεpj + qj εki)Mqε

+ (biεpj + bj εki)Mbε

− (siεpj + sj εki)Msε] , (12)

where |A| is the determinant and Mij are the minors of the
following matrix:

A =




�(q2) �(bq) �(sq) �(εq)
�(qb) �(b2) �(sb) �(εb)
�(qs) �(bs) �(s2) �(εs)
�(qε) �(bε) �(sε) �(ε2)


 , (13)

with the elements �(q2) ≡ ∑
p,j q2

j υ
2
p,j , �(qb) ≡∑

p,j qj bjυ
2
p,j , �(qε) ≡ ∑

p,j qj εpjυ
2
p,j , etc. The sum∑

p,j means integration over momentum p and the summation
over all hadron-resonance species j contained in the model.
The first term on the right-hand side of Eq. (12) corresponds
to the microscopic correlator (10) in the GCE. Note that the
presence of the terms containing a single particle energy,

εpj =
√

p2 + m2
j , in Eq. (12) is a consequence of energy

conservation. In the CE, only charges are conserved; thus
the terms containing εpj in Eq. (12) are absent. The A in
Eq. (13) then becomes the 3 × 3 matrix (see Ref. [16]). An
important property of the microscopic correlator method is
that the particle number fluctuations and the correlations in
the MCE or CE, although being different from those in the
GCE, are expressed by quantities calculated within the GCE.
The microscopic correlator (12) can be used to calculate the
primordial particle correlator in the MCE (or in the CE):

〈�Ni�Nj 〉m.c.e. =
∑
p,k

〈�np,i�nk,j 〉m.c.e.. (14)

A second feature of the MCE (or CE) is the modification
of the resonance decay contribution to the fluctuations in

comparison to the GCE (8). In the MCE it reads

〈�Ni�Nj 〉m.c.e. = 〈�N∗
i �N∗

j 〉m.c.e. +
∑
R

〈NR〉〈�ni�nj 〉R

+
∑
R

〈�N∗
i �NR〉m.c.e.〈nj 〉R

+
∑
R

〈�N∗
j �NR〉m.c.e.〈ni〉R

+
∑
R,R′

〈�NR�NR′ 〉m.c.e.〈ni〉R〈nj 〉R′ . (15)

Additional terms in Eq. (15) compared to Eq. (8) are
due to the correlations (for primordial particles) induced
by energy and charge conservations in the MCE. Equa-
tion (15) has the same form in the CE [16] and
MCE, with the difference between these two ensem-
bles appearing because of different microscopic correlators
(12). The microscopic correlators of the MCE together
with Eq. (14) should be used to calculate the corre-
lators 〈�N∗

i �N∗
j 〉m.c.e., 〈�N∗

i �NR〉m.c.e., 〈�N∗
j �NR〉m.c.e.,

and 〈�NR �NR′〉m.c.e. entering in Eq. (15).
The microscopic correlators and the scaled variance are

connected with the width of the multiplicity distribution. It
can be shown [18] that in statistical models the form of the
multiplicity distribution derived within any ensemble (e.g.,
GCE, CE, and MCE) approaches the Gauss distribution:

PG(N ) = 1√
2πω〈N〉 exp

[
− (N − 〈N〉)2

2ω〈N〉
]

(16)

in the large-volume limit (i.e., 〈N〉 → ∞). The width of this
Gaussian, σ = √

ω〈N〉, is determined by the choice of the
statistical ensemble, and from the thermodynamic equivalence
of the statistical ensembles it follows that the expectation value
〈N〉 remains the same.

III. MULTIPLICITY FLUCTUATIONS AT
CHEMICAL FREEZE-OUT

In this section we present the results of the hadron-
resonance gas for the scaled variances in the GCE, CE, and
MCE along the chemical freeze-out line in central Pb + Pb
(Au + Au) collisions for the whole energy range from SIS to
LHC. Mean hadron multiplicities in heavy-ion collisions at
high energies can be approximately fitted by the GCE hadron-
resonance gas model. The fit parameters are the volume V ,
temperature T , chemical potential µB , and the strangeness
saturation parameter γS . The latter allows for nonequilibrium
strange hadron yields. A recent discussion of system size
and energy dependence of freeze-out parameters and com-
parison of freeze-out criteria can be found in Refs. [5,6].
There are several programs designed for the analysis of
particle multiplicities in relativistic heavy-ion collisions within
the hadron-resonance gas model (see, e.g., SHARE [19],
THERMUS [20], and THERMINATOR [21]). The set of
model parameters, V, T , µB , and γS , corresponds to the
chemical freeze-out conditions in heavy-ion collisions. The
numerical values and evolution of the model parameters with
the collision energy are taken from previous analysis of
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multiplicities data. The dependence of µB on the collision
energy is parametrized as [5] µB(

√
sNN ) = 1.308 GeV · (1 +

0.273
√

sNN )−1, where the c.m. nucleon-nucleon collision
energy,

√
sNN , is taken in GeV units. The system is assumed

to be net strangeness free, S = 0, and to have the charge-to-
baryon ratio of the initial colliding nuclei, Q/B = 0.4. These
two conditions define the system strange, µS , and electric, µQ,
chemical potentials. For the chemical freeze-out condition we
chose the average energy per particle, 〈E〉/〈N〉 = 1 GeV [22].
Finally, the strangeness saturation factor, γS , is parametrized
[6] as γS = 1 − 0.396 exp(−1.23T/µB ). This determines all
parameters of the model. In this paper an extended version
of the THERMUS framework [20] is used. A numerical
procedure is applied to meet these constraints simultaneously.
Other choices of the freeze-out parameters will be discussed
in the next section. The T ,µB , and γS parameters used for
different c.m. energies are given in Table I. Here, some
further details should be mentioned. We use quantum statistics,
but we disregard the nonzero widths of resonances. The
thermodynamic limit for the calculations of the scaled variance
is assumed, and thus ω reaches its limiting value, and volume
V is not a parameter of our model calculations. We also do not
consider explicitly momentum conservation as it can be shown
that it completely drops out in the thermodynamic limit [18].
Excluded volume corrections from a hadron hard core volume
are not taken into account. They will be considered elsewhere
[23]. The standard THERMUS particle table includes all
known particles and resonances up to a mass of about 2.5 GeV
and their respective decay channels. Heavy resonances do not
always have well-established decay channels. We rescaled
the branching ratios given in THERMUS to unity, where it
was necessary to ensure global charge conservation. Usually
the resonance decays are considered in a successive manner;
hence, each resonance decays into lighter ones until only
stable particles are left. However, we need to implement
another procedure when different branches are defined in a
way that final states with only stable hadrons are counted. This
distinction does not affect mean quantities, but for fluctuations
it is crucial. To make a correspondence with NA49 data,

both strong and electromagnetic decays should be taken into
account, whereas weak decays should be omitted.

Once a suitable set of thermodynamical parameters is
determined for each collision energy, the scaled variance
of negatively, positively, and all charged particles can be
calculated by using Eqs. (6)–(7). Equations (8)–(11) lead
to the scaled variance in the GCE, whereas Eqs. (12)–(15)
correspond to the MCE (or CE) results. The ω−, ω+, and
ωch values in different ensembles are presented in Table I for
different collision energies. The values of

√
sNN quoted in

Table I correspond to the beam energies at SIS (2A GeV),
BNL Alternating Gradient Synchrotron (AGS) (11.6A GeV),
and SPS (20A, 30A, 40A, 80A, and 158A GeV) and colliding
energies at BNL Relativistic Heavy Ion Collider (RHIC)
(
√

sNN = 62.4, 130, and 200 GeV) and LHC (
√

sNN =
5500 GeV).

The mean multiplicities, 〈Ni〉, used for calculation of the
scaled variance [see Eq. (6)] are given by Eqs. (2) and (3)
and remain the same in all three ensembles. The variances in
Eq. (6) are calculated by using the corresponding correlators
〈�Ni�Nj 〉 in the GCE, CE, and MCE. For the calculations
of final-state correlators the summation in Eq. (15) should
include all resonances R and R′ that have particles of the
species i and/or j in their decay channels. The resulting scaled
variances are presented in Table I and are shown in Figs. 1–3
as the functions of

√
sNN .

At the chemical freeze-out of heavy-ion collisions, the Bose
effect for pions and resonance decays are important and thus
(see also Ref. [16]) ω−

g.c.e.
∼= 1.1, ω+

g.c.e.
∼= 1.2, and ωch

g.c.e.
∼=

1.4/1.6, at the SPS energies. Note that in the Boltzmann
approximation and neglecting the resonance decay effect one
finds ω−

g.c.e. = ω+
g.c.e. = ωch

g.c.e. = 1.
Some qualitative features of the results should be men-

tioned. The effect of Bose and Fermi statistics is seen in
primordial values in the GCE. At low temperatures most of
charged hadrons are protons, and Fermi statistics dominates:
ω+

g.c.e., ω
ch
g.c.e. < 1. However, in the limit of high temperature

(low µB/T ) most charged hadrons are pions and the effect
of Bose statistics dominates: ω±

g.c.e., ω
ch
g.c.e. > 1. Along the

TABLE I. The chemical freeze-out parameters T , µB , and γS and the final-state scaled variances in the GCE, CE, and MCE
for central Pb + Pb (Au + Au) collisions at different c.m. energies,

√
sNN .

√
sNN T µB γS ω− ω+ ωch

(GeV) (MeV) (MeV)
GCE CE MCE GCE CE MCE GCE CE MCE

2.32 64.9 800.8 0.641 1.025 0.777 0.578 1.020 0.116 0.086 1.048 0.403 0.300
4.86 118.5 562.2 0.694 1.058 0.619 0.368 1.196 0.324 0.192 1.361 0.850 0.505
6.27 130.7 482.4 0.716 1.069 0.640 0.346 1.203 0.390 0.211 1.431 0.969 0.524
7.62 138.3 424.6 0.735 1.078 0.664 0.334 1.200 0.442 0.222 1.476 1.060 0.534
8.77 142.9 385.4 0.749 1.084 0.683 0.328 1.197 0.479 0.230 1.504 1.126 0.541
12.3 151.5 300.1 0.787 1.097 0.729 0.320 1.185 0.563 0.247 1.557 1.271 0.558
17.3 157.0 228.6 0.830 1.108 0.768 0.318 1.174 0.637 0.263 1.593 1.393 0.576
62.4 163.1 72.7 0.975 1.127 0.827 0.316 1.147 0.782 0.298 1.636 1.609 0.613
130 163.6 36.1 0.998 1.131 0.827 0.313 1.141 0.805 0.305 1.639 1.631 0.618
200 163.7 23.4 1.000 1.133 0.826 0.312 1.140 0.811 0.307 1.639 1.636 0.619
5500 163.8 0.9 1.000 1.136 0.820 0.310 1.137 0.820 0.309 1.640 1.640 0.619
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FIG. 1. (Color online) The scaled variances for negatively
charged particles, ω−, both primordial and final, along the chemical
freeze-out line for central Pb + Pb (Au + Au) collisions. Different
lines present the GCE, CE, and MCE results. Symbols at the lines for
final particles correspond to the specific collision energies pointed
out in Table I. The arrows show the effect of resonance decays.

chemical freeze-out line, ω−
g.c.e. is always slightly larger than 1,

as π− mesons dominate at both low and high temperatures. The
bump in ω+

g.c.e. for final-state particles seen in Fig. 2 at the small
collision energies is due to a correlated production of protons
and π+ mesons from �++ decays. This single resonance
contribution dominates in ω+

g.c.e. at small collision energies
(small temperatures), but it becomes relatively unimportant at
the high collision energies.

The minimum in ω−
c.e. for final particles seen in Fig. 1

arises from two effects. As the number of negatively charged
particles is relatively small, 〈N−〉 � 〈N+〉, at the low collision
energies, both the CE suppression and the resonance decay
effect are small. With increasing

√
sNN , the CE effect alone

leads to a decrease of ω−
c.e, but the resonance decay effect

only leads to an increase of ω−
c.e. A combination of these two

effects, the CE suppression and the resonance enhancement,
leads to a minimum of ω−

c.e. As expected, ωm.c.e. < ωc.e., as
energy conservation further suppresses the particle number
fluctuations. A new feature of the MCE is the additional
suppression of the fluctuations after resonance decays. This
is discussed in Appendix A.

FIG. 2. (Color online) The same as in Fig. 1, but for ω+.

FIG. 3. (Color online) The same as in Figs. 1 and 2, but for ωch.

IV. COMPARISON WITH NA49 DATA

A. Centrality selection

The fluctuations in nucleus-nucleus collisions are studied
on an event-by-event basis: A given quantity is measured for
each collision and a distribution of this quantity is measured
for a selected sample of these collisions. It has been found that
the fluctuations in the number of nucleon participants give the
dominant contribution to hadron multiplicity fluctuations. In
the language of statistical models, fluctuations of the number of
nucleon participants correspond to volume fluctuations caused
by the variations in the collision geometry. Mean hadron
multiplicities are proportional (in the large-volume limit) to
the volume; hence, volume fluctuations translate directly to
the multiplicity fluctuations. Thus a comparison between data
and predictions of statistical models should be performed for
results that correspond to collisions with a fixed number of
nucleon participants.

Because of experimental limitations it is only possible
to approximately measure the number of participants of the
projectile nucleus, N

proj
P , in fixed-target experiments (e.g.,

NA49 at the CERN SPS). This is done in NA49 by measuring
the energy deposited in a downstream Veto calorimeter. A large
fraction of this energy is comes from projectile spectators,
N

proj
S . By using baryon number conservation for the projectile

nucleus (A = N
proj
P + N

proj
S ) the number of projectile partic-

ipants can be estimated. However, a fraction of nonspectator
particles, mostly protons and neutrons, also contribute to the
Veto energy [14]. Furthermore, the total number of nucleons
participating in the collision can fluctuate considerably even
for collisions with a fixed number of projectile participants
(see Ref. [24]). This is due to fluctuations of the number
of target participants. The consequences of the asymmetry
in an event selection depend on the dynamics of nucleus-
nucleus collisions (see Ref. [25] for details). Still, for the
most central Pb + Pb collisions selected by the number of
projectile participants an increase of the scaled variance can
be estimated to be smaller than a few percent [25] owing to the
target participant fluctuations. In the following our predictions
will be compared with the preliminary NA49 data on the
1% most central Pb + Pb collisions at 20A–158A GeV [14].
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The number of projectile participants for these collisions is
estimated to be larger than 193.

B. Modeling of acceptance

In the experimental study of nuclear collisions at high
energies only a fraction of all produced particles is registered.
Thus, the multiplicity distribution of the measured particles is
expected to be different from the distribution of all produced
particles. Let us consider the production of N particles with
the probability P4π (N ) in the full momentum space. If particle
detection is uncorrelated, then the detection of one particle
has no influence on the probability to detect another one and
the binomial distribution can be used. For a fixed number of
produced particles N the multiplicity distribution of accepted
particles reads

Pacc(n,N ) = qn(1 − q)N−n N !

n!(N − n)!
, (17)

where n � N and q is the probability of a single particle to be
accepted (i.e., the ratio between mean multiplicity of accepted
and all hadrons). Consequently, one gets n = qN, n2 − n2 =
q(1 − q)N , where nk ≡ ∑N

n=0 nkPacc(n,N ), for k = 1, 2, . . . .
The probability distribution P (n) of the accepted particles
reads

P (n) =
∞∑

N=n

P4π (N )Pacc(n,N ). (18)

The first two moments of the distribution P (n) are calculated
as

〈n〉 ≡
∞∑

N=0

P4π (N )
N∑

n=0

nPacc(n,N ) = q〈N〉, (19)

〈n2〉 ≡
∞∑

N=0

P4π (N )
N∑

n=0

n2Pacc(n,N )

= q2〈N2〉 + q(1 − q)〈N〉, (20)

where (k = 1, 2, . . .)

〈Nk〉 ≡
∞∑

N=0

NkP4π (N ). (21)

Finally, the scaled variance for the accepted particles can be
obtained as

ω ≡ 〈n2〉 − 〈n〉2

〈n〉 = 1 − q + qω4π , (22)

where ω4π is the scaled variance of the P4π (N ) distribution.
The limiting behavior of ω agrees with the expectations. In the
large acceptance limit (q ≈ 1) the distribution of measured
particles approaches the distribution in the full acceptance.
For a very small acceptance (q ≈ 0) the measured distribution
approaches the Poisson one, independent of the shape of the
distribution in the full acceptance.

Model results on multiplicity fluctuations presented in
Sec. III correspond to an ideal situation when all final
hadrons are accepted by a detector. For a comparison with

TABLE II. Final-state scaled variances calculated in the MCE
for 4π acceptance using freeze-out conditions A, B, and C.

√
sNN ω−

m.c.e. ω+
m.c.e.

(GeV)
A B C A B C

6.27 0.346 0.345 0.361 0.211 0.214 0.210
7.62 0.334 0.334 0.347 0.222 0.225 0.221
8.77 0.328 0.330 0.330 0.230 0.232 0.236

12.3 0.320 0.318 0.325 0.247 0.249 0.248
17.3 0.318 0.317 0.321 0.263 0.264 0.259

experimental data a limited detector acceptance should be
taken into account. Even if primordial particles at chemical
freeze-out are only weakly correlated in momentum space this
would no longer be valid for final-state particles as resonance
decays lead to momentum correlations for final hadrons. In
general, in statistical models, the correlations in momentum
space are caused by resonance decays, quantum statistics, and
the energy-momentum conservation law, which is implied in
the MCE. In this paper we neglect these correlations and
use Eqs. (18) and (22). This may be approximately valid
for ω+ and ω−, as most decay channels only contain one
positively (or negatively) charged particle, but it is certainly
much worse for ωch, for instance because of decays of neutral
resonances into two charged particles. To limit correlations
caused by resonance decays, we focus on the results for
negatively and positively charged hadrons. A discussion of
the effect of resonance decays to the acceptance procedure
and a comparison with the data for ωch are presented in
Appendix B. An improved modeling of the effect regarding the
limited experimental acceptance will be a subject of a future
study.

C. Comparison with the NA49 data for ω− and ω+

Figure 4 presents the scaled variances ω− and ω+ calculated
with Eq. (22). The hadron-resonance gas calculations in the
GCE, CE, and MCE shown in Figs. 1 and 2 are used for the ω±

4π .
The NA49 acceptance used for the fluctuation measurements is
located in the forward hemisphere (1 < y(π ) < ybeam, where
y(π ) is the hadron rapidity calculated by assuming pion mass
and shifted to the collision c.m. system [14]). The acceptance
probabilities for positively and negatively charged hadrons are
approximately equal, q+ ≈ q−, and the numerical values at
different SPS energies are q± = 0.038, 0.063, 0.085, 0.131,

and 0.163 at
√

sNN = 6.27, 7.62, 8.77, 12.3, and 17.3 GeV,
respectively. Equation (22) has the following property: If ω4π

is smaller or larger than 1, the same inequality remains valid for
ω at any value of 0 < q � 1. Thus one has a strong qualitative
difference between the predictions of the statistical model valid
for any freeze-out conditions and experimental acceptances.
The CE and MCE correspond to ω±

m.c.e. < ω±
c.e. < 1, and the

GCE to ω±
g.c.e. > 1.

From Fig. 4 it follows that the NA49 data for ω±
extracted from 1% of the most central Pb + Pb collisions
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FIG. 4. (Color online) The scaled variances for negative (top)
and positive (bottom) hadrons along the chemical freeze-out line
for central Pb + Pb collisions at the SPS energies. The points show
the preliminary data of NA49 [14]. Total (statistical + systematic)
errors are indicated. The statistical model parameters T , µB , and γS

at different SPS collision energies are presented in Table I. Lines
show the GCE, CE, and MCE results calculated with the NA49
experimental acceptance according to Eq. (22).

at all SPS energies are best described by the results of the
hadron-resonance gas model calculated within the MCE. The
data reveal even stronger suppression of the particle number
fluctuations.

D. Dependence on the freeze-out parameters

The relation E/N = 1 GeV [22] was used in our calcu-
lations to define the freeze-out conditions. It does not give
the best fit of the multiplicity data at each specific energy. In
this section we check the dependence of the statistical model
results for the scaled variances on the choice of the freeze-out
parameters. For this purpose we compare the results obtained
for the parameters used in this paper (model A) with two other
sets of the freeze-out parameters at SPS energies: model B [6]
and model C [7]. The corresponding values of T and µB are
presented in Fig. 5.

The scaled variances ω−
m.c.e. and ω+

m.c.e. calculated in the
full phase space within the MCE vary by less than 1% when
the parameter set is changed. In the NA49 acceptance the
difference is almost completely washed out, see Table II. The

FIG. 5. (Color online) Chemical freeze-out points in the T –µB

plane for central Pb + Pb collisions. The solid line shows 〈E〉/〈N〉 =
1 GeV, the squares are from our parametrization (model A) and denote
SPS beam energies from 20A GeV (right) to 158A GeV (left), and
the full and open circles are the best-fit parameters from Refs. [6]
(model B) and [7] (model C), respectively.

differences are somewhat stronger in the GCE and CE but will
not be considered here.

E. Comparison of distributions

As discussed in Sec. II the multiplicity distribution in
statistical models in the full phase space and in the large-
volume limit approaches a normal distribution. If the particle
detection is modeled by the simple procedure presented in
Sec. IV B then the results [Eqs. (19)–(22)] are valid for
any form of the full acceptance distribution P4π (N ). In
the following we discuss the properties of the multiplicity
distribution in the limited acceptance, P (n) [Eq. (18)], and
compare the statistical model results in different ensembles
with data on negatively and positively charged hadrons.

For the Poisson distribution in the full acceptance the
summation in Eq. (18) leads also to the Poisson distribution in
the acceptance with the expectation value 〈n〉 = q〈N〉:

P (n) =
∞∑

N=n

〈N〉N exp[−〈N〉]
N !

qn(1 − q)N−nN !

n!(N − n)!

= exp [−q〈N〉] (q〈N〉)n
n!

. (23)

However, the same does not hold true for the summation in
Eq. (18) being applied to other forms of the distribution P (N ).
In particular, the normal distribution (16) is transformed into
the following:

P (n) =
∞∑

N=n

PG(N )Pacc(n,N ), (24)

which is no longer the Gauss one. It is enough to mention that
a Gaussian is symmetric around its mean value, whereas the
distribution of Eq. (24) is not.

The average number particles accepted by a detector is

〈n〉 ≡
∞∑

n=0

nP (n) = q〈N〉 ≡ qρV, (25)
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where ρ ≡ 〈N〉/V is the corresponding particle density.
Hence, one can determine the volume to be

V = 〈N〉
qρ

. (26)

In the following, for each beam energy we adjust the volume
to match the condition of Eq. (26) for negatively (V −) and
positively (V +) charged yields, separately. Note that values
for the volume are about 10–20% larger than the ones in
Refs. [6,7], which were obtained by using a much less stringent
centrality selection (whereas here only the 1% most central
data are analyzed). We find that the V − and V + volume
parameters deviate from each other by less than 10%. Devia-
tions of a similar magnitude are observed between the data on
hadron yield systematics and the hadron-resonance gas model
fits. Here we are only interested in the shape of multiplicity
distributions and do not attempt to optimize the model to fit
simultaneously yields of positively and negatively charged
particles. As typical examples the multiplicity distributions for
negatively and positively charged hadrons produced in central
Pb + Pb collisions at 40A GeV are shown in Fig. 6 at the SPS
energy range.

The bell-like shape of the measured spectra is well
reproduced by the shape predicted by the statistical model.
In the semi-logarithmic plot, differences between the data
and model lines obtained within different statistical ensembles
are hardly visible. To allow for a detailed comparison of the
distributions the ratio of the data and the model distributions
to the Poisson one is presented in Fig. 7.

The results for negatively and positively charged hadrons at
20A GeV, 30A GeV, 40A GeV, 80A GeV, and 158A GeV are
shown separately. The convex shape of the data reflects the fact
that the measured distribution is significantly narrower than
the Poisson one. This suppression of fluctuations is observed
for both charges, at all five SPS energies, and it is consistent
with the results for the scaled variance shown and discussed
previously. The GCE hadron-resonance gas results are broader
than the corresponding Poisson distribution. The ratio has
a concave shape. An introduction of the quantum number
conservation laws (the CE results) leads to the convex shape
and significantly improves agreement with the data. Further
improvement of the agreement is obtained by the additional
introduction of the energy conservation law (the MCE results).
The measured spectra agree surprisingly well with the MCE
predictions.

F. Discussion

The high resolution of the NA49 experimental data allows
us to distinguish among multiplicity fluctuations expected
in the hadron-resonance gas model for different statistical
ensembles. The measured spectra clearly favor predictions of
the microcanonical ensemble. A much worse description is
obtained for the canonical ensemble and a strong disagreement
is seen by considering the grand canonical one. All calculations
are performed in the thermodynamical limit, which is a proper
approximation for the considered reactions. Thus these results
should be treated as a first observation of the recently predicted
[15] suppression of multiplicity fluctuations resulting from
conservation laws in relativistic gases in the large-volume
limit.

The validity of the microcanonical description is surprising
even within the framework of the statistical hadronization
model used in this paper. This is because in the calculations the
parameters of the model (e.g., energy, volume, temperature,
and chemical potential) were assumed to be the same in all
collisions. However, significant event-by-event fluctuations of
these parameters may be expected. For instance, only a part of
the total energy is available for the hadronization process. This
part should be used in the hadron-resonance gas calculations
whereas the remaining energy is contained in the collective
motion of matter. The ratio between the hadronization and
collective energies may vary from collision to collision and
consequently increase the multiplicity fluctuations.

The agreement between the data and the MCE predic-
tions is even more surprising when the processes that are
beyond the statistical hadronization model are considered.
Examples of these are jet and mini-jet production, heavy
cluster formation, effects related to the phase transition, or
instabilities of the quark-gluon plasma. Naively all of them
are expected to increase multiplicity fluctuations and thus lead
to a disagreement between the data and the MCE predictions.
A comparison of the data with the models that include these
processes is obviously needed for significant conclusions. Here
we consider only one example.

In Ref. [11] a nonmonotonic dependence of the relative
fluctuations,

Re = (δS)2/S2

(δE)2/E2
, (27)

FIG. 6. The multiplicity distributions for
negatively (left) and positively (right) charged
hadrons produced in central (1%) Pb + Pb colli-
sions at 40A GeV in the NA49 acceptance [14].
The preliminary experimental data (solid points)
of NA49 [14] are compared with the prediction of
the hadron-resonance gas model obtained within
different statistical ensembles, the GCE (dotted
lines), the CE (dashed-dotted lines), and the
MCE (solid lines).
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FIG. 7. (Color online) The ratio of the multiplicity distributions to Poisson ones for negatively (upper panel) and positively (lower panel)
charged hadrons produced in central (1%) Pb + Pb collisions at 20A GeV, 30A GeV, 40A GeV, 80A GeV, and 158A GeV (from left to
right) in the NA49 acceptance [14]. The preliminary experimental data (solid points) of NA49 [14] are compared with the prediction of the
hadron-resonance gas model obtained within different statistical ensembles, the GCE (dotted lines), the CE (dashed-dotted lines), and the MCE
(solid lines).

has been suggested as a signal for the onset of deconfinement.
Here S and E denote the system entropy and thermalized
energy at the early stage of collisions, respectively. This
prediction assumes event-by-event fluctuations of the thermal-
ized energy, which results in the fluctuations of the produced
entropy. The ratio of the entropy to energy fluctuations (27)
depends on the equation of state and thus on the form of
created matter. The value of Re is approximately independent
of collision energy and equals about 0.6 in pure hadron or
quark-gluon plasma phases. An increase of the Re ratio up
to its maximum value, Re ≈ 0.8, is expected [11] in the
transition domain. Anomalies in energy dependence of the
hadron production properties measured in central Pb + Pb
collisions [26] indicate [27] that the transition domain is
located at the low CERN SPS energies, from 30A to 80A GeV.
Thus an anomaly in the energy dependence of multiplicity
fluctuations is expected in the same energy domain [11].

In any case the fluctuations of the thermalized energy
will lead to additional multiplicity fluctuations (“dynamical
fluctuations”). The resulting contribution to the scaled variance
can be calculated to be

ω−
dyn = Re〈n−〉 (δE)2

E2
. (28)

This assumes that the mean particle multiplicity is proportional
to the early stage entropy. To perform a quantitative estimate
of the effect, the fluctuations of the energy of produced
particles were calculated within the HSD [28] and UrQMD
[29] string-hadronic models. For central (impact parameter
zero) Pb + Pb collisions in the energy range from 30A to

80A GeV we have obtained
√

(δE)2/E � 0.03. The number of
accepted negatively charged particles is 〈n−〉 ≈ 30 at 40A GeV
(see Fig. 7). Thus, an increase of the ω owing to the “dynamical
fluctuations” estimated by Eq. (28) is ω−

dyn � 0.02 for Re = 0.6,
and it is smaller than the experimental error of the preliminary
NA49 data of about 0.05 [14]. In particular, an additional
increase resulting from the phase transition, �ω−

dyn ≈ 0.005,
for Re = 0.8, can barely be observed.

In conclusion, the predicted [11] increase of the scaled
variance of the multiplicity distribution owing to the onset of
deconfinement is too small to be observed in the current data.
These data neither confirm nor refute the interpretation [27]
of the measured [26] anomalies in the energy depedence of
other hadron production properties as resulting from the onset
of deconfinement at the CERN SPS energies.

More differential data on multiplicity fluctuations and
correlations are required for further tests of the validity of
the statistical models and observation of possible signals
of the phase transitions. The experimental resolution in a
measurement of the enhanced fluctuations owing to the onset
of deconfinement can be increased by increasing acceptance
(e.g., ω−

dyn ∝ 〈n−〉 ∝ q). The present aceptance of NA49 at
40A GeV is about q ∼= 0.06 and it can be increased up to
about q ∼= 0.5 in the future studies. This will give us a chance
to observe, for example, the dynamical fluctuations discussed
in Ref. [11]. The observation of the MCE suppression
effects of the multiplicity fluctuations by NA49 was possible
only because a selection of a sample of collisions without
projectile spectators. This selection seems to be possible only
in the fixed-target experiments. In the collider kinematics,
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nuclear fragments that follow the beam direction cannot be
measured.

On the model side a further study is needed to improve
the description of the effect of the limited experimental
acceptance. Further on, a finite volume of hadrons is expected
to lead to a reduction of the particle number fluctuations [23].
A quantitative estimate of this effect is needed.

V. SUMMARY

The hadron multiplicity fluctuations in relativistic nucleus-
nucleus collisions have been predicted in the statistical hadron-
resonance gas model within the grand canonical, canonical,
and microcanonical ensembles in the thermodynamical limit.
The microscopic correlator method has been extended to
include three conserved charges—baryon number, electric
charge, and strangeness—in the canonical ensemble, and addi-
tionally energy conservation in the microcanonical ensemble.
The analytical formulas are used for the resonance decay
contributions to the correlations and fluctuations. The scaled
variances of negatively, positively, and all charged particles for
primordial and final-state hadrons have been calculated at the
chemical freeze-out in central Pb + Pb (Au + Au) collisions
for different collision energies from SIS to LHC. A comparison
of the multiplicity distributions and the scaled variances with
the preliminary NA49 data on Pb + Pb collisions at the SPS
energies has been done for the samples of about 1% of
most central collisions selected by the number of projectile
participants. This selection allows us to eliminate effect of
fluctuations of the number of nucleon participants. The effect
of the limited experimental acceptance was taken into account
by use of the uncorrelated particle approximation.

The measured multiplicity distributions are significantly
narrower than the Poisson one and allow us to distinguish
among model results derived within different statistical ensem-
bles. The data agree surprisingly well with the expectations for
the microcanonical ensemble and exclude the canonical and
grand canonical ensembles. Thus this is the first experimental
observation of the predicted suppression of the multiplicity
fluctuations in relativistic gases in the thermodynamical limit
owing to conservation laws.
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APPENDIX A: RESONANCE DECAYS IN THE MCE

A comparison of the primordial scaled variances with those
for final hadrons demonstrates that the fluctuations generally
increase after resonance decays in the GCE and CE (for further
details see Ref. [16]), but they decrease in the MCE. To
understand this effect let us consider a toy model (π+, π−, ρ0)
system with a zero net charge, Q = 0. This last condition
means that there is a full symmetry between positively and
negatively charged pions, and thus ω+ = ω−. Each ρ0 meson
decays into a π+π− pair with 100% probability (i.e., b

ρ

1 = 1
and 〈n−〉ρ0 = 1). The predictions of the CE and MCE for the
(π+, π−, ρ0) system are shown in Fig. 8.

One observes that ρ0 decays lead to an enhancement of ω−
in the CE and to its suppression in the MCE. In the CE one
finds from Eqs. (2) and (15), for the (π+, π−, ρ0) system,

〈N−〉 = 〈N∗
π−〉 + 〈Nρ0〉, 〈(�N−)2〉c.e.

= 〈(�N∗
π− )2〉c.e. + 〈(�Nρ0 )2〉c.e.. (A1)

Note that the average multiplicities, 〈N∗
π−〉 and 〈Nρ0〉, remain

the same in the CE and in the MCE. From Eq. (A1) it follows

FIG. 8. (Color online) The scaled variance for negatively charged
particles, ω−, in the toy (π+, π−, ρ0) system with Q = 0 in the
CE (top) and MCE (bottom) as a function of temperature. The
temperature interval corresponds to that presented in Table I.
The dotted lines correspond to primordial π−-meson fluctuations;
the solid lines correspond to those after ρ0 decays. At small T the
ρ0 contribution to the pion number fluctuations is negligible, and it
increases with T . The contribution from ρ0 decays to ω− is positive
in the CE and negative in the MCE (see the text for details).
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that

ω−
c.e. = ω−∗

c.e.

[
〈N∗

π−〉 + (
ω

ρ0

c.e./ω
−∗
c.e.

)〈Nρ0〉
〈N−〉

]
. (A2)

The ω−∗
c.e. is essentially smaller than 1 owing to the strong

CE suppression (see Fig. 8, top). However, there is no CE

suppression for ρ0 fluctuations: ω
ρ0

c.e. = ω
ρ0

g.c.e.
∼= 1. Therefore,

one finds that ωρ0

c.e./ω
−∗
c.e. > 1, and from Eq. (A2) it immediately

follows that ω−
c.e. > ω−∗

c.e.. Note that ω−∗
g.c.e.

∼= ω
ρ0

g.c.e.
∼= 1, and

thus there is no enhancement of ω−
g.c.e. from ρ0 decays. In the

MCE the multiplicity 〈N−〉 remains the same as in Eq. (A1).
The variance 〈(�N−)2〉m.c.e. is, however, modified because of
the anticorrelation between primordial π−∗ and ρ0 mesons
in the MCE. From Eq. (15) one finds, for our (π+, π−, ρ0)
system,

〈(�N−)2〉m.c.e. = 〈(�N∗
π− )2〉m.c.e. + 〈(�Nρ0 )2〉m.c.e.

+ 2〈�N∗
π−�Nρ0〉m.c.e.. (A3)

The last term in Eq. (A3) appears because of energy conserva-
tion in the MCE (but is absent in the CE). This term is evidently
negative, which means that an anticorrelation occurs. A large
(small) number of primordial pions, �N∗

π− > 0(<0), requires
a small (large) number of ρ0 mesons, �Nρ0 < 0(>0), to keep
the total energy fixed. Anticorrelation between primordial
pions and ρ0 mesons makes the π− number fluctuations
smaller after resonance decays (i.e., ω−

m.c.e. < ω−∗
m.c.e.), as

depicted in Fig. 8 (bottom). The same mechanism works in
the MCE for the full hadron-resonance gas.

APPENDIX B: ACCEPTANCE EFFECT FOR
ALL CHARGED PARTICLES

To better understand the influence of the momentum
correlation resulting from resonance decays on the multiplicity
fluctuations we define a toy model. Let us assume that there
are two kinds of particles produced. The first kind (N ) is
either stable or originates from decay channels that contain
only one particle of the type we are set to investigate; the
second kind (M) produces two particles of the selected type.
This is described by the (unknown) probability distribution
P4π (N,M). We further assume that for both types of particles,
N and M , separately the acceptance procedure defined by
Eq. (17) is applicable. We also assume that once particle M

is inside the experimental acceptance, both its decay products
will be so as well. Hence, the average number of observed
particles will be

〈n〉 =
∞∑

N=0

∞∑
M=0

P4π (N,M)

×
N∑

n=0

M∑
m=0

(n + 2m)Pacc(n,N )Pacc(m,M). (B1)

This leads immediately to

〈n〉 = q[〈N〉 + 2〈M〉]. (B2)

One finds the second moment,

〈n2〉 =
∞∑

N=0

∞∑
M=0

P4π (N,M)

×
N∑

n=0

M∑
m=0

(n + 2m)2Pacc(n,N )Pacc(m,M). (B3)

Making use of the relation (20) one obtains

〈n2〉 = q(1 − q)〈N〉 + q2〈N2〉 + 4q2〈NM〉
+ 4q(1 − q)〈M〉 + 4q2〈M2〉. (B4)

Thus, for the scaled variance it follows that

ω ≡ 〈n2〉 − 〈n〉2

〈n〉 = qω4π + (1 − q)

[ 〈N〉 + 4〈M〉
〈N〉 + 2〈M〉

]
,

(B5)

where ω4π is obtained from the case q = 1 and corresponds to
the original distribution P4π (N,M). For the second limiting
case of Eq. (B5), q → 0, one finds a scaled variance that

FIG. 9. (Color online) (Top) Fraction of total yield originating
from resonance decays with two or more positively (+), negatively
(−), or all charged (ch) particles. Parameters are taken from the
parametrization in Sec. III. (Bottom) The scaled variances for all
charged hadrons along the chemical freeze-out line for central
Pb + Pb collisions at the SPS energies. The points show the prelim-
inary data of NA49. The statistical model parameters T , µB , and γS

at different SPS collision energies are presented in Table I. The lines
show the MCE results calculated with the NA49 experimental accep-
tance according to Eq. (22) (lower line) and Eq. (B7) (upper line).
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corresponds to that of two uncorrelated Poisson distributions
with means q〈N〉 and q〈M〉, respectively. In this case, all
primordial correlations resulting from energy and charge
conservation or Bose (Fermi) statistics are lost, but particles
produced by resonances of type M are still detected in pairs.

In the general case, by k we denote the fraction of particles
originating from decays (always two relevant daughters) of
particle kind M; hence,

〈N〉 = (1 − k)〈Ntot〉, 〈M〉 = k
2 〈Ntot〉. (B6)

Finally, one finds for the scaled variance

ω = q · ω4π + (1 − q)(1 + k). (B7)

From the hadron-resonance gas model we can estimate the
fraction k of the final yield that originates from decays of
resonances into two (or more) charged particles. From Fig. 9
(left) we find the fraction of the charged particle yield k to be

from 35% (20A GeV) to 45% (158A GeV) in the SPS energy
range (and about 10% for positively and negatively charged
particles). For the definition of decay channels see Sec. III. The
two-particle decay channel ρ0 → π+ + π− would be counted
as two-particle decay in ch, but not in + nor in −; �++ → p +
π+ would contribute to ch and +, but not to −. The assumption
that both decay products are detected is certainly not justifiable
for small values of the total acceptance q, and hence Eq. (B7)
overestimates the effect. However, this consideration will give
a useful upper bound (see Fig. 9, right). The typical width of
decays is comparable to the width of the acceptance window;
therefore, about half of all decays will leave one or both decay
products missing. Yet the same 50% will be contributed from
decays whose parents are outside the acceptance but contribute
to the final yield. Hence, one expects no change in average
multiplicity but a sizable effect on fluctuations.
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