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Extended optical model analyses of elastic scattering and fusion cross section data for the
7Li + 208Pb system at near-Coulomb-barrier energies using a folding potential
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Simultaneous χ 2 analyses previously made for elastic scattering and fusion cross section data for the 6Li + 208Pb
system are extended to the 7Li + 208Pb system at near-Coulomb-barrier energies based on the extended optical
model approach, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use
is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and
fusion data are well reproduced without introducing any normalization factor for the double folding potential and
that both the DR and fusion parts of the polarization potential determined from the χ2 analyses satisfy separately
the dispersion relation. Further, we find that the real part of the fusion portion of the polarization potential is
attractive while that of the DR part is repulsive except at energies far below the Coulomb barrier energy. A
comparison is made of the present results with those obtained from the coupled discretized continuum channels
calculations and a previous study based on the conventional optical model with a double folding potential. We
also compare the present results for the 7Li + 208Pb system with the analysis previously made for the 6Li + 208Pb
system.
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I. INTRODUCTION

It has been a long standing problem that one is forced
to reduce the strength of the folding potential by a factor
N = 0.5 ∼ 0.6 to reproduce the elastic scattering data [1,2] for
loosely bound projectiles such as 6Li and 9Be within the optical
model approach with a folding potential. This problem has
been ascribed to the strong breakup character of the projectiles;
studies have been made of the effects of the breakup on the
elastic scattering, based on the coupled discretized continuum
channels (CDCC) method [3,4]. These studies were very
successful in reproducing the elastic scattering data without
introducing any arbitrary normalization factor and furthermore
in understanding the physical origin of the factor N = 0.5 ∼
0.6 needed to be introduced in one-channel optical model
calculations. The authors of Refs. [3] and [4] projected
their coupled-channels equations to a single elastic channel
equation and deduced the polarization potential arising from
the coupling with the breakup channels. The resultant real part
of the polarization potential was then found to be repulsive
at the surface region around the strong absorption radius, Rsa.
This shows that the reduction of the folding potential by a
factor of N = 0.5 ∼ 0.6 effectively takes into account the
effects of this repulsive coupling with the breakup channels.

In our recent study [5], we explored this problem for the
6Li + 208Pb system in the framework of the extended optical
model [6–8], in which the optical potential consists of the en-
ergy independent Hartree-Fock part and the energy dependent
complex polarization potential having two components, i.e.,
the direct reaction (DR) and fusion parts, which we call the

DR and fusion potentials, respectively. In Ref. [5], using such
an extended optical potential, we performed the simultaneous
χ2 analyses of the elastic scattering and fusion cross section
data, determining the two components of the polarization
potentials as functions of the incident energy. Our expectation
was that the resulting real part of the DR potential would
become repulsive consistently with the results of the CDCC
calculations. Indeed the real DR polarization potential turned
out to be repulsive. In addition, it was shown that both the DR
and the fusion potentials satisfy the dispersion relation [9,10]
separately.

In this work, we extend the analysis made in Ref. [5] to
the 7Li + 208Pb system. In this system, such a normalization
anomaly as observed in 6Li + 208Pb does not appear around
the Coulomb barrier energies; the normalization factor N

necessary for reproducing the data is close to unity, N ≈ 1
(see Ref. [2]), in contrast to the factor N = 0.5 ∼ 0.6 for
6Li + 208Pb.

In Sec. II of this article, we first discuss some character-
istic features of the elastic scattering cross section data of
7Li + 208Pb [2] in comparison with those of 6Li + 208Pb. It
is shown in the comparison that the DR cross section for
7Li + 208Pb is expected to be significantly smaller than that
for 6Li + 208Pb. In Sec. III, we first generate the so-called
semi-experimental DR cross section, σ semi-exp

D , from the elastic
scattering and fusion cross section data [11,12], following
the method described in Ref. [13]. (Note that use is made
of the fusion cross section data of 7Li + 209Bi, because the
data are not available for 7Li + 208Pb.) The data of σ

semi-exp
D
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are needed for separately determining the DR and fusion
potentials. The χ2 analyses of the elastic scattering, fusion,
and semi-experimental DR cross section data are then carried
out in Sec. IV. In Sec. IV, a comparison is made of the present
results with those obtained from the CDCC calculations [4] and
a previous study [2] based on the conventional optical model
with a double folding potential. We also show a comparison
of the present results with the analysis previously made by
us [5] for the 6Li + 208Pb system. Section V concludes the
paper.

II. REVIEW OF EXPERIMENTAL CROSS SECTIONS

We begin with the discussion of some of the characteristic
features of the elastic scattering cross sections dσel/dσ� data
for 7Li + 208Pb in comparison with those for 6Li + 208Pb. Such
features can best be seen in the ratio PE , defined by

PE ≡ dσel

dσ�

/
dσC

dσ�

= dσel/dσC, (1)

as a function of the distance of the closest approach D (or
the reduced distance d), where dσC/dσ� is the Coulomb
scattering cross section, while D (d) is related to the scattering
angle θ by

D = d
(
A

1/3
1 + A

1/3
2

) = 1

2
D0

[
1 + 1

sin(θ/2)

]
, (2)

with

D0 = Z1Z2e
2

E
, (3)

D0 being the distance of the closest approach in a head-on
collision. Here (A1, Z1) and (A2, Z2) are the mass and charge
of the projectile and target ions, respectively, and E ≡ Ec.m. is
the incident energy in the center-of-mass system. PE as defined
by Eq. (1) is referred to as the elastic probability.

In Figs. 1(a) and 1(b), we present the experimental values of
PE for incident energies around the Coulomb barrier energy
as a function of the reduced distance d for 7Li + 208Pb and
6Li + 208Pb, respectively. As seen, the values of PE at different
energies line up to form a very narrow band. This is a
characteristic feature seen in many of the heavy-ion collisions,
reflecting the semiclassical nature of these collisions. PE

remains close to unity until two ions approach each other
within a distance dI , where PE begins to fall off. The distance
dI is usually called the interaction distance, at which the
nuclear interactions between the colliding ions are switched
on, so to speak. The values of dI are about 1.9 fm for
6Li + 208Pb and 1.8 fm for 7Li + 208Pb.

As argued in Ref. [13], the fall off of the PE values in
the region immediately next to dI is due to DR. The fact that
the dI value (1.9 fm) for 6Li + 208Pb is larger than the dI

(1.8 fm) for 7Li + 208Pb shows that DR starts to take place at
larger distances for 6Li + 208Pb than it does for 7Li + 208Pb.
Also, it can be seen that the amount of decrease of the PE

value from unity in 6Li + 208Pb is significantly larger than
that in 7Li + 208Pb at 1.5 fm < d < 1.9 fm, where DR takes
place. These features clearly indicate that DR (which may be
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FIG. 1. (Color online) PE values for (a) the 7Li + 208Pb system
and (b) the 6Li + 208Pb system.

dominated by breakup) takes place significantly stronger in
6Li + 208Pb than in 7Li + 208Pb. This is indeed the case as
can be seen in the next section from the semi-experimental
DR cross section to be extracted. Finally, we note that in the
region of d < 1.5 fm where fusion dominates, the values of
PE for 7Li + 208Pb and 6Li + 208Pb are almost identical.

III. EXTRACTING SEMI-EXPERIMENTAL
DR CROSS SECTION

For our purpose of determining the fusion and DR potentials
separately, it is desirable to have the data of the DR cross
section in addition to the data of the fusion and elastic
scattering cross sections. For the 7Li + 208Pb system, however,
no reliable data of the DR cross sections are available, although
considerable efforts have been devoted to measure the breakup
and incomplete fusion cross sections [11,14]. Here, we thus
generate the so-called semi-experimental DR cross section
σ

semi-exp
D , following the method proposed in Ref. [13].

Our method to generate σ
semi-exp
D resorts to the well-

known empirical fact that the total reaction cross section σR

calculated from the optical model fit to the available elastic
scattering cross section data, dσ

exp
E /d�, usually agrees well

with the experimental σR , despite the ambiguities in the optical
potential. Let us call σR thus generated the semi-experimental
reaction cross section σ

semi-exp
R . Then, σ semi-exp

D is generated as

σ
semi-exp
D = σ

semi-exp
R − σ

exp
F . (4)

This approach seems to work even for loosely bound projec-
tiles, as demonstrated by Kolata et al. [15] for the 6He + 209Bi
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system. As already noted in Sec. I, σ
exp
F data are not available

for 7Li + 208Pb, and thus we use the σ
exp
F data taken for

7Li + 209Bi [11,12].
Following Ref. [13], we first carry out rather simple optical

model χ2 analyses of elastic scattering data solely for the
purpose of deducing σR and σ

semi-exp
R . For these preliminary

analyses, we assume the optical potential to be the sum
of V0(r) + iWI (r) and U1(r, E), where V0(r) is the real,
energy independent bare folding potential discussed later in
Sec. IV B, iWI (r) is an energy independent short range
imaginary potential discussed in Sec. IV A, and U1(r, E)
is a Woods-Saxon type complex potential with common
geometrical parameters for both real and imaginary parts.
The elastic scattering data are then fitted with a fixed radius
parameter r1 for U1(r, E), treating, however, all three other
parameters, the real and the imaginary strengths V1 and W1

and the diffuseness parameter a1, as adjustable. The χ2 fitting
is done for three choices of the radius parameter: r1 = 1.3, 1.4,
and 1.5 fm. These different choices of the r1 value are made to
examine the dependence of the resulting σ

semi-exp
R on the value

of r1.
As observed in Ref. [13], the values of σ

semi-exp
R thus ex-

tracted for three different r1 values agree with the average value
of σ

semi-exp
R within 2%, implying that σ

semi-exp
R is determined

without much ambiguity. We then identified the average values
as the final values of σ

semi-exp
R at each energy. Using thus

determined σ
semi-exp
R , we generated σ

semi-exp
D by employing

Eq. (4). The resultant values of σ
semi-exp
R and σ

semi-exp
D are

presented in Table I, together with σ
exp
F . In Table I, the σ

semi-exp
R

determined in Ref. [2] are also given. It is noticeable that the
two sets of σ

semi-exp
R determined independently agree within

1%. We can also see that the values of σ
semi-exp
D thus deduced

are smaller than those for 6Li + 208Pb [5] by a factor of 1.23
∼ 1.72 as anticipated from the PE values discussed in the
previous section.

IV. SIMULTANEOUS χ 2 ANALYSES

Simultaneous χ2 analyses were then performed on the
data sets of (dσ

exp
E /d�, σ

semi-exp
D , σ

exp
F ), by taking the data

for dσ
exp
E /d� and σ

exp
F from the literature [2,11,12]. In

calculating the χ2 value, we simply assume 1% errors for
all the experimental data. The 1% error is about the average
of errors in the measured elastic scattering cross sections, but
is much smaller than the errors in the DR (∼5%) and fusion

TABLE I. Semi-experimental total reaction and DR cross sections
for the 7Li + 208Pb system.

Elab E σ
exp
F [11,12] σ

semi-exp
D σ

semi-exp
R σ

semi-exp
R [2]

(MeV) (MeV) (mb) (mb) (mb) (mb)

29 28.1 18 119 137 138
31 30.0 88 240 328 327
33 31.9 218 351 569 572
35 33.9 366 418 784 787
39 37.7 650 583 1233 1242
44 42.6 866 684 1550 1553

(∼10%) cross sections. Assigning the 1% error for the DR
and fusion cross sections is thus equivalent to increasing the
weight for the DR and fusion cross sections in evaluating the
χ2 values by factors of 25 and 100, respectively. Such a choice
of errors may be reasonable, because we have only one datum
point for each of these cross sections, while there are more
than 50 data points for the elastic scattering cross sections.

A. Necessary formulas

The optical potential U (r, E) we use in the present work
has the following form:

U (r; E) = VC(r) − [V0(r) + UF (r; E) + UD(r; E)], (5)

where VC(r) is the usual Coulomb potential with rC = 1.25
fm and V0(r) is the bare nuclear potential, for which use is
made of the double folding potential described in the next
subsection. UF (r; E) and UD(r; E) are, respectively, the fusion
and DR parts of the so-called polarization potential [16] that
originates from couplings to the respective reaction channels.
Both UF (r; E) and UD(r; E) are complex and their forms are
assumed to be of volume type and surface-derivative type [7,
17], respectively. UF (r; E) and UD(r; E) are explicitly given
by

UF (r; E) = [VF (E) + iWF (E)]f (XF ) + iWI (r), (6)

and

UD(r; E) = [VD(E) + iWD(E)]4aD

df (XD)

dRD

, (7)

where f (Xi) = [1 + exp(Xi)]−1 with Xi = (r − Ri)/ai (i =
F and D) is the usual Woods-Saxon function with the fixed
geometrical parameters of rF = 1.40 fm, aF = 0.33 fm, rD =
1.47 fm, and aD = 0.56 fm, while VF (E), VD(E),WF (E), and
WD(E) are the energy dependent strength parameters. Because
we assume the geometrical parameters to be the same for both
the real and the imaginary potentials, the strength parameters
Vi(E) and Wi(E) (i = F or D) are related through a dispersion
relation [9],

Vi(E) = Vi(Es) + E − Es

π
P

∫ ∞

0
dE′ Wi(E′)

(E′ − Es)(E′ − E)
,

(8)
where P stands for the principal value and Vi(Es) is the value
of Vi(E) at a reference energy E = Es . Later, we will use
Eq. (8) to generate the final real strength parameters VF (E) and
VD(E) using WF (E) and WD(E) fixed from the χ2 analyses.
Note that the breakup cross section may include contributions
from both Coulomb and nuclear interactions, which implies
that the direct reaction potential includes effects coming from
not only the nuclear interaction but also from the Coulomb
interaction.

The last imaginary potential WI (r) in UF (r; E) given by
Eq. (6) is a short range potential of the Woods-Saxon type
given as

WI (r) = WIf (XI ), (9)

with WI = 40 MeV, rI = 0.8 fm, and aI = 0.30 fm. This
imaginary potential was first introduced [5] to eliminate
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unphysical reflection in the radial wave functions of low partial
waves when this WI (r) is absent. Because of the large strength
of the folding potential V0 used in this study and also because
WF (E)f (XF ) of Eq. (6) turns out to be not strong enough,
reflections of lower partial waves appear in the asymptotic
region, which causes unphysical oscillations of differential
elastic cross sections at large angles, particularly at relatively
high energies above the Coulomb barrier, but physically such
reflection should not occur because of the strong absorption
that should exist inside the nucleus. WI (r) is thus introduced
to take care of the strong absorption inside and eliminate this
unphysical effect. We might then need to introduce a real part
VI (r) corresponding to WI (r), but we ignored the real part,
simply because such a real potential did not affect at all the
real physical observables, which means that it is impossible
to extract the information on VI (r) from the analyses of the
experimental data. Further, as is discussed later in Sec. IV.E,
WI (r) is also insensitive to the observables, particularly at low
energies around and below the Coulomb barrier. This means
that it is also impossible to extract information of the energy
dependence of WI (r) from the data. For this reason, we simply
ignore in this study the energy dependence of WI (r).

In the extended optical model, fusion and DR cross
sections, σ th

F and σ th
D , respectively, are calculated by using the

expression [6–8,18]

σ th
i = 2

h̄v
〈χ (+)|Im[Ui(r; E)]|χ (+)〉 (i = F or D), (10)

where χ (+) is the usual distorted wave function that satisfies
the Schrödinger equation with the full optical model potential
U (r; E) in Eq. (5). σ th

F and σ th
D are thus calculated within

the same framework as dσel/d� is calculated. Such a unified
description enables us to evaluate all the different types of
cross sections on the same footing.

B. The folding potential

The double folding potential V0(r) we use in the present
study as the bare potential may be written as [1]

V0(r) =
∫

dr1

∫
dr2ρ1(r1)ρ2(r2)vNN (r12 = |r − r1 + r2|),

(11)
where ρ1(r1) and ρ2(r2) are the nuclear matter distributions
for the target and projectile nuclei, respectively, while vNN is
the sum of the M3Y interaction that describes the effective
nucleon-nucleon interaction and the knockon exchange effect
given as

vNN (r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
− 262δ(r). (12)

We use for ρ1(r) the following Woods-Saxon form taken from
Ref. [19],

ρ1(r) = ρ0/

[
1 + exp

(
r − c

z

)]
, (13)

with c = 6.624 fm and z = 0.549 fm, while for ρ2(r) the
following is taken from Ref. [20],

ρ2(r) = (A + Br2)e−α2r2
, (14)

with A = 0.13865 fm−3, B = 0.02316 fm−1, and α =
0.578 fm−1. We then use the code DFPOT of Cook [21] for
evaluating V0(r).

C. Threshold energies of subbarrier fusion and DR

As in Ref. [5], we utilize as an important ingredient the
so-called threshold energies E0,F and E0,D of subbarrier fusion
and DR, respectively, which are defined as zero intercepts of
the linear representation of the quantities Si(E), defined by

Si ≡
√

Eσi ≈ αi(E − E0,i) (i = F or D), (15)

where αi is a constant. Si with i = F , i.e., SF , is the quantity
introduced originally by Stelson et al. [22], who showed
that in the subbarrier region SF from the measured σF can
be represented very well by a linear function of E (linear
systematics) as in Eq. (15). In Ref. [17], we extended the
linear systematics to DR cross sections. In fact the DR data
are also well represented by a linear function.

In Fig. 2, we present the experimental SF (E) and SD(E). For
SD(E), use is made of σ

semi-exp
D . From the zeros of Si(E), one

can deduce E
semi-exp
0,D = 19.3 MeV and E

exp
0,F = 26.5 MeV. For

both i = F and D, the observed Si are very well approximated
by straight lines in the subbarrier region and thus E0,i can be
extracted without much ambiguity. It is worthwhile to remark
that E

semi-exp
0,D is found to be considerably smaller than E

exp
0,F ,

implying that DR channels open at smaller energies than fusion
channels, which seems physically reasonable.

E0,i may then be used as the energy where the imaginary
potential Wi(E) becomes zero, i.e., Wi(E0,i) = 0 [17,23]. This
procedure is used later in the next subsection for obtaining a
mathematical expression for Wi(E).
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FIG. 2. (Color online) The Stelson plot of Si = √
Eσi for DR (i =

D, open circles) and fusion (i = F , filled circles) cross sections. Use
is made of the semi-experimental DR cross section for SD , while the
experimental fusion cross section is employed for SF . The intercepts
of the straight lines with the energy axis give us the threshold energies
E

semi-exp
0,D = 19.3 MeV and E

exp
0,F = 26.5 MeV.
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D. χ 2 analyses

All the χ2 analyses performed in the present work are
carried out by using the folding potential as its bare potential
V0(r) described in Sec. IV B and by using the fixed geometrical
parameters for the polarization potentials, rF = 1.40 fm,
aF = 0.33 fm, rD = 1.47 fm, and aD = 0.56 fm, which are
close to the values used in our previous study [17]. A slight
change of the values used in Ref. [17] is made to improve the
χ2 fitting.

As in Ref. [17], the χ2 analyses are done in two steps; in the
first step, all four strength parameters, VF (E),WF (E), VD(E)
and WD(E), are varied. In this step, we could fix fairly well the
strength parameters of the DR potential, VD(E) and WD(E), in
the sense that VD(E) and WD(E) were determined as a smooth
function of E. The values of VD(E) and WD(E) thus extracted
are presented in Fig. 3 by open circles. The values of WD(E)
can be well represented by the following function of E (in
units of MeV)

WD(E) =



0 for E�E
semi-exp
0,D = 19.3

0.075(E − 19.3) for 19.3 < E�29.3
0.75 for 29.3 < E.

(16)
Note that the threshold energy where WD(E) becomes zero is
set equal to E

semi-exp
0,D as determined in the previous subsection

and is indicated by the open circle at E = 19.3 MeV in Fig. 3.
The dotted line in the lower panel of Fig. 3 represents Eq. (16),
while that in the upper panel of Fig. 3 denotes VD as calculated
by the dispersion relation Eq. (8), with WD(E) given by
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(
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=
F

,D
)(
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)

FIG. 3. (Color online) The strength parameters Vi (upper panel)
and Wi (lower panel) for i = D and F as functions of Ec.m.. The
open and filled circles are the strength parameters for i = D and F ,
respectively. The dotted and solid lines in the lower panel denote WD

and WF from Eqs. (16) and (17), respectively, while the dotted and
solid curves in the upper panel represent VD and VF calculated by
using the dispersion relation of Eq. (8) with Wi given by Eqs. (16) and
(17). The potential values and the corresponding reference energies
used in Eq. (8) are such that VF (Es = 29.9 MeV) = 2.2 MeV and
VD (Es = 29.3 MeV) = −0.03 MeV, respectively.

Eq. (16). As seen, the dotted lines reproduce the open circles
quite well, indicating that VD(E) and WD(E) extracted by the
χ2 analyses satisfy the dispersion relation.

In this first step of χ2 fitting, however, the values of
VF (E) and WF (E) are not reliably fixed in the sense that
the extracted values fluctuate considerably as functions of E.
This is understandable from the expectation that the elastic
scattering data can probe most accurately the optical potential
in the peripheral region, which is nothing but the region
characterized by the DR potential. The part of the nuclear
potential responsible for fusion is thus difficult to pin down in
this first step.

To obtain more reliable information on VF and WF , we
thus performed the second step of the χ2 analysis; this time,
instead of doing a four-parameter search, we fixed VD and
WD as determined by the first χ2 fitting, i.e., WD(E) given
by Eq. (16) and VD(E) predicted from the dispersion relation.
We then performed two-parameter χ2 analyses, treating only
VF (E) and WF (E) as adjustable parameters. The values thus
determined are presented in Fig. 3 by filled circles. As seen,
both VF (E) and WF (E) are determined to be fairly smooth
functions of E. The WF (E) values may be represented by

WF (E) =



0 for E�E
exp
0,F = 26.5

0.588(E − 26.5) for 26.5 < E�29.9
2.00 for 29.9 < E.

(17)

As is done for WD(E), the threshold energy where WF (E)
becomes zero is set equal to E

exp
0,F , which is also indicated by the

filled circles in Fig. 3. As seen, the WF (E) values determined
by the second χ2 analyses can fairly well be represented by
the functions given by Eq. (17). Note that the energy variations
seen in WF (E) and VF (E) are more rapid compared with those
seen in WD(E) and VD(E) and are similar to those observed
with tightly bound projectiles [24–26]. It is thus seen that the
resultant VF (E) and WF (E) exhibit the threshold anomaly.

Using WF (E) given by Eq. (17), one can generate VF (E)
from the dispersion relation. The results are shown by the
solid curve in the upper panel of Fig. 3, which again well
reproduces the values extracted from the χ2 fitting. This means
that the fusion potential determined from the present analysis
also satisfies the dispersion relation.

E. Final calculated cross sections in comparison with the data

Using WD(E) given by Eq. (16) and WF (E) given by
Eq. (17) together with VD(E) and VF (E) generated by the
dispersion relation, we performed the final calculations of the
elastic, DR, and fusion cross sections. The results are presented
in Figs. 4 and 5 in comparison with the experimental data. All
the data are well reproduced by the calculations.

It may be worth noting here that the theoretical fusion
cross section, σ th

F , includes contributions from two imaginary
components, WI (r) and WF (E)f (XF ) in UF (r, E) of Eq. (6).
In Table II the partial contributions from the WI (r) part,
denoted by σI , are presented in comparison with the total
calculated fusion cross section, σ th

F . As seen, the contribution
from the inner part, WI , amounts to 22 ∼ 46% of σ th

F , which
is relatively small but not negligible at all.
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TABLE II. Partial contributions σI and σF to the fusion
cross sections.

Elab (MeV) E (MeV) σI (mb) σF (mb) σ th
F (mb)

29 28.1 11 13 24
31 30.0 23 80 103
33 31.9 53 166 219
35 33.9 91 259 350
39 37.7 175 430 605
44 42.6 277 604 881

Despite this non-negligible contribution from WI (r),WI (r)
is rather insensitive to the final total fusion cross section, σ th

F ,
and also to the elastic scattering cross sections, particularly in
the energy region where the strength of WF (E) varies rapidly
with E. To see this, we repeated the cross section calculations
by reducing the value of WI to 20 MeV at E = 28.1 MeV. This
energy is the lowest energy considered in the present study and
is a typical energy in the region where WF (E) changes rapidly
with E. The resulting elastic scattering cross section is found to
remain essentially the same. The value of σI decreases from 11
to 10 mb, and σF increases from 13 to 14 mb, leaving the total
fusion cross section, σ th

F , unchanged. This result confirms what
was stated earlier in Sec. IV A, that it is impossible to extract
information of the energy dependence of WI from the analysis
of the experimental data, justifying the present approach to
treat WI as a constant.
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FIG. 4. (Color online) Ratios of the elastic scattering cross
sections to the Rutherford cross section calculated with our final
dispersive optical potential are shown in comparison with the
experimental data. The data are taken from Ref. [2].
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FIG. 5. (Color online) DR and fusion cross sections calculated
with our final dispersive optical potentials are shown in comparison
with the experimental data. σ

semi-exp
D denoted by the open circles are

obtained as described in Sec. II. The fusion data are from Refs. [11]
and [12].

F. Discussions

As already noted in Sec. IV D, the real and imaginary parts
of both DR and fusion polarization potentials determined
from the present χ2 analyses satisfy the dispersion relation
[9,10] separately. Furthermore, the fusion potential exhibits
the threshold anomaly as observed in heavy-ion collisions
involving tightly bound projectiles [24–26]. For the 6Li +
208Pb system studied earlier [5] similar threshold anomalies for
the fusion potential and the dispersion relation were observed.

It is remarkable that the real part of the DR potential, which
we denote here by VD(r, E), turns out to be repulsive at most of
the energies considered; only exceptions appear at the lowest
energy point of E = 28.1 MeV, where VD(r, E) becomes very
weakly attractive (see Fig. 3). The final dispersive VD(r, E)
determined by using the dispersion relation, Eq. (8), with
WD(E) given by Eq. (16) is repulsive above E 	 29 MeV,
but becomes weakly attractive between E = 19 and 29 MeV.
We remark that the repulsiveness of VD(r, E) for 7Li + 208Pb
is considerably weaker than that for 6Li + 208Pb [5], which is
consistent with the results drawn from the CDCC study made in
Ref. [4], where the polarization potentials due to the coupling
to the breakup channels are calculated for both 6Li + 208Pb
and 7Li + 208Pb.

It is also remarkable that the polarization potential in the
surface region, say at the strong absorption radius of Rsa =
12.4 fm, is dominated by the DR part of the potential as shown
in Fig. 6. (Note that Fig. 3 shows only the potential strength
parameters, not the potential values.) The same is true for 6Li +
208Pb in Ref. [5]. Let us take as an example the imaginary part
of the potential. Then the contribution to the total imaginary
part of the potential from the fusion part is less than 6 and
15% for 7Li + 208Pb and 6Li + 208Pb systems, respectively.
Therefore, the total polarization potential in the surface region
is mainly characterized by the DR potential.

It is then interesting to compare the values of the total
imaginary potential at r = Rsa,W (r = Rsa, E), with those
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by using Eqs. (6), (7), (16), and (17) at the strong absorption radius,
r = Rsa = 12.4 fm, for all energies.
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FIG. 7. (Color online) The values of the total imaginary potential
W (r, E) at r = Rsa = 12.4 fm deduced in the present χ 2 analyses and
those obtained in Ref. [2]. The values from Ref. [2] are multiplied
by factors 1.23 and 1.11 for the 7Li + 208Pb and 6Li + 208Pb systems,
respectively.

obtained in Ref. [2], where the χ2 analyses of the elastic
scattering data of both 6Li + 208Pb and 7Li + 208Pb were
carried out by using double folding potentials as a real potential
and a Woods-Saxon type as an imaginary potential. In Ref. [2]
the overall normalization constant N of the double folding
potential and all three parameters (the strength, radius, and
diffuseness parameters) of the imaginary potential were treated
as adjustable parameters. An important conclusion drawn from
the analyses was that the resultant potentials at the surface
exhibit the threshold anomaly for 7Li but not for 6Li.

In Fig. 7, presented are values of W (r, E), at r = Rsa =
12.4 fm, obtained directly from the χ2 analyses [not those of
the dispersive potential such as given by Eqs. (16) and (17)]
carried out here for 7Li and in Ref. [5] for 6Li in comparison
with those taken from Fig. 2 of Ref. [2]. Note that the potential
values taken from Ref. [2] are multiplied by factors 1.23 and
1.11 for 7Li and 6Li, respectively, for comparison. Figure 7
shows that the two sets of the values are very close to each
other, demonstrating clearly that the energy dependencies of
the W (Rsa, E) values determined in both cases are essentially
the same. Combined with the above-mentioned fact that the
W (Rsa, E) values determined in the present study and in
Ref. [5] are essentially those of the DR potential, it follows that
the energy dependence seen in the W (Rsa, E) values of Ref. [2]
is that of DR. In this sense, the threshold anomaly claimed to
be seen in Ref. [2] for 7Li is not the threshold anomaly due
to fusion that was copiously observed in the tightly bound
projectiles [24–26].

V. CONCLUSIONS

Simultaneous χ2 analyses are made for elastic scattering
and fusion cross section data for the 7Li + 208Pb system at near-
Coulomb-barrier energies based on the extended optical model
approach in which the polarization potential is decomposed
into DR and fusion parts. Use is made of the double folding
potential as a bare potential. It is found that the experimental
elastic scattering and fusion data are well reproduced without
introducing any normalization factor for the double folding
potential and also that both DR and fusion parts of the
polarization potential determined from the χ2 analyses satisfy
separately the dispersion relation. Moreover, we find that the
real part of the fusion portion of the polarization potential
is attractive while that of the DR part is repulsive except at
energies far below the Coulomb barrier energy. The repulsive
real part of the DR potential is, however, considerably smaller
than that for 6Li + 208Pb obtained earlier [5], reflecting the
fact that the DR (breakup) cross section for 7Li + 208Pb is
smaller than that for 6Li + 208Pb. Accordingly, the imaginary
part of the DR potential obtained for 7Li + 208Pb is smaller
than that for 6Li + 208Pb. These features of the polarization
potential remarked above are qualitatively consistent with
those obtained in the CDCC calculation [2].

We find that the energy dependence of the optical potential
determined in Ref. [2] is very much like that of the DR
potential deduced in the present study.This means that the
energy dependence seen in Ref. [2] is not a real threshold
anomaly due to fusion, but rather is a much more slowly
varying energy dependence due to DR.
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