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In a recent article, we calculated fusion cross sections for systems involving even-even nuclei based on a
method that takes into account the couplings to a complete set of states for surface vibrations of the nuclear
densities. The predictions were obtained without using any adjustable parameter, and are in good agreement with
the experimental results for most of the systems, even at sub-barrier energies. In the present work, we extend
these calculations to systems involving nuclei with odd number of protons and/or of neutrons.
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I. INTRODUCTION

Tunneling of a particle through a barrier is a quite general
and important subject in many areas of physics. For energies
near the barrier height, the potential can be approximated by
a parabola and, if no couplings are present, the corresponding
transmission coefficient is well known [1]. When dealing with
a complex, many-particle system, such as a nucleus, couplings
with internal degrees of freedom may significantly affect the
transmission mainly at sub-barrier energies (for a review,
see Ref. [2]). Although from a theoretical point of view the
coupled-channels (CC) formalism is appropriate to describe
the heavy-ion fusion, in some cases numerical problems
may occur in the solution of the CC equations resulting in
unreliable theoretical cross sections, mainly at extreme sub-
barrier energies, when a large number of channels is included
in the calculations (see, e.g., Refs. [3,4]). In most works that
deal with fusion data analyses, a few adjustable parameters
related to the bare potential and/or coupling amplitudes were
used to fit the data. Despite the good data description generally
obtained, this procedure may result in unrealistic values for the
free parameters that could hide some particular characteristic
of the system [3].

In a recent article [3], we proposed a model, that we call
the zero point motion (ZPM) model, where we considered the
effect of the couplings to the complete sets of inelastic states
connected to the 2+ and 3− vibrational bands of even-even
nuclei. Despite the large number of coupled channels, the
numerical convergence of our calculations is quite good. The
analyses were performed in the context of the ZPM model and
using the São Paulo (SP) potential [5–7] as the bare interaction.
The SP potential has been successful in describing the elastic
scattering and peripheral reaction channels for several systems
in a wide energy region, from sub-barrier to intermediate
energies [6,8–25]. Therefore, the bare interaction assumed
to analyze the fusion data is also appropriate to describe
the elastic scattering process. In that work [3], we analyzed
fusion data for 64 different heavy-ion systems without using
any adjustable parameter. At extreme sub-barrier energies
(about 20 MeV below the barrier), the unidimensional barrier
penetration model (BPM) underestimates the data by about 11

orders of magnitude, whereas the results of the ZPM model
agree with the data within about two orders of magnitude for
most of the systems. This is an important result due to the lack
of adjustable parameters.

In Ref. [3], we considered only systems involving even-even
nuclei, because the ZPM model is based on the characteristics
(deformation parameter and excitation energy) of the 2+ and
3− excited states of the nuclei. In the present work, we extend
the ZPM calculations to the fusion of systems involving nuclei
with odd number of protons and/or of neutrons (hereafter we
call these nuclei simply odd nuclei). To reach this goal, in
Sec. II we present a systematics of 2+ and 3− excitation
energies for even-even nuclei. In Sec. III, we present a brief
description of the ZPM model and SP interaction. We use the
results of the systematics presented in Sec. II to analyze fusion
data in Sec. IV. Section V is devoted to our main conclusions.

In Refs. [3,4], we used the same name, ZPM model, for two
different approaches to the heavy-ion fusion problem. This,
of course, is a procedure that can lead only to confusion, but,
unfortunately, it is what we did. In this work, we use the model
presented in Ref. [3] and, to avoid even further confusion, we
maintain the name ZPM model for the model assumed here.

II. QUADRUPOLE AND OCTUPOLE EXCITATION
ENERGY SYSTEMATICS

In an earlier article [7], we presented an extensive sys-
tematics for the densities of heavy nuclei, based on studies
of experimental charge distributions and theoretical densities
calculated in a Dirac-Hartree-Bogoliubov model. In that work,
we adopted a spherically symmetric two-parameter Fermi
(2pF) distribution to describe the nuclear densities. We found
that the radii of the charge and matter distributions can be well
described by

R0c = 1.76Z1/3 − 0.96 fm, (1)

R0m = 1.31A1/3 − 0.84 fm, (2)

where Z and A are the number of protons and nucleons of the
nucleus, respectively. The charge and matter densities present
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average diffuseness values of a = 0.53 fm and a = 0.56 fm,
respectively. Due to specific nuclear structure effects (sin-
gle particle and/or collective), the radius and diffuseness
parameters show small variations around the corresponding
average values throughout the periodic table. In Ref. [7], these
variations were analyzed and standard deviations of σR =
0.07 fm and σa = 0.025 fm, relative to the average radius
and diffuseness values, respectively, were found. So, it is
possible to treat R0m and a as adjustable parameters to fit
fusion data. However, this procedure is justified only when
the resulting values for these parameters are within certain
acceptable ranges. In Ref. [7], we also defined the matter
density of the nucleus as a folding of the nucleon distribution
of the nucleus with the intrinsic matter density of the nucleon.
Thus, we distinguish the matter density from the nucleon
distribution by taking into account the finite size of the nucleon.

In another work [26], with the aim of obtaining the
deformation parameters, we used the systematics for the
quadrupole B(E2) and octupole B(E3) transition probabilities
of even-even nuclei from [27,28]. We defined the correspond-
ing deformation lengths by δλ = βλR0c and we assumed the
following connection with the transition probabilities:

B(Eλ) =
(

3ZeβλR
λ
0c

4π

)2

. (3)

We proposed that the deformation lengths can approximately
be described using the following functions:

δλ = Dλ(Z) + Dλ(N ), (4)

where Z and N are the number of protons and neutrons of
the nucleus, D3(X) = α√

X
with α = 3.2 fm, and the function

D2(X) was given in Table 1 of Ref. [26]. Equation (4) describes
the complete set of experimentally extracted deformation
lengths with a dispersion (standard deviation) of 0.2 fm (about
15% precision). This precision is only slightly greater than the
average experimental uncertainty.

To obtain a systematics for the excitation energies, we
adopt a similar procedure as that assumed in Ref. [26] for the
deformation parameters. Figures 1 and 2 show the excitation
energies of the 2+ and 3− excited states for even-even nuclei,
obtained in Refs. [27,28], as a function of the number of
protons or neutrons of the nuclei. An inspection of Figs. 1
and 2 shows a very interesting similarity between the behavior
of the E∗

λ values as a function of Z and N . With the purpose
of emphasizing this behavior, we calculated average values
over isotopes and also over isotones (Figs. 3 and 4). Based on
these findings, very similar to those obtained for deformation
parameters [26], we propose that the excitation energies, E∗

2
and E∗

3 , can approximately be described using the following
functions:

E∗
λ = Eλ(Z) + Eλ(N ). (5)

From the fit of the experimental E∗
λ we obtained such functions,

which are illustrated in Fig. 5 and presented in Tables I and II.
Equation (5), with the functions of Tables I and II, describes
the complete set of experimental excitation energies with a
dispersion (standard deviation) of 0.30 MeV. This value is
much larger than the experimental uncertainties, but it is

TABLE I. Values of the function E2(X).

X E2

(MeV)
X E2

(MeV)
X E2

(MeV)
X E2

(MeV)

2 0.52 42 0.16 82 1.02 122 0.13
4 1.28 44 0.19 84 0.57 124 0.07
6 2.09 46 0.33 86 0.36 126 0.91
8 3.46 48 0.46 88 0.20 128 0.33

10 0.75 50 1.07 90 0.05 130 0.11
12 0.50 52 0.53 92 0.04 132 −0.02
14 1.11 54 0.29 94 0.02 134 −0.08
16 1.12 56 0.20 96 0.00 136 −0.04
18 0.98 58 0.18 98 −0.01 138 0.01
20 1.20 60 0.15 100 −0.02 140 0.04
22 0.53 62 0.11 102 −0.03 142 0.04
24 0.37 64 0.09 104 −0.04 144 0.04
26 0.42 66 0.09 106 −0.03 146 0.04
28 1.00 68 0.10 108 −0.04 148 0.04
30 0.50 70 0.10 110 −0.03 150 0.05
32 0.45 72 0.12 112 −0.01 152 0.04
34 0.40 74 0.14 114 0.02 154 0.06
36 0.43 76 0.17 116 0.04
38 0.46 78 0.30 118 0.05
40 0.38 80 0.44 120 0.11

reasonably precise for the purpose of describing the fusion
process through the procedure presented in Sec. IV.

III. SP POTENTIAL AND ZPM MODEL

In this section we provide a brief description of the SP
potential and ZPM model. Further details can be obtained in
Refs. [3,7,26,29].

TABLE II. Values of the function E3(X).

X E3

(MeV)
X E3

(MeV)
X E3

(MeV)
X E3

(MeV)

2 23.7 42 1.11 82 1.31 122 1.26
4 3.30 44 1.24 84 0.77 124 1.46
6 4.07 46 1.41 86 0.53 126 1.47
8 2.66 48 1.45 88 0.28 128 0.56

10 2.49 50 1.73 90 0.31 130 0.51
12 3.45 52 1.42 92 0.39 132 0.19
14 3.34 54 1.21 94 0.43 134 0.04
16 2.43 56 0.92 96 0.57 136 0.01
18 2.08 58 0.80 98 0.47 138 0.05
20 1.76 60 0.73 100 0.48 140 0.26
22 1.60 62 0.63 102 0.37 142 0.46
24 1.99 64 0.60 104 0.51 144 0.29
26 2.20 66 0.63 106 0.53 146 0.29
28 2.57 68 0.93 108 0.58 148 0.40
30 1.85 70 0.85 110 0.47 150 0.28
32 1.47 72 0.79 112 0.47 152 0.51
34 1.31 74 0.79 114 0.50 154 0.40
36 1.20 76 0.94 116 0.46
38 1.02 78 0.88 118 0.68
40 1.01 80 1.15 120 1.00

024605-2



CONSISTENT ANALYSIS OF FUSION DATA WITHOUT . . . PHYSICAL REVIEW C 76, 024605 (2007)

0 20 40 60 80 100 120 140 160
0

2

4

6

E
* 2 

(M
eV

)

Z

2

4

6

8
N

E
* 2 

(M
eV

)

FIG. 1. The values of the experimental excitation energies of the
2+ state as a function of the number of protons (bottom) or neutrons
(top) of the nuclei. The dotted lines represent the magic numbers.

In the present work, we use the SP interaction generalized
for deformed nuclei [26,29]. Within this model, the nuclear
interaction is connected with the folding potential through [7]:

VN (R,E) = VF (R)e−4v2/c2
, (6)

where c is the speed of light and V is the local relative velocity
between the two nuclei. The folding potential depends on the
matter densities of the nuclei involved in the collision:

VF (R) =
∫

ρ1(�r1)ρ2(�r2)V0 δ( �R − �r1 + �r2)d �r1d �r2, (7)

with V0 = −456 MeV fm3.
Figure 6 shows a schematic representation of the collision

of two deformed nuclei, where θ would represent the direction
of the symmetry axis of the nucleus and �R connects the
center of mass of both nuclei. Figure 7 represents the
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FIG. 2. The values of the experimental excitation energies of the
3− state as a function of the number of protons (bottom) or neutrons
(top) of the nuclei. The dotted lines represent the magic numbers.
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FIG. 3. The average values for isotopes (or isotones) of the
2+ excitation energies as a function of the number of protons (or
neutrons) of the nuclei.
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FIG. 4. The average values for isotopes (or isotones) of the
3− excitation energies as a function of the number of protons (or
neutrons) of the nuclei.
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FIG. 5. The functions E2 and E3 that approximately describe the
behavior of the excitation energies. The dotted lines represent the
magic numbers.
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FIG. 6. Schematic representation of the collision between two
deformed nuclei. The s coordinate represents the variation of the
nuclear radius relative to the spherical shape in the direction of �R.

s-wave effective potentials for an hypothetical system,
obtained considering spherical or deformed densities. A
parabolic representation of the spherical potential, with barrier
height VB and curvature

h̄ω =
∣∣∣∣h̄2

µ

d2Veff

dR2

∣∣∣∣
1/2

RB

, (8)

is also presented in Fig. 7. The main effect of the deformation
is a shift in the barrier height, represented in Fig. 7 by 
VB ,
whereas the change in the barrier curvature is small. Due to
the short range of the nuclear interaction, the barrier height
practically depends only on the coordinate s represented in
Fig. 6. Different sets of θ and β values that result in the same
s value also provide similar VB values. For small s values,
one can consider the expansion: VB(s) = VB0 − Fs, where
VB0 = VB(s = 0) and

F = −∂VB

∂s
. (9)

Dasso, Landowne, and Winther [30] obtained the transmis-
sion coefficient for a parabolic barrier coupled to a harmonic
degree of freedom through a very simple analytical expression.
In Ref. [3], within the ZPM model, we generalized this
expression to the case of four harmonic degrees of freedom in
the context of heavy-ion collisions with the SP potential as the
bare interaction. In this context, the collision of two deformed
nuclei involves four vibrational coordinates corresponding to
the quadrupole and octupole modes of both nuclei. For each

40

60

80

100 V
B

V ef
f (

M
eV

)

R (fm)

 Spherical
 Deformed
 Parabola

FIG. 7. Effective (sum of nuclear and Coulomb) potentials
obtained considering spherical or deformed densities of the nuclei
and parabolic representation of the spherical potential. The shift in
the barrier height (
VB ) is indicated in the figure.

partial wave, the transmission coefficient can be obtained from:

T =
∑
n1

∑
n2

∑
n3

∑
n4

W
(1)
n1 W

(2)
n2 W

(3)
n3 W

(4)
n4 Tn, (10)

where the weighting factors are

W (j )
n = 1

n!

(
Fjσj

E∗
j

)2n

e−(Fj σj /E
∗
j )2

. (11)

The partial transmission coefficients can be obtained through
the Hill-Wheeler expression [1]

Tn = 1

1 + exp

[
2π

(
VB−E+λ

(1)
n1 +λ

(2)
n2 +λ

(3)
n3 +λ

(4)
n4

)
h̄w

] , (12)

considering the corresponding eigenvalues

λ(j )
n = nE∗

j − (Fjσj )2/E∗
j . (13)

In these expressions, Fj ,E
∗
j , and σj are, respectively, the

coupling amplitudes, excitation energies and standard devi-
ations of the four oscillators. The standard deviation of the
s-coordinate is connected with the corresponding β value
through:

σ = βR0√
4π

. (14)

As an approximation, we assumed that the Fj are in-
dependent parameters and the partial derivative involved in
Eq. (9) has been calculated with respect to the spherical
shape, i.e., assuming θ = 0 (see Fig. 6) and considering
all other β values equal zero. In the more realistic cases
where the form factors are rapidly varying with the distance,
F (R) = ∂Veff(R)/∂s, the constant-coupling approximation
can overestimate low-energy fusion rates [31]. In fact, within
the constant-coupling approximation, the barrier radius results
in a fixed position. However, due to the R dependence of F ,
the barrier radius depends on the deformation of the potential.
To avoid this problem, we obtained the barrier heights
of the deformed potential at the appropriate corresponding
barrier radii, considering four configurations: +2β,+β,−β,
and −2β. Then, the following derivative is calculated
numerically:

∂VB

∂β
≈ −VB(2β) + 8VB (β) − 8VB(−β) + VB(−2β)

12β
. (15)

The strengths are then obtained from:

F = −∂VB

∂s
= −

∂VB

∂β

R0Yλ0(θ = 0)
. (16)

IV. COMPARISON BETWEEN THEORETICAL AND
EXPERIMENTAL FUSION CROSS SECTIONS

In Ref. [3], the ZPM model has been applied to analyze
fusion data of 64 systems involving only even-even nuclei.
The β values of the vibration modes were connected, through
Eq. (3), with the corresponding experimental transition ampli-
tudes of quadrupole, B(E2), and octupole, B(E3), obtained in
Refs. [27,28]. Also the excitation energies of the 2+ and 3−
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states were obtained in the same references. In that work [3],
the SP interaction was assumed in its standard form, i.e., con-
sidering the average parameter values for the nuclear densities
[Eq. (2) for the radius and a = 0.56 fm for the diffuseness].
In this context, the SP potential has no adjustable parameter
and, therefore, the results for theoretical fusion cross sections
represent predictions rather than simply data fits. The main
results obtained in that work [3] are the following. At extreme
sub-barrier energies (about 20 MeV below the barrier), the
undeformed BPM underestimates the fusion data by about
11 orders of magnitude, whereas the results of the ZPM
model agree with the data within only 2 orders of magnitude
for most of the systems. Taking into account the lack of
adjustable parameters, the overall agreement between fusion
data and theoretical ZPM predictions could be considered
quite satisfactory. Of course, there is room for variation in the
bare potential to obtain a better agreement between data and
theoretical cross sections. In fact, we demonstrated that sig-
nificant improvement of the data description can be obtained
if adjustable parameters related to coupling amplitudes and/or
nuclear densities are assumed to fit the data. However, this
procedure is justified only when the resulting values for these
parameters are within certain acceptable ranges. Indeed, we
showed that even an apparently small variation of the nuclear
diffuseness could be unrealistic and could hide a different
characteristic of a particular system. This is a very important
subject because in many works the bare interaction is related
to adjustable parameters. Furthermore, the lack of adjustable
parameters establishes a good basis to compare results for very
different systems. In this context, particular characteristics in
the behavior of the data for different systems can be clearly
detected. Another important point discussed in Ref. [3] is
that we assumed the vibrational model for all nuclei (within
the ZPM model). However, some of the systems that we
analyzed involve nuclei that could be better represented by
the rotational model. Even so, similar agreement concerning
data and theoretical predictions were obtained for all systems.
In this sense, the ZPM model seems to be appropriated to
describe the fusion also for systems involving rotational nuclei.
Probably this feature is due to the fact that Eq. (14) provides
the exact result for standard deviations of both vibrational and
rotational models.

The purpose of the present work is to extend the ZPM
calculations to systems involving odd nuclei. This is based
on the idea that odd nuclei should have collective vibrations
similar to those of the even-even ones. The analyses were
performed without any adjustable parameter, assuming the
average radius and diffuseness values for the nuclear densities.
To estimate the β and E∗ values, we used the systematics
presented in Sec. II. We assume Eqs. (4) and (5) and, for odd X

values, we interpolated the functions Dλ and Eλ between two
neighboring even X values. Of course, this procedure has been
applied only for odd nuclei, because for even-even nuclei we
assumed the corresponding experimental B(E2), B(E3), E∗

2 ,
and E∗

3 values of Refs. [27,28]. The procedure of interpolating
parameters is not justified a priori, because unpaired particles
could affect the collective properties of the nuclei in a nonlinear
manner. Even so, we assumed this hypothesis to test it in the
description of the fusion process.

TABLE III. The table presents the values of the quadrupole
(β2) and octupole (β3) deformation parameters and also of the
corresponding excitation energies for the nuclei studied in this work.

Nucleus β2 E∗
2 (MeV) β3 E∗

3 (MeV)

6Li 3.11 1.80 2.34 27.0
7Li 3.01 2.18 2.18 16.8
9Be 2.15 2.97 1.65 6.98
10B 1.60 3.37 1.40 7.37
11B 1.28 3.77 1.34 7.76
14N 0.56 5.55 1.01 6.73
15N 0.43 6.23 0.97 6.02
16O 0.50 6.92 1.20 6.13
17O 0.48 5.57 0.86 5.23
18O 0.54 1.98 1.10 5.10
19F 0.83 2.86 0.77 5.07
27Al 0.46 1.91 0.55 6.74
32S 0.38 2.23 0.70 5.01
36S 0.32 3.29 0.56 4.19
35Cl 0.32 2.02 0.43 4.34
37Cl 0.24 2.24 0.42 4.02
45Sc 0.32 1.23 0.35 3.66
46Ti 0.37 0.89 0.18 3.06
50Ti 0.21 1.55 0.19 4.41
51V 0.25 1.45 0.31 4.37
59Co 0.25 1.16 0.27 3.85
58Ni 0.21 1.45 0.24 4.48
60Ni 0.24 1.33 0.26 4.04
62Ni 0.23 1.17 0.25 2.75
64Ni 0.22 1.35 0.26 3.56
65Cu 0.26 1.18 0.25 3.42
70Ge 0.26 1.04 0.33 2.56
73Ge 0.29 0.72 0.23 2.53
74Ge 0.33 0.60 0.19 2.54
76Ge 0.32 0.56 0.19 2.69
89Y 0.14 1.49 0.19 2.74
92Zr 0.12 0.93 0.21 2.34
93Nb 0.20 0.80 0.18 2.48
101Ru 0.28 0.37 0.17 2.10
103Rh 0.26 0.44 0.17 2.13
105Pd 0.25 0.50 0.17 2.18
112Sn 0.14 1.26 0.15 2.36
144Sm 0.10 1.66 0.17 1.81
159Tb 0.37 0.09 0.12 1.04
165Ho 0.39 0.08 0.12 1.25
208Pb 0.06 4.08 0.13 2.61
209Bi 0.014 1.71 0.10 2.51
232Th 0.30 0.05 0.10 0.77

In Table III, we present the nuclei involved in the 48 systems
studied in the present work, with the corresponding β and
E∗ values assumed for the quadrupole and octupole modes.
Figures 8 to 17 and 20 and 21 present the fusion data (from
references provided in the captions) and corresponding results
of the undeformed BPM (dashed lines) and the ZPM (solid
lines) calculations. The energy scale is represented relative
to the undeformed s-wave barrier height (VB). The figures
have the same energy and cross-section scales. This procedure
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FIG. 8. Fusion data (from Refs. [32–34]) and corresponding
undeformed BPM (dashed lines) and ZPM (solid lines) theoretical
cross sections for the 10B+159Tb, 11B+14N, 159Tb, and 232Th systems.
The s-wave barrier heights of the undeformed potential are presented
in the figure.

makes the comparison among results of different systems
simple.

Figure 8 presents data of systems involving 10,11B as
projectiles. For the light 11B+14N system, the ZPM and
BPM results are almost indistinguishable and agree quite
precisely with the data in the entire energy region. For the
heavier systems, significant enhancements of the data relative
to BPM calculations can be observed, whereas the agreement
between data and ZPM results is quite reasonable. Figures 9
to 11 present systems involving nitrogen, fluorine, oxygen,
and aluminum isotopes as projectiles. A quite reasonable
agreement between data and ZPM results is observed for all
systems. Figures 12 to 16 show systems involving sulfur and
chlorine isotopes as projectiles and, again, quite reasonable
predictions of the ZPM model are obtained, with some
disagreement observed for 36S (see Fig. 13). Figure 17 presents
the heaviest systems studied in this work, and only for
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FIG. 9. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [33,35–37].
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FIG. 10. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [35,36,38,39].

10-2

100

102
σ F

us
. (

m
b)

  27Al + 70Ge
V

B
 = 55.2 MeV

   27Al + 73Ge
V

B
 = 54.8 MeV

-20 -15 -10 -5 0 5
10-4

10-2

100

102

σ F
us

. (
m

b)

E
c.m.

 - V
B
 (MeV)

  27Al + 74Ge
V

B
 = 54.6 MeV

-20 -15 -10 -5 0 5

E
c.m.

 - V
B
 (MeV)

   27Al + 76Ge
V

B
 = 54.3 MeV

FIG. 11. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Ref. [40].
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FIG. 12. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [41,42].
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FIG. 13. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [41,42].
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FIG. 14. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [43–45]. There are different data sets
(indicated by different symbols) with measured cross sections that
can significantly differ from each other.
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FIG. 15. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [43–45]. There are different data sets
(indicated by different symbols) with measured cross sections that
can significantly differ from each other.
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FIG. 16. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [43,46–48].

60Ni+89Y is the ZPM model not so precise in describing the
sub-barrier data.

In Fig. 18, we present a summary of the results shown
in Figs. 8 to 17, by calculating the ratio between fusion
data and corresponding BPM or ZPM cross sections. For
comparison purpose, the figure also contains the results for
systems involving only even-even nuclei. We warn the reader
that, in the case of the even-even nuclei, we included in Fig. 18
data for 40Ca+192Os, 116Sn, and 40Ar+116Os, which were not
included in a similar figure presented in Ref. [3]. At extreme
sub-barrier energies, the data are underestimated by the BPM
calculations by 11 orders of magnitude (see Fig. 18). However,
the ZPM cross sections agree with the data within about
2 orders of magnitude for almost all the systems. One should
observe in Fig. 18 that no significant difference between the
results for systems involving odd and only even-even nuclei is
observed. This indicates that the procedure of interpolating βλ

and E∗
λ values for odd nuclei is appropriate for describing the

fusion process.
In Fig. 19 (top), we present the ratio between fusion

data and ZPM cross sections for the complete set of odd
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FIG. 17. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [41,46,49].
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FIG. 18. Ratio between fusion data and BPM (left side) or ZPM
(right side) theoretical cross sections for systems involving odd
(bottom panels) or even-even (top panels) nuclei.

and even-even nuclei. As a first impression, the precision of
two orders of magnitude that the ZPM model describes the
data at low energies could seem unsatisfactory. However, one
should realize the following comments. No free parameters
were assumed in our ZPM calculations, but the β values for
even-even nuclei were obtained from the experimental B(Eλ),
which have experimental uncertainties. For odd nuclei, the β

and E∗ values were obtained from interpolation and, therefore,
the “uncertainties” of these parameters are even larger than
those for even-even nuclei. Furthermore, we assumed the
average values for the density parameters, but as already
commented the radius and diffuseness parameters show small
variations around the corresponding average values throughout
the periodic table. Therefore, one should expect a spread of
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FIG. 19. (Top) Ratio between fusion data and ZPM cross sections
for systems involving odd and even-even nuclei. (Bottom) Average
values of the order of magnitude of the deviations between fusion
data and ZPM cross sections for systems involving odd and even-even
nuclei and also for systems involving the weakly bound 6,7Li and 9Be
nuclei.

the ZPM results around the fusion data due to the fluctuations
of the coupling and density parameters relative to the average
values assumed in our calculations. Obviously, this dispersion
should be larger at very low energies where the effect of the
couplings is more important. This apparently large dispersion
of 2 orders of magnitude is, in fact, 9 orders smaller than the
effect of the couplings, which reaches 11 orders of magnitude
at extreme sub-barrier energies, as can be observed from the
difference between fusion data and BPM cross sections.

However, these fluctuations should partially cancel when
calculating average values for several systems. To emphasize
this point, we obtained average values for the order of
magnitude of the deviations between fusion data and ZPM
cross sections. We divided the data presented in Fig. 19 (top)
in consecutive bins of 2 MeV. For each bin we calculated the
average value of ln(σFus./σZPM) and defined average values
for the order of magnitude through the following expression
〈σFus./σZPM〉 = e〈ln(σFus./σZPM)〉. The corresponding results are
presented in Fig. 19 (bottom). In this figure one can observe
that, on average, the ZPM results agree with the fusion data
within a factor about 2 in the whole energy region considered
in this work. This result is very similar to that presented in
Ref. [3], in which only systems involving even-even nuclei
were analyzed, except in the region Ec.m. − VB < −15 MeV,
where larger discrepancies were found in that work. Thus,
one could claim a detected difference between the results for
the sets of odd and only even-even nuclei. However, in this
low-energy region there are measured fusion data for only five
systems and, therefore, the statistics in this energy region is
very small [see Fig. 19(top)] that results in large fluctuations
of the average values. Thus, we consider that no significant
difference between the analyses of the even-even and odd
data sets has been detected. Due to the larger number of
systems considered here, the results for average values of the
present work are probably more precise than those obtained in
Ref. [3].

Figures 20 and 21 show systems involving the weakly
bound 6,7Li and 9Be nuclei. Here, an important difference
relative to the other systems is observed. Clearly, there is
a hindrance of the data relative to the ZPM results even
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FIG. 20. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [50–52].
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FIG. 21. The same as in Fig. 8 for the systems indicated in the
figure. The data are from Refs. [23,50,51,53].

at energies above the barrier. To illustrate this point, the
corresponding average values are also presented in Fig. 19
(bottom). A possible explanation for this hindrance is the
competition of the breakup process with the fusion that should
be significant for systems involving weakly bound nuclei, as
already discussed in many works (see, e.g., Refs. [54,55]).

V. SUMMARY AND CONCLUSION

The ZPM model takes into account the effect of the
harmonic vibrational modes in the calculation of transmission
coefficients, and therefore it describes a large number of
couplings to inelastic states. The tunneling process strongly
depends on the barrier height, which is related to variations
of the distance between the surfaces of the nuclei. Thus,
heavy-ion fusion is quite sensitive to vibrations of the nuclear
densities. In our calculations, we assumed the SP potential in
the context of the systematics for the nuclear densities. Thus,
no free parameters were assumed in our analyses. We described
fusion data for 48 heavy-ion systems involving odd nuclei,
for which the coupling parameters were obtained through
the systematics of even-even nuclei. The results obtained
here for odd nuclei are similar to those earlier presented

for even-even nuclei [3]. Taking into account the lack of
adjustable parameters, the overall agreement between fusion
data and theoretical ZPM predictions can be considered quite
satisfactory, within only 2 orders of magnitude for almost all
the systems. Therefore, the large enhancements of the data
relative to undeformed BPM calculations are mostly due to
the effect of the couplings to inelastic states. Due to the
fluctuations of the density and coupling parameters around the
corresponding average values assumed in our calculations, one
should expect the observed spread of the ZPM cross sections
relative to the fusion data, mainly at extreme sub-barrier
energies where the effect of the couplings is very large.
This dispersion should partially cancel when considering
averages over several systems and, in fact, on average the ZPM
predictions agree with the data within only a factor about 2 in
the whole energy region studied in this work. This precision
of a factor of 2 can be considered remarkable, taking into
account that the BPM underestimates the data by 11 orders
of magnitude at extreme sub-barrier energies. An important
exception corresponds to systems involving the weakly bound
6,7Li and 9Be nuclei, where a hindrance of the data relative
to the ZPM cross sections has been observed even at above
barrier energies. We point out that this behavior could be
clearly detected here due to the lack of adjustable parameters
of our model. This effect for weakly bound nuclei can be
due to the competition of the breakup process with the fusion.
Finally, we emphasize that the SP potential has been successful
in describing the elastic-scattering process for a large number
of systems in a very wide energy range. Therefore, we obtained
an important correlation between the analyses of the heavy-ion
fusion and elastic-scattering processes. The ZPM calculations
were performed using the computational code SPZPM, which
is available on request from L. C. Chamon.

ACKNOWLEDGMENTS

This work was partially supported by Financiadora de
Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa
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