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Using numerical and analytical methods implemented for different models, we conduct a systematic study
of the thermodynamic properties of pairing correlations in mesoscopic nuclear systems. Various quantities are
calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical,
and microcanonical ensembles is conducted. The nature of the pairing phase transition in a small system is of
a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and
evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of
the invariant correlational entropy is also studied in the transitional region of interest. The change in the character
of the phase transition due to the presence of a magnetic field is discussed along with studies of superconducting
thermodynamics.
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I. INTRODUCTION

Pairing correlations and related superconducting or super-
fluid properties are robust features of quantum many-body
systems. In physics, anywhere from quarks to stars, it is hard
to find systems that under certain conditions do not exhibit
pairing correlations. The Cooper phenomenon [1], namely, the
instability against formation of particle pairs in a macroscopic
Fermi system under an arbitrarily weak attractive force, is a
primary reason for the thriving of pairing.

Pairing in mesoscopic systems, such as atomic nuclei [2],
metal clusters [3–5], ultra-small grains [6], quantum dots [7],
and interacting spins [8,9], has attracted a lot of attention
recently. Indeed, questions of phase transitions [1,10–13],
interplay with other collective modes [14,15], continuum
effects [16], and thermodynamic properties of small systems
are important to present-day science and technology.

In this work, we conduct a systematic study of the
thermodynamics of pairing correlations in small systems. We
use two types of model Hamiltonians of lower and higher
symmetry where the pairing problem is solved exactly and
all quantum states are identified. We use a quasispin algebra
with the effective numerical implementation to obtain a full
solution for systems ranging in size from a few particles to as
large as over a hundred particles. The traditional BCS solution
is also considered for comparison. Using these results, we
compare different thermodynamic ensembles: microcanonical,
canonical, and grand canonical. The differences indicate a
mesoscopic nature of the system [17–19] and diminish in the
macroscopic limit. Some discrepancies observed in thermo-
dynamics are related to the nonthermal nature of the pure
pairing interaction [20] and raise questions of equilibration
and thermalization. Through thermodynamic ensembles and
using invariant correlational entropy, we study and analyze
the pairing phase transition as a function of temperature or
excitation energy, magnetic field, size of the system, and
pairing strength.

We further explore the evolution of zeros in the complex
temperature plane for the canonical ensemble [21–24], for
which recent findings have established clear correlations

of pair breaking with peaks in entropy and branches of
complex temperature roots approaching the real axis [2,18,25].
We extend this discussion with consideration of the phase
transition based on the Yang-Lee theory [26–28]. Of particular
interest are studies of the system in the magnetic field, the
evolution of zeros in the partition function as a function of
field strength, the spin fluctuations, and the change of the
phase transition type.

This presentation is structured as follows. We first introduce
the pairing Hamiltonian, identify properties of the pairing
problem, and define models for our study in Sec. II. In
Sec. III we consider a BCS approximation which shows the
generic features of a paired system. The bulk of the work
is presented in Sec. IV and its subsections, where different
methods are introduced, discussed, and compared. In Sec. VI
we concentrate on the effects that external magnetic field or
rotation have on the properties of paired systems; this includes
the classification of the phase transitions using the distribution
of zeros in the partition functions.

II. PAIRING HAMILTONIAN

We approach the pairing problem by defining a pair of
single-particle states denoted here as 1 and 1̃. This pairwise
identification can be based on an arbitrary symmetry; however,
the fundamental symmetry with respect to time reversal is
the most common. For this work, we assume a pair as two
particles in time-conjugated single-particle states that because
of this symmetry have identical energies. Using the language
of the second quantization, the pair creation and annihilation
operators are p

†
1 = a

†
1a

†
1̃

and p1 = a1̃a1, respectively. Here the

a
†
1 and a1 are single-particle creation and annihilation operators

with the usual fermion commutation rules. The pair is labeled
by the same single-particle index 1, and it is invariant under
the time conjugation, p1 = p1̃, since a ˜̃1 = a.

The algebra of the pair operators on a pair-state 1 (a pair of
orbitals 1 and 1̃) is identical to that of an SU(2) spin algebra
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called quasispin; in general, the commutation relations are

[p†
1, p2] = 2δ12p

z
1, (1)

where

pz
1 = (

n1 − 1
2

)
, (2)

the operator related to the particle number n1 = (a†
1a1 +

a
†
1̃
a1̃)/2 operator for the pair-state 1.
A pair-state (1, 1̃) that is occupied by a pair or is completely

empty corresponds to quasispin 1/2 with projections pz
1 =

1/2 and pz
1 = −1/2, respectively. Alternatively, these states

are referred to as states with seniority s1 = 0 identifying the
number of unpaired nucleons in the pair-state 1. The states
with one unpaired particle correspond to s1 = 1 and to zero
quasispin.

The most general form of the two-body Hamiltonian that
describes the motion of pairs at fixed particle number is

H = 2
∑
1>0

ε1n1 −
∑

1,2>0

G12p
†
1p2, (3)

where the summation runs over pair-orbitals, denoted as 1 >

0, ε1 are single-particle energies, and G12 = G21 determines
the strength of pair scattering. Using the quasispin, the same
Hamiltonian can be written as

H =
∑
1>0

ε1 +
∑
1>0

2

(
ε1 − G11

2

)
pz

1

−
∑
12>0

G12
( �p1 · �p2 − pz

1p
z
2

)
. (4)

The problem is analogous to the Heisenberg model of
�/2 − s interacting spins | �p| = 1/2, with the Zeeman split-
ting created by the single-particle energies. The �/2 stands
here for the total number of double-degenerate levels, and
s = ∑

1 s1 represents the total seniority. Because of the
magnetic-field-like splitting, the total quasispin vector �p =∑

1>0 �p1 is not conserved, while the remaining cylindrical
symmetry allows for the conservation of the z projection
pz = N/2 − �/4, equivalent to the total particle number
N = 2

∑
1>0 n1.

The eigenstates of the Hamiltonian (3) are identified by
the set of �/2 seniorities s = {s1} denoting the available and
blocked pair-states. In the language of the spin model (4),
seniorities represent the number of spin 1/2 particles in the
system, thus totally removing all blocked states from interac-
tion. The Hamiltonian within a certain seniority partition s is
given as

Hs =
∑
1>0

s1ε1 + 2
s∑

1>0

n1

(
ε1 − G11

2

)

−
s∑

1�=2

G12
( �p1 · �p2 − pz

1p
z
2

)
, (5)

where the upper summation limit s implies that all blocked
states with s1 = 1 are excluded.

Since each unpaired particle doubles the degeneracy of the
many-body state, the total degeneracy of a given eigenstate is
gs = 2s . With other symmetries, beyond the time reversal, the

degeneracy of states can be higher. Additional degeneracies
such as the one due to the rotational symmetry can further
reduce the problem to larger values of the quasispin. In the
spherical shell model within a given j shell, there are a
total of ωj = j + 1/2 time-conjugate pair-states, and the total
quasispin is preserved by the pairing interaction. For such a
j shell, a quasispin vector �pj = 1

2

∑
m �pjm can be introduced

which together with the number operator for this level and its
own Hermitian conjugate again forms an SU(2) group. The
independence of matrix elements and quasispin operators on
magnetic substates allows us to rewrite the Hamiltonian (3) as

H =
∑

j

εjNj −
∑
jj ′

Vjj ′P
†
j Pj ′ , (6)

where for reasons of the two-particle state normalization, a
pair operator and interaction matrix elements are redefined as

�Pj = 1

2
√

ωj

∑
m

�pjm,

(7)
Vjj ′ = √

ωjωj ′Gjj ′ .

The exact diagonalization of the pairing Hamiltonian (3)
or (6), depending on the symmetries of the model, is performed
using the quasispin algebra. The ability to obtain all many-
body states with a relatively simple exact treatment of pairing
is an important component in this study. The more detailed
discussion of the seniority-based diagonalization can be found
in Refs. [29–31]. We refer to the exact treatment of pairing as
EP. The applications of algebraic methods extend far beyond
our models; treatments of proton-neutron pairing as well as
more exotic forms of pairing-type Hamiltonians are discussed
in Refs. [32–40]. Other methods of exact solution, analogies
with boson-fermion models, and electrostatic analogies should
be mentioned [41–46].

Below in Sec. IV we introduce thermodynamic ensembles
and discuss the thermodynamic variables used to study the
many-body system that undergoes pairing phase transition. For
each of the cases, we construct the partition function exactly
based on the full numerical solution to the pairing problem. As
examples, we consider two basic types of systems. The first is
the picket-fence (or ladder) system, which has �/2 equally
spaced double-degenerate levels, where the total fermion
capacity is �. The level spacing is chosen as the unit of energy.
The picket-fence model is a minimal symmetry system with
time reversal only; therefore, the degeneracy of each eigenstate
α is gαs = 2s . The second model with only two levels, but
of large degeneracy, represents an opposite “high symmetry”
case. Spacing between the two levels is again taken as the unit
of energy. Because of the additional symmetry, the degeneracy
of many-body states is higher. The action of the pairing
Hamiltonian is limited to either diagonal or level-to-level pair
transfer. For the two-level system with an appropriate selection
of the basis states, the Hamiltonian matrix is tridiagonal. This
facilitates substantially the numerical treatment, making it
possible to determine all many-body states in systems with
a hundred or more particles. The two types of model spaces
with total occupancy �, particle number N , and constant
pairing strength G constitute the set of input parameters in this
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study. Introduction of the magnetic field in Sec. VI does not
require a separate diagonalization; however, it does require the
determination of the total spin projections onto an axis parallel
to the direction of the field. We note that the total number of
many-body states is � = �!

N!(�−N)! .

III. BARDEEN-COOPER-SCHRIEFFER

The BCS approximation is the common approach to tack-
ling the pairing problem. While this method is asymptotically
exact in the thermodynamic limit, it still produces remarkably
good results for smaller systems. The BCS method assumes
the presence of a condensate and approximates the dynamics
of interacting particles in Eq. (3) with a motion of independent
quasiparticles. Although most of the issues that we intend
to address in this work can not be fully explored within the
BCS picture owing to its limitations, the method is a good
benchmark for many of the questions and excellent guidance
to the dynamical regions of interest. Below we review the
approach while stressing some of the key elements relevant to
this work.

Within the BCS theory, the general pairing Hamiltonian in
Eq. (3) is brought to an approximate single-particle form using
the Bogoliubov transformation. The parameters of the trans-
formation are the set of gaps �1 and the chemical potential µ.
The set of gaps is determined via the gap equation

�1 = 1

2

∑
2>0

G12
�2

e2
, (8)

and the chemical potential is given by the particle number

N = 2
∑
1>0

n1, where n1 = 1

2

(
1 − ε1

e1

)
. (9)

For simplicity of notation, we introduce single-particle en-
ergies shifted by the chemical potential and the diagonal
interaction strength ε1 = ε1 − µ − G11/2. The result of the
Bogoliubov transformation is the spectrum of states given by
the independent quasiparticle excitations with energies

e1 =
√

ε2
1 + �2

1. (10)

The total energy of the paired system is

E = 2
∑
1>0

(
ε1 − G11

2

)
n1 −

∑
1,2>0

G12
�1�2

4e1e2
.

As earlier, the summations here go over the pair-states.
In this work, we use for all our models a constant pairing

strength G11 ≡ G which due to Eq. (8) leads to a constant
pairing gap for all single-particle pairs, �1 ≡ �. A single
parameter for the interaction strength, in our view, allows the
most transparent study of the important features, the results
are generic, and the methods of BCS and EP are applicable to
general situations. For constant pairing, the BCS gap equation
and the energy are textbook examples:

1 = G

2

∑
1>0

1

e1
, E = 2

∑
1>0

(
ε1 − G

2

)
n1 − �2

G
. (11)

To accommodate the cases with higher symmetry following
Eq. (7), it is convenient to introduce V = ωG, where ω is
the pair degeneracy which is level independent in both picket-
fence (ωj = 1) and two-level (ωj1 = ωj2 ≡ ω) models.

The particle number nonconservation intrinsic to the
Bogoliubov transformation is one of the problems associated
with the BCS applications to mesoscopic systems. Further-
more, in a system with discrete levels, Eq. (8) may not
have a solution, with the exception of a trivial case, �1 = 0.
Formally, this transitional point [47] corresponds to the critical
interaction strength where the largest eigenvalue of the matrix
built from the elements (G12ε1 + G21ε2)/(4ε1ε2) is equal to
unity. The interpretation of this is that at a low pairing strength,
the pairing is too weak to overcome gaps in the single-particle
spectrum which leads to a normal state. This situation is again
specific to small systems, where it appears in contrast to
the Cooper instability [1]. The total absence of the pairing
correlations below the critical pairing strength is a second
major drawback of the BCS approach in mesoscopic systems.
Exact solutions indicate a gradual dissipation of pairing
correlations extending almost to zero strength [2,47–49]. The
critical pairing strength as determined by the BCS is still an
important parameter identifying the location of the mesoscopic
phase transition.

An analytic solution to the BCS equations can be obtained
for the two-level system defined above. For a half-occupied
system, the chemical potential due to the particle-hole sym-
metry is an exact average of the monopole-renormalized
single-particle energies µ = (ε1 + ε2 − G)/2. Thus,

�2 = V 2 −
(

�ε

2

)2

, �ε = ε1 − ε2. (12)

The introduction of the renormalized strength V makes this
equation independent of �.

In Fig. 1(a), the BCS gap is plotted as a function of energy
for the two-level model following Eq. (12). The curve has
a square-root discontinuity at the critical pairing strength
Vcr = 0.50 in the units of level spacing. The concept of the gap
does not appear in the exact solution; however, this quantity
can be deduced from the energy associated with pairing
correlations. The second curve in the same figure shows the
gap computed through Eq. (11) where energy and occupation
numbers are obtained from the exact solution. The difference
between these two curves depicts the shortcoming of the BCS
when applied to a small system; for related discussions and
comparison of BCS with exact techniques, see Refs. [50–52].
In Fig. 1(b) an alternative view on the EP-BCS comparison
is given. Here we show the energy difference per particle
between BCS and EP as a function of the pairing strength
for N = 20 and 100 particles. As the particle number grows,
the BCS and EP become equivalent. The peak in the BCS-EP
discrepancy appears in the pairing phase transition region,
around Vcr ≈ 0.6, which is close to an analytically obtained
BCS value of 0.5. The discrepancy in Vcr is known to arise
from the pair vibrations and other renormalizations of the BCS
ground state [53,54].

For our other (picket-fence) model, the critical pairing
strength can be determined in the case of a half-occupied
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FIG. 1. (Color online) (a) BCS pairing gap as a function of pairing
strength for the two-level, half-occupied system with 20 particles.
(b) Energy difference per particle between BCS and the exact result
as a function of pairing strength for the same N = 20 system and
compared with results for a larger half-occupied two-level model
containing 100 particles. The single-particle level spacing is chosen
as the unit of energy.

system with an even number of levels through the sum of
a harmonic series, that is,

Gcr = �ε( ∑(�/2+1)/2
n=1

1
n

+ ln 4
) , (13)

which in the limit of a large number of levels converges
to zero logarithmically, Gcr ∼ �ε/ ln �. We recall here that
formally for this model, G = V since ωj = 1 and �/2 equals
the number of levels. This logarithmic dependence in the
macroscopic limit is related to the exponential dependence
of the gap on the pairing strength and density of states near the
Fermi surface, which represents the Cooper instability.

We conclude this section with a note on the BCS approach at
finite temperature T = 1/β. By modeling the thermodynamics
of quasiparticles with noninteracting Fermi gas, we obtain a
modified version of Eq. (11):

1 = G

2

∑
1>0

tanh
(

β

2 e1

)
e1

, (14)

where quasiparticle energies are of the form in Eq. (10).
A related discussion of thermodynamic treatment within the
grand canonical partition function and following from it the
thermal BCS is presented in Sec. IV B.

For the two-level, half-occupied model, the temperature
dependence of the critical pairing strength is given by

Vcr = �ε

2
coth

(
β�ε

4

)
. (15)

IV. STATISTICAL TREATMENT

Statistical properties of many-body systems are addressed
using normalized density operators [55], usually referred to as
statistical operators ŵ [56] and defined as

ŵ(E,N) = 1
Z

δ(E − Ĥ )δ(N − N̂ ) (16)

for the microcanonical,

ŵ(β,N) = 1
Z exp(−βĤ ) δ(N − N̂ ) (17)

for the canonical, and

ŵ(β,µ) = 1
Z exp

(−β(Ĥ − µN̂ )
)

(18)

for the grand canonical ensemble. In these definitions, the
parameter β = 1/T refers to an inverse temperature, and µ

corresponds to the chemical potential. Here we use units where
the Boltzmann constant is equal to unity, allowing units of
energy to be used for temperature. The normalization constants
Z, Z , and Z are the partition functions for the corresponding
ensembles; so the statistical operators are normalized by the
trace Tr(ŵ) = 1. The statistical averages are calculated as

〈Ô〉 = Tr(Ôŵ). (19)

The entropy for the above ensembles is defined as

S = −〈ln(ŵ)〉 = −Tr(ŵ ln ŵ). (20)

Strictly speaking, this definition is applicable only to a
thermally equilibrated system which makes the thermody-
namic Boltzmann-Gibbs entropy discussed below equivalent
to the von-Neumann entropy of a quantum ensemble in
Eq. (20). A new light on the complexity of quantum states
in nonthermalized or nonequilibrated systems can be obtained
with the invariant correlational entropy [57] (ICE), which also
appears to be a good tool for studying the phase transitions
in mesoscopic systems [58,59]. The correlational entropy is
defined through the behavior of the microcanonical density
matrix (16) for each individual quantum state in response to a
noise in an external parameter. For the purposes of this work,
we consider pairing strength V to be this external parameter.
The variations in V within the interval [V, V + δV ] result in
an averaged density operator

ŵα = 1

δV

∫ V +δV

V

ŵα(V ),

where the weight operator ŵα is a density operator for an
individual quantum state α followed with the evolution of
V , for a fixed parameter V this is a projection operator. The
averaged statistical weight matrix is used to obtain the ICE via
Eq. (20).

The quality or applicability of a given thermodynamic
approach to a small system is often under question. While
some studies use various ensembles interchangeably, there are
significant dangers on that path. Our investigations below not
only show the pairing phase transition and its evolution as a
function of the particle number but also draw attention to some
subtle differences in thermodynamic treatments.
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A. Canonical ensemble

Given an exact solution to the pairing problem via di-
agonalization in the seniority scheme, Sec. II, the formal
definition (17) can be written explicitly for the eigenstates
labeled by α and s as

wαs = 1
Z exp(−βEαs), (21)

where

Z(β,N ) =
∑
αs

gαs exp(−βEα,s) (22)

is the canonical partition function. The ensemble average in
Eq. (19) for any quantity is given as

〈O〉 =
∑
αs

gαswαs 〈αs|O|αs〉, (23)

where 〈αs|O|αs〉 is the quantum-mechanical expectation value
for the corresponding operator in the eigenstate α with the
seniority set s. The entropy is given via the usual expression

S = −
∑
αs

gαswαs ln(wαs). (24)

The reader may be familiar with the following set of traditional
thermodynamic relations [60].

〈E〉 = − ∂

∂β
ln(Z), (25)

the entropy S can be found directly from the statistical
definition (20) as

S = lnZ + β〈E〉 = −∂F

∂T
, (26)

and the Helmholtz free energy is defined as

F = −T ln(Z) = 〈E〉 − T S. (27)

Equation (25) involves a derivative; however, in our calcu-
lations we avoid numerical differentiations by always going
back to the definition in Eq. (23). For example, specific
heat is computed using its relation to the energy fluctuations
〈(E − 〈E〉)2〉,

C =
(

∂〈E〉
∂T

)
= β2 ∂2 lnZ

∂β2
= β2〈(E − 〈E〉)2〉. (28)

The results of our study based on the canonical ensemble
are shown in Figs. 2–8. In Figs. 2(a)–2(d), free energy,
entropy, energy, and energy fluctuation of the ladder system
with 12 levels and 12 particles are shown as functions of
temperature; similar studies may be found in Refs. [2,61]
and references therein. The critical pairing strength for this
model from BCS, Eq. (13), at zero temperature is Vcr =
0.27. The curves correspond to different pairing strengths
showing various conditions: weak pairing with about half
the critical pairing strength V = 0.13; pairing strength above
the critical value V = 0.6; and strong pairing V = 1. All the
plots show essentially similar trends: a sharp change in each
of the quantities as a function of temperature in a certain
region. This region is associated with the phase transition
from the paired to the normal state. It can be seen most
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FIG. 2. (Color online) (a) Free energy, (b) entropy, (c) energy,
(d) energy fluctuations, (e) specific heat, and (f) order parameter
of a ladder system with 12 levels and 12 particles as functions of
temperature. The unit of energy is determined by the single-particle
level spacing.

transparently in 2(e), where it is associated with the peak
in heat capacity. The critical temperature Tcr depends on the
pairing strength. It can be observed that the transitional region
for strong pairing (V > Vcr for T = 0) is roughly consistent
with the BCS, which gives Tcr = 2.7 and 1.3 for V = 1 and
0.6, respectively. Naturally, the stronger pairing interactions
support the superconducting state at higher temperature or
excitation energy. For weak pairing, the transitional behavior is
present at zero temperature. This is consistent with the earlier
finding that pairing correlations appear in the ground state
even for small V . The decline of the weak pairing (V � 0.13)
phase is still associated with the peak in heat capacity which
becomes smaller as the pairing strength is weakened, while
staying essentially at the same Tcr ∼ 1.3.

The phase diagram can be further explored by considering
an order parameter which we define here as a fraction of paired
particles ψ = (N − 〈s〉)/N , the 〈s〉 is the ensemble-averaged
value of the total seniority. The dependence of the order
parameter on temperature, shown in Fig. 2(f), shows that
the fraction of superconducting pairs drops sharply in the
transitional region which is also identified by the critical
behavior of other thermodynamic quantities.

The contour plot of the order parameter as a function of
pairing strength and temperature is shown in Fig. 3. The shaded
area in the upper left corresponds to the high percentage of
particles in the condensate, which occurs at low temperature
and high pairing strength; while in the opposite limit, the
superconducting state disappears. The solid line indicates
the phase boundary as follows from the BCS approximation.
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FIG. 3. (Color online) Contour plot of the order parameter as a
function of pairing strength and temperature, for the half-occupied
12-level system. The line separates normal and paired regions based
on the BCS equation.

We note that at zero temperature the fraction of superconduct-
ing particles is high even at zero pairing strength; this special
point corresponds to the absence of two-body interactions
which results in pairwise Fermi occupation of time-reversed
orbitals.

Throughout this work, we mainly discuss systems with an
even particle number; we found that the difference between
odd and even systems in the critical region of interest is small.
Most of the distinction occurs at zero temperature, where
degeneracy of an odd-particle ground state and nonzero spin
are important. This can be seen in Fig. 4, where we compare
the entropy and specific heat as a function of temperature for
N = 11 and N = 12, 12-level ladder systems.

The transition to the thermodynamic limit is explored for a
two-level system in Fig. 5. Unless noted otherwise, we select
exactly half-occupied systems with N = �/2. The region of
interest is identified by the peak in heat capacity seen in
Fig. 5(b). With the increased particle number, this peak
becomes sharper as expected in the macroscopic limit, where
the phase transition is represented by a discontinuity. Another
interesting remark can be made about the location of the peak.
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FIG. 4. (Color online) (a) Entropy and (b) specific heat as a
function of temperature, for an odd and even number of particles
and V = 1.
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FIG. 5. (Color online) (a) Energy and (b) specific heat as a
function of temperature, for V = 1 and various numbers of particles
N = 10, 30, 50, and 100. The distance between single-particle levels
is taken as the unit of energy.

Following Eq. (15) within the BCS approximation, the location
of the phase transition for a half-occupied two-level model
does not depend on the size of the valence space �; at V = 1,
the BCS prediction is Tc = 0.455. As seen from the figure
this is not exactly correct; for a small 10-particle system, the
peak appears at about Tc = 0.35, and only with an increase
in the particle number does the peak move right, to the BCS
predicted value, thus confirming the BCS as an exact theory
in the macroscopic limit.

In recent years, analysis of poles in the complex temperature
plane and the evolution of branches of these poles has
attracted a lot of attention as a study and classification
tool for mesoscopic phase transitions. The theory related to
the distribution of zeros (DOZ) in fugacity of the grand
canonical ensemble dates back to Yang-Lee [27,28]. Later
works [22–24] extended it to the complex temperature plane
of the canonical ensemble. The method of classification of
mesoscopic phase transitions, recently suggested in Ref. [11],
is based on the distribution of zeros near the real axis. Some
of the interesting questions such as whether the nature of the
phase transition changes as a function of size have been studied
with this approach. The first steps in the analysis of mesoscopic
systems undergoing pairing phase transitions were taken in
Refs. [2,62]; the evolution of DOZ and a comparison with the
thermal BCS for a two-level model can be found in Ref. [25].

In what follows, we use the classification of phase transi-
tions developed by Bormann et al. [11]. We introduce complex
temperature as B = β + iτ and numerically seek a set of zeros
Bi in the canonical partition function Z(Bi , N ) = 0; since the
function is real, the zeros appear in complex conjugate pairs,
and we can limit the region of consideration to τ � 0. The
product expansion of the partition function in terms of zeros
using the Weierstrass theorem gives

Z(B) = �
∏

i

(
1 − B

Bi

) (
1 − B

B∗
i

)
. (29)

The DOZ in the complex temperature plane for the two-level
system is shown schematically in Fig. 6. The sets of zeros
form branches [18,25]; in Fig. 6, only the branch lowest to
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FIG. 6. (Color online) Lowest branch of zeros computed for N =
100 and G = 1.00.

the real axis is shown. The size of the system determines
the distance between neighboring zeros which in macroscopic
limit becomes continuous. Phase transitions are associated
with branches crossing the real axis. Indeed, the zeros in the
partition function appear as poles in thermodynamic variables;
for the energy or heat capacity, we have from Eq. (29)

〈E(β)〉 =
∑

i

(
1

Bi − β
+ 1

B∗
i − β

)
, (30)

CV (β) = β2
∑

i

(
1

(Bi − β)2
+ 1

(B∗
i − β)2

)
. (31)

In general, although there are no poles at the real axis,
the derivative dk(ln Z)/dβk ∼ ∑

j (Bi − β)−k may result in
a divergent sum. As suggested in Ref. [11], the classification
of phase transitions in the Ehrenfest sense can be extended to
a smaller system by considering how the discrete roots of the
phase transition branch approach the real axis. By labeling the
roots in the phase transition branch starting from the closest
one to the real axis, see Fig. 6, the crossing angle can be given
as

ν = arctan
β2 − β1

τ2 − τ1
.

The power law that expresses the congestion of roots as
they approach the real axis at τ → 0 determines the second
parameter α as |Bi+1 − Bi | ∼ τ−α

i .
The first-order phase transition, which in the thermody-

namic limit appears as a discontinuity in the first derivative
of the free energy, corresponds to a vertical uniform approach
of poles ν = 0, α = 0. In other cases the transition is of the
second order for 0 < α < 1 or of a higher order if α > 1.

This classification establishes a condition at which poles
in sums of the forms in Eqs. (30) and (31) accumulate a
logarithmically divergent series. For a vertical approach, ν = 0
at the critical temperature, the |Bj − βcr| ∼ j 1/(α+1); therefore,
the kth derivative of the partition function would lead to a
divergent series if k � α + 1.

To find poles in the complex plane, we developed a numer-
ical technique that uses analyticity of the above functions. We
first determine the number of roots in a desired region using a

contour integral

n = 1

2πi

∮
〈E(B)〉dB. (32)

The line integration is fast and is done avoiding paths that
go directly over the roots; this ensures numerical stability,
and the real and integer result of Eq. (32) guarantees the
accuracy. Once the number of roots is known, we use a
method in the spirit of the Laguerre polynomial root finding
technique [63]. The problem is mathematically analogous
to the two-dimensional problem of electrostatics. In the
numerical method, we converge to a given “charge” in the
presence of the field from other “charges” which is modeled via
multipole expansion using the analytically known derivatives
of the “field strength.” The found roots are sequentially
removed, namely, balanced by the charge of an opposite sign.
Depending on the starting point and the density of the roots,
the numerical cancellation is not always perfect, and the same
root may appear several times. Given that the total number
of roots is known, this problem is easily fixed by choosing a
different starting point or by exploring a smaller region. In the
calculations, we stabilize the sum in the partition function by
selecting scaling so that the largest term in the sum (22) equals
unity.

A series of plots where the evolution of poles in the complex
temperature plane as a function of the pairing strength is shown
in Fig. 7. The behavior of heat capacity as a function of
temperature for each case is shown below to highlight the
phase transition point. With no pairing, V = 0, the zeros are
distributed along the two (almost) horizontal lines. A similar
picture is seen at the pairing strength significantly below
critical (Vcr = 0.5 at zero temperature from BCS). At about
the critical strength, V = 0.4, a noticeable bifurcation occurs,
with the lower branch evolving toward the real axis. As pairing
strength increases, the branches move down and more branches
becomes visible in our figures; in Fig. 7 we use the same
temperature scale for all values of V . The lowest branch that
approaches the real axis is associated with the phase transition.
The latter is confirmed by the peak in the heat capacity, which
becomes sharper in cases with stronger pairing.

In Fig. 8 the dependence of the critical parameters ν and α

on the pairing strength is addressed. Below the critical pairing
strength, the curves fluctuate; here, there is no phase transition,
and ν and α cannot be interpreted as critical parameters. At a
sufficiently strong pairing interaction, however, the behavior
of the parameters stabilizes showing a second-order phase
transition.

B. Grand canonical ensemble

The grand canonical ensemble is of special importance
in statistical mechanics, since the partition function for
noninteracting particles, Z0(β, µ), is given by an analytical
expression. The grand canonical partition function can be
determined using the canonical one,

Z(β, µ) =
�∑

N=0

zN Z(β,N), (33)
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FIG. 7. (Color online) Evolution of DOZ and Cv in the complex temperature plane B = β + iτ for N = 100 particles in the half-occupied
two-level system. A number of poles near and exactly on the imaginary axis are of no interest to our discussion and are not shown.
The poles for other systems are discussed in Ref. [2] and references therein, the interpretation and nature of branches is discussed in
Ref. [62], and further in-depth exploration of the above model can be found in Ref. [25]. Temperature is expressed in the units of energy with
one unit taken equal to the single-particle level spacing.

where fugacity z = exp(βµ) is introduced. For noninteracting
Fermi particles,

Z0(β, µ) =
∏

1

(1 + z exp(−βε1)) ,

where ε1 is a single-particle spectrum. The above expression
results, for example, in the commonly used form for the
occupation numbers

ni = (1 + exp[β(εi − µ)])−1 .
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FIG. 8. (Color online) Parameter of the phase transition for the
two-level system with N = 100 particles as a function of pairing
strength. (a) α vs V ; (b) transition angle ν vs V .

The grand canonical approach and the use of the above
Fermi distribution for small systems with a fixed number
of particles are common; however, they may present serious
problems. On the other hand, even for noninteracting particles,
computation of the microcanonical or canonical partition
function is difficult [64]. Investigation of the mesoscopic limit
where statistical ensembles may no longer be equivalent is of
interest here.

The grand canonical ensemble is advantageous even when
it comes to interacting systems; the partition function can be
expressed via diagrammatic summation. In relation to pairing,
we mention here a method first proposed in Ref. [65]; a more
detailed discussion can be found in Ref. [66]. The full partition
function for a constant (or factorizable) pairing interaction can
be obtained as

Z = Z0

∫ ∞

0
dt exp(−Y (t)), (34)

where function Y (t) is

Y (t) = t − 4
∑
1>0

ln


cosh

(
β

2

√
ε2

1 + Gt
2β

)
cosh

(
βε1

2

)

 .

The most straightforward saddle point approximation to the
integral (34) leads to a saddle point ts , which we express in
terms of a gap parameter as �2 = Gts/(2β). Thus, the saddle-
point equation becomes a familiar gap equation of thermal
BCS (14), and the thermal BCS theory represents the lowest
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FIG. 9. (Color online) Thermodynamic properties of the ladder
system with 12 levels, 12 particles, and V = 1.00 as functions of
temperature. The grand canonical ensemble is compared with the
canonical. (a) Fluctuation in the number of particles in the grand
canonical ensemble; (b) entropy; (c) specific heat; (d) excitation
energy. The single-particle level spacing is chosen as the unit of
energy.

order approximation of the grand canonical expression in
Eq. (34).

Various thermodynamic properties of the ladder system
with 12 levels and 12 particles obtained with the exact
calculation of the grand canonical partition function are shown
in Fig. 9; the figure also includes comparisons with the
corresponding curves from the canonical ensemble, where
applicable. The fluctuations in the particle number as a function
of temperature are shown in Fig. 9(a). The value of this
quantity levels at about two particles, a similar uncertainty
on a level of one pair is present in the BCS theory. The
particle uncertainty relative to the system size ∼2/N can be
used to estimate the quality of the grand canonical ensemble
in applications to particle-conserving mesoscopic systems.
The results of comparisons between canonical and grand
canonical ensembles for the entropy, excitation energy, and
specific heat as a function of temperature are shown in
Figs. 9(b)–9(d). The difference is quite small and consistent
with the level of error from the particle nonconservation.
Further comparison is shown in Fig. 10, in which the energy
difference between canonical and grand canonical ensembles
is plotted as a function of temperature. In the picket-fence
model the discrepancy is noticeable; however, it becomes
relatively small in the two-level case with a much larger
number of particles. The difference peaks exactly at the
temperature of the phase transition (in both cases V = 1)
where fluctuations are large. As seen in the two-level model,
this region becomes narrow for a large number of particles.
Although for a ladder system the difference grows in the
absolute scale, this behavior is associated with the extreme
smallness of the system, and the discrepancy per particle is
still going to zero.

The zeros of the analytic continuation of the grand partition
function into the complex plain of chemical potential are of
separate interest. We start by defining these points with the
set of complex numbers µi that for a certain temperature
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FIG. 10. (Color online) Excitation energy difference between
canonical and grand canonical statistical ensembles as a function
of temperature. (a) Ladder system model; (b) two-level model. The
distance between single-particle levels is taken as the unit of energy.

satisfy the equation Z(β,µi) = 0. There are some features
to be stressed here. The number of principal roots µi is
equal to the capacity of the fermion space �. The grand
canonical partition function (33) is an �th-order polynomial
in fugacity, which leads to � roots in the chemical potential
that can be found with the standard numerical techniques for
polynomials. The methods discussed in the context of the
canonical partition function are also useful in this case. As
the size of the system grows, the roots increase in number
and may form branches that can approach the real axis.
This describes the mesoscopic phase transition within the
Yang-Lee picture [27,28]. The accumulation of roots near the
real axis, similar to the canonical ensemble discussed earlier,
represents a phase transition marked by the discontinuity in
a certain order derivative of the grand canonical partition
function with respect to the chemical potential. This leads
to the discontinuity in the pressure-volume diagram [67]
and in the thermodynamic potential as a function of the
particle number, namely, condensation. Based on the well-
known properties of the Bose gas, the appearance of such
a third-order transition [68] could be good evidence of the
Bose-Einstein pair condensation. Whether with the increased
pairing strength or in a certain limit of temperature, the Cooper
pairs become dynamically equivalent to bosons and form a
condensate; whether a crossover region exists is an interesting
and important question [56,69].

Before addressing the results of this study, we discuss some
of the expected features that can be inferred from the partition
function (34). Within the BCS approximation, the integral (34)
is given by the single saddle point value

ZBCS = Z0 exp

(
−2β�2

G

) ∏
1>0

[
cosh

(
β

2 e1
)

cosh
(

βε1

2

)
]4

.

The Yang-Lee zeros of this expression are zeros of the
hyperbolic cosine, and for each single-particle energy ε1 an
infinite series of roots labeled by integer n can be obtained,
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FIG. 11. (Color online) Distribution of zeros (DOZ) of grand
canonical ensemble in the complex chemical potential plane for a two-
level system with � = 100 and V = 1.00 for various temperatures
indicated. Tc = 0.38 for this system.

that is,

µ = ε1 ± i

√
�2 + π2

(
2n + 1

β

)2

. (35)

In Eq. (35) the gap weakly depends on µ.
The evolution of DOZ of the grand canonical ensemble in

the complex plane of the chemical potential for a fixed pairing
strength G and various temperatures is shown in Figs. 11–13.
In all the plots, only the principal branch of roots with n = 0,
Eq. (35), which is closest to the real axis is shown.

In Fig. 11, a somewhat high pairing strength V = 1 is
selected so that at low temperature the system is well in
the superconducting phase. The resulting zeros are located
along the horizontal line consistently with Eq. (35). As the
temperature increases, the two lines of roots move apart deeper
into the complex plane; this trend is again in agreement with
Eq. (35); however, the overall behavior of the roots is no longer
regular. The critical temperature in this system (from the peak
in heat capacity) is Tc = 0.38, which coincides with a region
where the behavior of DOZ changes. As seen from the figure,
no branches of substantial significance cross the real axis,
indicating no phase transition.

Figures 12 and 13 repeat the same study with weaker and
stronger pairing. The findings are similar: at about critical
temperature, the DOZ changes from the two-line distribution,
reflecting the BCS limit, to a more scattered set of roots moving
away from the real axis at high temperature.

This exact calculation is consistent with the similar study
[69]. At temperatures below critical and with strong pairing,
Fig. 13, there are small symmetric branches of zeros that are
directed toward the real axis (although they never reach it); they
do not appear to result in any transitional behavior, and their
significance is unclear. Our two-level models lack the explicit
spatial degree of freedom, and it is likely that the BCS-BEC
transition that reflects the change in the physical size of the
Cooper pairs is simply impossible here. The situation may
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FIG. 12. (Color online) Same as Fig. 11, except V = 0.5 and
corresponding Tc = 0.17.

be different in the case of the picket-fence model, which can
correspond to some physical system. The study of DOZ of
the grand canonical partition function for a 12-level model is
shown in Fig. 14. The results appear to be in remarkably good
agreement with the approximation in Eq. (35); however, no
critical behavior is observed. Despite these negative results,
the questions of BCS-BEC crossover and, related to that, the
behavior of DOZ remain open; the model space limitations,
realistic pairing strength, and relation to the coordinate space
solution are subjects for future investigation.

The grand canonical partition function (34) is useful
for understanding DOZ in the complex temperature plane,
although canonical and grand canonical ensembles are not
fully equivalent. Balian and Langer [70] have determined that
the zeros approach the real axis at an angle ν = π/4 and their
density tends linearly to zero, α = 1, showing a second-order
transition.
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FIG. 14. (Color online) DOZ of grand canonical ensemble in the
complex chemical potential plane for a 12-level picket-fence system
for various temperatures indicated. Upper plot corresponds to V = 1,
in which case Tc = 2.7; lower plot is for V = 0.2 which is below the
critical pairing strength even for zero temperature Vc(T = 0) = 0.27.
The DOZ is symmetric, and only the roots with Re(µ) � 0 are shown.

C. Microcanonical ensemble

The microcanonical ensemble is often assumed to be the
most physically appropriate statistical treatment of a closed
system. There have been a number of theoretical works as
well as direct experimental studies conducted of nuclear ther-
modynamics in the microcanonical ensemble [19,61,71,72].
The density of states (DOS) ρ is the primary element in the
approach. Regrettably, the formal definition given earlier in
Eq. (16) is not appropriate per se, the density of states as well
as the normalization in the discrete spectrum requires some
averaging energy interval. For most of this study, we chose not
to implement a traditional binning method substituting it by the
propagator-type approach, where an artificially inserted small
width σ (the same for all states) results in the Lorentzian-type
smoothing of every peak. The derivatives of the DOS are then
calculated based on the analytic derivatives of the Lorentzian
which provides an additional stability. With this procedure,
the DOS ρ(E) is obtained. The averaging width σ is an
artificial parameter that introduces thermodynamic averaging,
the results may strongly depend on this parameter when it
is smaller than the average level spacing. This parameter is
not necessarily a disadvantage; to the contrary, it allows us
to zoom to the energy scale of interest. Within this work, we
select σ = 0.5–1.0 in single-particle level spacing units. This
is a most reasonable microscale and can be compared with
the resolution scale of the canonical ensemble where energy
fluctuations are at about 10. The σ interval versus level spacing
can be interpreted as the number of states needed to obtain a
statistically equilibrated value for observable quantities. In the
limit of quantum chaos, a single state is sufficient [49,73];
on the other hand, as discussed below, pure pairing due to

FIG. 15. (Color online) Temperature as a function of energy in
three different statistical treatments: canonical, grand canonical, and
microcanonical. The ladder system with 12 levels, 12 particles, and
V = 1.00 is used for this study. The results for the microcanonical
ensemble are plotted with two different choices of energy window,
σ = 1 and 5. The single-particle level spacing is chosen as the unit
of energy.

seniority conservation is poorly equilibrated, and many states
must be included. The latter fact influenced our choice of σ .

The entropy in the microcanonical ensemble is

S(E) = ln ρ(E), (36)

and the temperature can be defined as

T (E) =
(

∂S(E)

∂E

)−1

, (37)

which does not depend on the normalization that is used for
the DOS.

In Fig. 15, the temperature is shown as a function of
excitation energy for all three ensembles. The microcanonical
curve with σ = 1 shows several low-lying peaks that can be
identified with the pair breaking [17,20,72]. The seniority is a
conserved quantum number for pure pairing interaction; never-
theless, these peaks survive in the presence of all interactions as
was shown in Refs. [48,71,74]. The corresponding oscillations
in the heat capacity and especially the regions where this
quantity is negative can be associated with the paired to
normal phase transition which takes place in the pair-by-pair
microscopically fragmented process. The canonical and grand
canonical ensembles due to thermalization created by the
heat bath smooth out these microscopic features into a single
phase transition, and importantly, the same can be done in
the microcanonical treatment by choosing a large averaging
interval σ . Already at σ = 5, which is about half the energy
fluctuation in the canonical ensemble, the peaks in Fig. 15
disappear, and the microcanonical approach becomes similar
to the canonical and grand canonical.

The macroscopic limit of the microcanonical ensemble is
considered in Fig. 16, which shows entropy as a function
of excitation energy in the two-level system for various N .
The comparison of microcanonical, canonical, and grand
canonical treatments indicates that they become identical in
the thermodynamic limit. The discrepancy at high energy is
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FIG. 16. (Color online) Comparison of entropy as a function of
excitation energy for the two-level system in three thermodynamic
ensembles (σ = 0.5 in microcanonical). Pairing strength V = 1.00.
(a) For N = 20 particles; (b) N = 50 particles; (c) N = 100 particles.
The unit of energy is determined by the single-particle level spacing.

related to the finite space where in the microcanonical case
the density of states becomes zero once the energy exceeds
the maximum possible value for the model space. The model
space limitation is a natural cutoff for all ensembles at high
energy.

In contrast to the canonical and grand canonical ensembles,
where thermalization is provided by the external heat bath,
thermalization is a serious question in the microcanonical
treatment [75,76]. It has been noted in Refs. [20,54,74] that
pairing interactions do not provide sufficient thermalization.
Particle-particle interactions of the pairing type only are not
sufficient to fully mix states and thermodynamically equi-
librate the system. Temperature determined microscopically
[Eq. (37)] is inconsistent with the one that comes from the
occupation numbers of individual single-particle levels, see
Refs. [20,54,74]. This property of pairing makes the micro-
canonical treatment special. The question of thermalization
in systems with pure pairing is rather academic; as it has
been shown in Ref. [20] and references therein, at a arbitrary
weak nonpairing interaction the equilibration is immediately
restored. The significant role of the nonpairing interaction was
explored in recent work [77]. The magnetic field discussed
below can also provide the needed thermalizing effect. The
sharp differences in the statistical approaches seen in Fig. 15
suggest that we look for an alternative treatment and tracking
of the transitional behavior which does not introduce the heat
bath, energy averaging, or the particle number uncertainty but
at the same time is statistically equilibrated. The invariant
correlational entropy in the next section provides a tool that
satisfies this criteria.

V. INVARIANT CORRELATIONAL ENTROPY

The invariant correlational entropy (ICE) [57,59] is a
powerful method that allows phase transition features to be
explored on a quantum mechanical level. Expanding the formal
definitions of Sec. IV, the ICE for an individual eigenstate α
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FIG. 17. (Color online) Invariant correlational entropy (upper
panel) and specific heat in the canonical ensemble (lower panel) as
functions of excitation energy for the two-level system with N = 10
particles and V = 1.

is computed by averaging the density matrix over the interval
of pairing strength

Iα = −Tr(ρα ln ρα), ρα
kk′ = 〈k|α〉〈α|k′〉,

here k is a basis state. The final result due to the trace
operation is basis independent. In Fig. 17, we show the
invariant correlational entropy for all states in the paired
N = 10 two-level system as a function of the excitation
energy of the corresponding state. The ICE fluctuates from
state to state, and the curve shown has been smoothed. The
enhancement of the ICE in the region between 0 and 6 energy
units of excitation signals a transitional behavior. Indeed, a
lower figure that shows the specific heat as a function of
energy for the same system in the canonical ensemble reveals
a consistent trend. The advantage of the ICE is that unlike
a canonical (or grand canonical) ensemble, it needs no heat
bath and maintains an exact particle conservation; on the other
hand, it is not prone to equilibration and thermalization issues
since those are established by the fluctuations of the pairing
strength.

VI. PAIRING AND MAGNETIC FIELD

The presence of a magnetic field is known to influence the
physics of the pairing state and the pairing phase transition. In
this section we extend our study by showing the changes to the
results brought by the presence of the field. The Hamiltonian
to be considered here is

HB = H − gJ ·B, (38)

where J is the angular momentum of the state and B is the
magnetic field vector. Without loss of generality, we choose
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units of the magnetic field so that the gyromagnetic ratio
g = 1. The introduction of the magnetic field does not require
a new diagonalization of the Hamiltonian. All eigenstates shift
in energy according to their magnetic quantum number M ,
with the quantization axis along the field B. The problem
outlined with the Hamiltonian (38) is identical to the cranking
model of rotating nuclei where Hω = H − J · ω with ω

representing rotational frequency. Thus, a reader interested in
rotations should understand “magnetic field” as a “rotational
frequency.”

In the case of a single particle on one level, the magnetiza-
tion is a textbook example, i.e.,

〈M〉 = 1

2

[
(2j + 1) coth

(
1

2
(2j + 1)x

)
− coth

(x

2

)]
. (39)

The spin fluctuation χ (β,B) = 〈M2〉 − 〈M〉2, related to spin
susceptibility, is given by

χ = 1

4

(
csch2

(x

2

)
− (2j + 1)2csch2

[(
j + 1

2

)
x

])
. (40)

Here x = gB/T . The generalization of these results to the
cases with many levels is straightforward.

In our study below, we assume that the degeneracy in the
single-particle spectrum is due to the corresponding value of
the angular momentum j = ω − 1/2 for the two-level model
and j = 1/2 for all levels in the ladder system. For each
seniority, we deduce the number of states with certain angular
momentum which in turn allows us to calculate statistical
partition functions. The analytically computed summations
over the magnetic quantum numbers such as in Eqs. (40)
and (39) speed up the calculations.

The destruction of the superconducting state occurs because
of the two somewhat related phenomena. A magnetic field
causes the breaking of superconducting pairs as a result of the
lowering in energy of the spin-aligned states. The estimate for
the critical field in this case can be obtained by comparing
the energy of the paired ground state with the seniority s = 2
aligned spin state with spin J . The latter is by 2� higher in
energy at zero field, and pairing becomes unfavorable when
the magnetic field exceeds Bcr = 2�/(gJ ). In our models,
equations such as (12) or (15) can be used for an estimate.
The second reason is the change in the energy of the normal
state reflecting the Pauli spin paramagnetism. In our models
(half-occupied for the two-level case), the field above Bcr =
�ε/(2gj ) will promote the particle-hole excitations across the
gap between the single-particle levels. It has been suggested
[78] and experimentally confirmed, for example, in Ref. [79],
that due to these phenomena a sufficiently strong magnetic
field could change the transition type from second to first order.
The situation can be quite complex in mesoscopic systems
where even without the field the classification can be somewhat
difficult.

The features of a 20-particle half-occupied two-level system
are shown in Fig. 18 as a function of temperature for a set
of different values of magnetic fields. Except for B = 0, for
all curves in this figure the field exceeds both of the above
critical values (Bcr ∼ 0.1). The behavior of the heat capacity
illustrates the disappearance of the phase transition for all
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FIG. 18. (Color online) Thermodynamics of the two-level system
with N = 20 and V = 1.00 in the magnetic field. The (a) spin
fluctuations χ , (b) specific heat, (c) magnetization (ratio to the
maximum possible value), and (d) energy are shown as functions of
temperature for different field strengths. For this model, Tcr = 0.46 at
B = 0. The unit of energy is determined by the single-particle level
spacing.

field strength shown, except for B = 0 where a sharp peak
is present. The average magnetization in Fig. 18(c) is exactly
zero in the absence of field, and for high fields it starts almost
at saturation. With increased temperature, magnetization drops
down.

The set of fields below critical is shown in Fig. 19. The
behavior of the magnetic spin fluctuations is regular at B = 0;
at weak fields, this quantity exhibits a sharp peak at low
temperatures; for strong fields, the regular behavior is again
restored. The same peak is present in the spin susceptibility
curve which is only by a factor of β2 different from χ . The
critical behavior is associated with the corresponding behavior
of the magnetization, see Figs. 20 and 21. The peak in the
heat capacity is reduced and shifted to lower temperature,
showing that at nonzero field a superconductor has lower
critical temperature.

These results are quite robust. In Fig. 20, we show the same
study repeated for the ladder model. The magnetization (upper
left panel in Fig. 20) is zero for no field; it shows a peak in the
region of the field strengths that corresponds to competition
between the paired state and magnetic orientation (B = 5 and
7 curves). Finally, at strong fields and low temperature it satu-
rates to 〈M〉 = 6, the maximum alignment state. The spin fluc-
tuations, shown on the left lower panel, at zero temperature and
no field, are consistent with the typical results [80]. The sharp
peak at magnetic fields below critical again reflects the
transition associated with magnetic alignment. The emergence
of the peak that in the thermodynamic limit would become a
discontinuity in the otherwise continuous curve at B = 0 can
be interpreted as the change in the type of phase transition. The
evolution of the transition point as a function of temperature is
seen in the heat capacity curve, which again shows lowering of
the transition temperature with the increased field. The finding
can be summarized as the existence of two critical values for
the magnetic field: first, one that corresponds to the change in
the nature of the normal-to-superconducting transition, and a
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FIG. 19. (Color online) Same system as in
Fig. 18, but concentrating on the low magnetic
fields. (a) Spin fluctuations; (b) specific heat.

second, higher value of the field, at which the paired state is
no longer supported. The change in the nature of the phase
transition is best seen in the spin-susceptibility curve, which
at low fields has no peak and acquires a peak consistent with
the peak in heat capacity at higher values of the magnetic
field. We associate this behavior with the analogous situation
in the macroscopic superconductor where the second-order

phase transition becomes first order in the nonzero magnetic
field.

Recently, sharp differences between the systems with odd
and even particle numbers have been discussed in the literature
[62,80]. We address this in Fig. 21, where we show the same
study as in Fig. 20 but with N = 11 particles. The primary
difference between these results is that the ground state is

FIG. 20. (Color online) Thermodynamics within the canonical ensemble of a 12-level ladder system with N = 12 particles in the magnetic
field. The pairing strength is V = 1. The panels include plots of magnetization, entropy, magnetic susceptibility, and specific heat as functions
of temperature. The curves correspond to five different values of the magnetic field B = 0, 5, 7, 10 and 20.
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FIG. 21. (Color online) Same as Fig. 20, but with 11 particles in the magnetic field. The magnetic field is expressed in the units of energy
with one unit taken equal to the single-particle level spacing.

degenerate and both magnetization and entropy are nonzero at
low temperature and low field. Otherwise the results are almost
identical. We conducted similar calculations for a two-level
model with N = 19 particles but decided not to show the
results because the difference between N = 20 and N = 19
is almost impossible to discern (except for the entropy and
magnetization at zero temperature and zero field).

The presence of the external magnetic field certainly has an
effect on the distribution of zeros in the complex temperature
plane. This evolution is explored in Fig. 22 where the motion
of roots is traced as the magnetic field is increased in small
increments. The initial distribution of roots is connected with

FIG. 22. (Color online) Distribution of zeros without and with
the presence of external magnetic field for two-level system N = 60
and G = 1.00.

a line marked by B = 0. The second line connects the roots at
B = 0.01. The gradual rotation of the branch responsible for
the phase transition is seen, which eventually, at high fields,
no longer orients the roots toward the real axis. Based on a
similar picture but for a large system with N = 100 particles
that was studied earlier, we show in Fig. 23, the change in the
critical parameters associated with this motion in the presence
of the field. Interestingly, both α and angle ν are approaching
zero which marks the change in the phase transition type
from second to first order. Unfortunately, the zero α is not
reached, since the field strength becomes larger than the critical
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FIG. 23. Evolution of critical parameters α [panel (a)] and ν

[panel (b)] as a function of applied magnetic field B in system with
N = 100 particles and V = 1.00.
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FIG. 24. (Color online) Entropy in the microcanonical picture as
a function of the excitation energy for several values of the magnetic
field below critical. The two-level system with 20 particles and V = 1
pairing strength was used.

(here Bcr ∼ 0.01) and the paired phase disappears. The plot in
Fig. 23 is ended at this point, since it becomes impossible to
identify a branch of roots relevant to the phase transition.

Finally we mention a thermalizing role of the magnetic
field which breaks high degeneracies of states; and as well as
changing the phase transition globally, it reduces the number of
individual pair breaking transitions seen in the microcanonical
treatment. In Fig. 24, the entropy in the microcanonical
ensemble is plotted as a function of excitation energy for
different strengths of the external magnetic field. The number
of peaks associated with the pair breaking is ten at zero
field, and this number becomes smaller as the magnetic field
gets stronger, simply because of the pair alignment. Thermal
equilibration and the equivalence of ensembles are seen in
Fig. 25. In contrast to the B = 0 case in Fig. 15, the difference
between canonical and microcanonical ensembles disappears
at the magnetic field near critical.

FIG. 25. (Color online) Same system as in Fig. 24, but the
temperature as a function of energy is compared in microcanonical
and canonical ensembles at the magnetic field strength B = 0.05. The
difference at high energy is due to a finite model space.

VII. SUMMARY CONCLUSIONS AND OUTLOOK

Using an exact solution to the pairing problem in picket-
fence and two-level systems, we addressed different views on
the pairing phase transition, pair breaking, thermalization, and
behavior in the magnetic field or, equivalently, rotation in the
framework of the cranking model. We present a comprehensive
study analyzing paired systems with various tools and methods
ranging from the BCS treatment to different thermodynamic
approaches, including the invariant correlational entropy and
zeros of the partition functions in the complex plane of
temperature and chemical potential.

We found the microcanonical, canonical, and grand canon-
ical thermodynamic approaches to be different when applied
to small systems, although as expected they are consistent
in the macroscopic limit. The grand canonical and canonical
treatment are surprisingly close to each other, even in the
cases with a relatively small particle number. We find the
microcanonical treatment to be the most adequate approach for
closed small systems, it allows for both global and relatively
local, in terms of the energy scale, consideration of the
statistical properties. The averaging energy window needed for
determination of the density of states gives a broad freedom
to the microcanonical approach. The corresponding energy
fluctuation in canonical and grand canonical treatments is
too large in small systems and smooths out many significant
statistical features such as individual pair breaking observed
in experiment [71]. In thermally equilibrated systems, the
energy window can be as small as a few times the level
spacing, since in the full quantum chaos an individual state is
a representative of the surrounding statistical properties [73].
The idealization of interaction limiting them to pairing only
represents a dangerous problem: the pairing forces exclusively
cannot establish full equilibration, this necessitates a larger
thermodynamic energy window.

The ICE approach that relies on fluctuations in the pairing
strength as a source of equilibration appears to be a powerful
statistical tool, capable of exploring most of the features
inherent separately to microcanonical, canonical, and grand
canonical ensembles. This tool is particularly important in
identifying phase transition regions in mesoscopic systems.

Turning to the properties of the phase transition, we found
as mentioned above the microcanonical treatment to be distinct
from other ensembles. In the thermodynamic limit, however,
all treatments agree. In the further study of phase transitions,
we discussed the distribution of zeros of the canonical partition
function in the complex temperature plane. We developed and
implemented a numerical method for counting and finding all
of the complex roots in a given region. In agreement with
earlier findings [2,25,62], we observe branches of roots and
study the properties of the one that approaches the real axis.
The behavior of the roots is consistent with the second-order
phase transition as classified in Refs. [23,24] and confirms
similar macroscopic results [70].

The recent interest in the crossover region between super-
conducting pairing and Bose-Einstein condensation of pairs
prompted us to consider the potential condensation by looking
for zeros of chemical potential in the grand canonical partition
function. The presence of such zeros near real axis would hint
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of the condensation phenomenon. We did not find significant
branches of roots evolving toward the real axis, and no critical
behavior was observed in thermodynamics. It is likely that
limitations of our models and lack of relation to explicit
spatial behavior of Cooper pairs prevent us from exploring
these issues. These questions remain open for future studies.

The last chapter of our work is devoted to the interesting
study of the mesoscopic phase transition in the presence of
a magnetic field. It is fully equivalent to rotations within
the cranking model. We found that there is a resemblance
between observed mesoscopic properties and those known
in the macroscopic physics of superconductors. At low field,
the normal and superconducting phases are separated by the
second-order phase transition. In the next region of higher
magnetic field, the normal and superconducting phases are
separated by the transition of a different nature associated with
a simultaneous peak in spin susceptibility end enhanced spin

fluctuations. Finally, at even higher fields, a superconducting
state is not supported at all. We conjecture that this behavior is
a mesoscopic manifestation of the second- to first-order change
in the transition type known in the thermodynamic limit. We
also traced the evolution of zeros in the canonical partition
function as a function of magnetic field. We found that the
classification of transition type as suggested in Ref. [11] is
consistent with the above argument.
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