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We present a new approach for calculating the nuclear equation of state and compressibility for finite nuclei
using the density-constrained Hartree-Fock method.
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I. INTRODUCTION

The study of the nuclear equation of state (EOS) and
the behavior of nuclear matter under extreme conditions is
crucial to our understanding of many nuclear and astrophysical
phenomena. With the increasing availability of radioactive ion
beams [1] the study of structure and reactions of exotic nuclei
are now possible, thus providing information concerning
the isospin dependence of asymmetric nuclear matter [2,3].
Recently, the study of the symmetry energy for such systems
has been an active area of interest [2,4–6].

Most studies of the EOS involve infinite or semi-infinite
nuclear matter and examine the dependence of the EOS on
the parametrizations of the effective interaction as well as
its relation to the macroscopic and macroscopic-microscopic
models of nuclear matter [7,8]. For finite nuclei the EOS
near the equilibrium density can be investigated via collective
observables such as the isoscalar monopole vibrations (breath-
ing mode) [9]. In the small amplitude limit time dependent
Hartree-Fock (TDHF) also provides the means for calculating
these collective observables [10–14]. In addition, there are
empirical methods relating the compressibility of finite nuclei
to that of infinite nuclear matter [15]. However, the behavior
of the EOS for finite nuclei far from the equilibrium density is
poorly known.

In this manuscript we introduce a new method for calculat-
ing the zero temperature EOS and related quantities for finite
nuclei within the mean-field description of nuclear properties.
In Sec. II we outline the general formalism for our calculations.
Section III discusses the application of the formalism to a
sample set of nuclei and the results obtained. The paper is
concluded with a summary in Sec. IV.

II. FORMALISM

In order to study finite nuclei away from their ground
state equilibrium we take advantage of the density constrained
Hartree-Fock (DCHF) method [16,17]. The density constraint
is a novel numerical method that was developed in the
mid-1980’s and was used to provide a microscopic description
of the formation of shape resonances in light systems [17].
Recently, we have used the same method to calculate heavy-
ion interaction potentials from the TDHF time-evolution of
nuclear collisions [18]. In the traditional constrained Hartree-
Fock (CHF) notation, density constraint corresponds to the
replacement

λQ̂ −→ λρ̂. (1)

The numerical procedure for implementing this constraint and
the method for steering the solution toward a specified ρ0(r)
is discussed in Refs. [16,17]. The convergence property is as
good if not better than the traditional CHF calculations with a
constraint on a single collective degree of freedom.

In practice, we have obtained accurate densities for spher-
ical nuclei using a radial Hartree-Fock program. This density
was then fitted to a parametric function of the form

ρ(r) = a0(1 + a1r)

1 + e(r−a2)/a3
+ a4

1 + e(r−a5)/a6
, (2)

where a0, . . . , a6 denote the parameters to be fitted to repro-
duce a particular density profile. In all cases the resulting
nonlinear fits were indistinguishable from the fitted density.
Subsequently, the constraining density was obtained via a scale
transformation of the above density profile

ρ(r) −→ ρ(sr), (3)

followed by a renormalization to produce the correct mass
number for the nucleus under study. This scaling results in
the compression of the bulk and stretching of the surface
[9]. Naturally, the minimum of all EOS curves occur at the
unconstrained Hartree-Fock minimum corresponding to s = 1.
The value of the scale s was generally limited to the range
(0.8, 1.2). In Fig. 1 we show the change in the density for
various values of the scaling parameter s in the case of the
48Ca nucleus. As the primary interaction we have used the
Skyrme SLy4 force [19], with and without the Coulomb
term, and including all of the spin-dependent terms. We
have performed the calculations using our new Hartree-Fock
program discussed in Ref. [20].

In dealing with a finite nucleus we have faced a conceptual
problem of deciding what density value to use for plotting the
density dependence of the EOS. Unless otherwise stated we
have used the central density as the reference density value for
each value of the scaling parameter s. Alternatively, one can
choose the nuclear matter equilibrium density, 0.16 fm−3, as
the reference density from the density profile. The calculated
values for incompressibility is slightly dependent on the choice
of the reference density point due to the structure in the density
profile. Our calculations show that this is about 10% or less
and becomes negligible for heavy systems. One disadvantage
of using the central density as the reference value is that
the equilibrium densities for different nuclei do not occur at
the same value, thus making the calculation of the symmetry
energy, which is essentially taking the difference of two EOS
curves along an isotope chain, erroneous. For this reason, in the
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FIG. 1. (Color online) Scaled density obtained for the 48Ca
nucleus for various values of the scaling parameter s. The inset shows
the same quantity on a logarithmic scale. The force used was SLy4
without the Coulomb contribution.

calculation of the symmetry energy we have used the density
value 0.16 fm−3 as the equilibrium density.

In order to extract the incompressibility coefficient, KA,
we have expanded the EOS (binding energy per particle as a
function of density) around the equilibrium density ρ0 using
the expression

E(ρ)

A
= E0

A
+ KA

18ρ2
0

(ρ − ρ0)2 + · · · , (4)

where E0 is the binding energy at the equilibrium density, and
KA is the incompressibility coefficient

KA = 9ρ2
0
∂2(E/A)

∂ρ2

∣∣∣∣
ρ=ρ0

. (5)

We found in practice that this expression provides an
excellent fit except at the extreme values of the density. To
fit the entire curve perfectly a small linear contribution as
well as a cubic term could be included. The results for the
incompressibility is approximately 5%–10% higher if the full
curve is used in the fit. Finally, to extract the symmetry energy
we use the expression

Esym(ρ) = E(ρ, α)

A
− E(ρ, 0)

A
, (6)

where the isospin asymmetry parameter is defined as α =
(N − Z)/A. The α dependence of the symmetry energy is
generally acknowledged to be

Esym(ρ) = S(ρ)α2 + O(α4), (7)

where the higher order terms in α are assumed to be small.
Traditionally, the symmetry energy can also be expanded
around the equilibrium density as

Esym(ρ) = Esym(ρ0) + L

3ρ0
(ρ − ρ0) + Ksym

18ρ2
0

(ρ − ρ0)2 + · · · ,

where we have defined the quantities L and Ksym, which are
related to the symmetry pressure and symmetry compressibil-
ity

L = 3ρ0

(
∂Esym

∂ρ

)
ρ=ρ0

,Ksym = 9ρ2
0

(
∂2Esym

∂ρ2

)
ρ=ρ0

.

III. NUMERICAL STUDIES

Using our approach we have first investigated the EOS for
the 16O nucleus, with two forces, SLy4 and SkM∗ [21], without
the Coulomb interaction. We found very little difference
between the two forces as expected since most modern Skyrme
forces have similar nuclear matter incompressibility values.
For the incompressibility we find KA = 116 MeV. We have
then repeated the same two force study for the 40Ca nucleus,
yielding an incompressibility of KA = 141 MeV. In order
to investigate the behavior of neutron rich systems we have
performed calculations for 48Ca and 60Ca systems. In Fig. 2 we
show the EOS for all of these Ca nuclei without the Coulomb
force. Again, we stress that the density scale shown in Fig. 2
is determined by choosing the central density in the density
profile of each nucleus. Consequently, the equilibrium value
for the EOS is different for each nucleus. As we can see from
Fig. 2, the 40Ca and 48Ca systems have a very similar EOS
behavior, the primary difference being the energy shift due
to the difference in the two binding energies. The calculated
incompressibility of 48Ca is KA = 155 MeV, only slightly
higher than the one for 40Ca. However, the situation for 60Ca
is significantly different, in addition to the large shift in the
energy scale the incompressibility decreases to a value of
KA = 136.5 MeV, indicating a somewhat softer nucleus. The
values for the incompressibility obtained here, perhaps with
the exception of the 60Ca system, are in general agreement
with those given in Ref. [15].

We have repeated some of the calculations by including
the Coulomb interaction as well. In general, EOS curves
are shifted up due to the decrease in the binding energy
per nucleon. In addition, we see a small decrease in the in-
compressibility modulus. For 40Ca we find KA = 138.8 MeV.
The incompressibility for 48Ca decreases to KA = 147.7 MeV,
and this value drops down to KA = 123.5 MeV for 60Ca.

We have also investigated the symmetry energy obtained
from Eq. (6), which is essentially the difference between the
curves shown in Fig. 2. The results for the quantity S(ρ)
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FIG. 2. (Color online) EOS for the 40Ca, 48Ca, and 60Ca nuclei
as a function of density. Please see the comments in the manuscript
regarding the density values. The force used was SLy4 without the
Coulomb contribution.
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FIG. 3. (Color online) The quantity S(ρ) for the 48Ca and 60Ca
nuclei as a function of density.

defined in Eq. (7), corresponding to nuclei 48Ca and 60Ca
having α values of 0.16667 and 0.33334, respectively, are
shown in Fig. 3. As we observe again, the two systems behave
very differently. Unlike infinite nuclear matter the curves do
not cross at the equilibrium density since the binding energy
per nucleon is different for different nuclei. The values of S

around the equilibrium density are about 10–14 MeV, which is
considerably lower than the estimated range for nuclear matter
value of 32 MeV for the SLy4 force. Using the results of Fig. 3

we have extracted the quantities L and Ksym for 48Ca and
60Ca. The results show a very large variation between the two
systems. For 48Ca we find 66.6 MeV and −403 MeV for L

and Ksym, while for 60Ca these numbers become 1.55 MeV
and −193 MeV, respectively.

IV. CONCLUSIONS

We have introduced a new method for calculating the
nuclear EOS for finite nuclei including all of the terms in
the nuclear effective interaction. The calculated values agree
well with known values obtained by other means, such as
those deduced from experimental giant monopole resonances.
Much work has gone into understanding the effects of various
components of the effective interaction which vanish or
become very small in the infinite nuclear matter limit. With the
increased availability of new radioactive neutron and proton
rich nuclei the study of EOS and symmetry energy along
isotope chains of finite nuclei have become more urgent. We
believe that the density constrained HF method is a step in this
direction.
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