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Nuclear matrix elements of 0νββ decay with improved short-range correlations
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(Received 7 May 2007; published 21 August 2007)

Nuclear matrix elements of the neutrinoless double beta (0νββ) decays of 96Zr, 100Mo, 116Cd, 128Te, 130Te,
and 136Xe are calculated for the light-neutrino exchange mechanism by using the proton-neutron quasiparticle
random-phase approximation (pnQRPA) with a realistic nucleon-nucleon force. The particle-particle strength
parameter gpp of the pnQRPA is fixed by the data on the two-neutrino double β and single β decays. The finite size
of a nucleon, the higher-order terms of nucleonic weak currents, and the nucleon-nucleon short-range correlations
(s.r.c) are taken into account. The s.r.c. are computed by the traditional Jastrow method and by the more advanced
unitary correlation operator method (UCOM). A comparison of the results obtained by the two methods reveals
that the UCOM computed matrix elements are considerably larger than the Jastrow computed ones. This result
is important to the assessment of the neutrino-mass sensitivity of present and future double β experiments.
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I. INTRODUCTION

The neutrinoless double beta (0νββ) decay plays a key
role in the search for massive Majorana neutrinos and their
mass scale. The experimental search for 0νββ decay has
become front-line physics because of the verification of the
existence of neutrino mass by oscillation experiments [1] and
the claimed discovery of the 0νββ decay [2,3]. At present, two
important experiments are providing data: the NEMO 3 [4]
and CUORICINO [5] experiments. A host of important future
experiments are under research and development planning
and construction [6]. For all these expensive experiments, the
computed values of the involved nuclear matrix elements have
become an important issue [7–10]. They are essential when
one starts to extract quantitative neutrino properties from the
measured data.

Many nuclear models of different types have been devised
to compute the nuclear matrix elements of the 0νββ decay [11].
Essentially two complementary families of nuclear models
are on the market: the nuclear shell model [12–14] and
the proton-neutron quasiparticle random-phase approximation
(pnQRPA) [11,15,16]. The pnQRPA is constructed to describe
the energy levels of odd-odd nuclei and their beta decays to
the neighboring even-even nuclei [17]. Also its derivative,
renormalized pnQRPA [18], has been used [19,20] to compute
double-beta matrix elements. The pnQRPA (and the renormal-
ized pnQRPA) calculations can be fine tuned by the so-called
particle-particle strength parameter gpp, which controls the
magnitude of the proton-neutron two-body interaction for the
1+ intermediate states in double β decay [15,16]. The value of
this parameter can be fixed by using either the data on 2νββ

decays [20] or the data on single β decays [21,22]. In this
work, we use the 2νββ data to fix the possible values of gpp

and cross-check the results against data on single β decays
wherever possible.

In the mass mode of the 0νββ decay, a light virtual Majorana
neutrino is exchanged by the two decaying neutrons of the
initial nucleus. The average exchanged momentum is large, so
the two neutrons tend to overlap. To prevent this, a Jastrow
type of correlation function was introduced in Refs. [12,23]

following the parametrization by Miller and Spencer [24].
This method, although microscopically inspired, is just a
phenomenological way to introduce short-range correlations
into the two-nucleon relative wave function. The Jastrow
function simply cuts off the wave function of the two nucleons
at short relative distances r leading to a violation of the norm
of the wave function.

In the present calculations, we improve on the Jastrow
method by engaging the more sophisticated microscopic
approach of the unitary correlation operator method (UCOM)
[25]. In the UCOM one obtains the correlated many-particle
state from the uncorrelated one by a unitary transformation,
and thus the norm of the correlated state is conserved and no
amplitude is lost in the relative wave function. In the 0νββ

calculations this leads to a more complete description of the
relative wave function for small r , as was demonstrated in
Ref. [26] for the decays of 48Ca and 76Ge. In this work and in
Ref. [27], where the decays of 76Ge and 82Se were analyzed,
it is demonstrated that the Jastrow procedure leads to the
excessive reduction of 25–40% in the magnitudes of the 0νββ

nuclear matrix elements. At the same time, the UCOM reduces
the magnitudes of the matrix elements only by 4–16%. The
magnitude of the short-range corrections affects the magni-
tudes of the nuclear matrix elements which, in turn, dictate the
neutrino-mass sensitivity of the potentially successful future
double β experiments. The notable differences between the
Jastrow and UCOM corrections influence the cost estimates of
large-scale experiments if a given neutrino-mass sensitivity is
wanted.

In this article, we continue the work of Ref. [27], in
which the 0νββ nuclear matrix elements of 76Ge and 82Se
were derived. We apply the UCOM and Jastrow short-range
correlations on matrix elements derived by the pnQRPA
method and corrected for the higher-order terms of nucleonic
weak current and the nucleon’s finite size using the recipes of
Refs. [20,28]. We analyze the 0νββ decay matrix elements
of 96Zr, 100Mo, 116Cd, 128Te, 130Te, and 136Xe for all the
mentioned corrections. The necessary theoretical background
is briefly described in Sec. II, and the numerical application is
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reviewed in Sec. III. The results are discussed in Sec. IV, and
the summary and conclusions are presented in Sec. V.

II. THEORETICAL BACKGROUND

We start this short review of the theory by presenting the
expression for the half-life of the 2νββ decay:[

t
(2ν)
1/2 (0+

i → 0+
f )

]−1 = G(2ν)
∣∣M (2ν)

DGT

∣∣2
. (1)

The transition proceeds from the initial ground state 0+
i to the

final ground state 0+
f . Here G(2ν) is an integral over the phase

space of the leptonic variables [11,29]. The involved double
Gamow–Teller matrix element M

(2ν)
DGT can be written as

M
(2ν)
DGT =

∑
n

(
0+

f

∥∥∑
j σ (j )t−j

∥∥1+
n

)
(

1
2Qββ + En − Mi

)/
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×

1+

n

∣∣∣∣
∣∣∣∣∑

j

σ (j )t−j

∣∣∣∣
∣∣∣∣0+

i


 , (2)

where the transition operators are the usual Gamow-Teller
operators for β− transitions, Qββ is the 2νββ Q value, En is
the energy of the nth intermediate state, Mi is the mass energy
of the initial nucleus, and me is the rest mass of the electron.
It has to be noted here that the expression (2) is scaled by the
electron rest mass to yield a dimensionless matrix element.
This definition deviates from that of some other authors, such
as in Ref. [20], where the scaling is not done.

The 0νββ decay can proceed via the exchange of a
light virtual Majorana neutrino. Assuming this neutrino-mass
mechanism to be the dominant one, the inverse of the 0νββ

half-life can be written as

[
t

(0ν)
1/2 (0+

i → 0+
f )

]−1 = G
(0ν)
1

( 〈mν〉
me

)2

(M (0ν))2,

(3)

M (0ν) = M
(0ν)
GT −

(
gV

gA

)2

M
(0ν)
F + M

(0ν)
T .

In the above expression, M (0ν) is the total nuclear matrix
element consisting of the Fermi, Gamow-Teller, and tensor
contributions. The effective mass of the neutrino is given by

〈mν〉 =
∑

j

λCP
j mj |Uej |2, (4)

where λCP
j is the CP phase, and Uej is a component of the

neutrino mixing matrix. The definition of the leptonic phase-
space factor G

(0ν)
1 can be found in Ref. [11].

The nuclear matrix elements involved in the mass mode of
the 0νββ decay are defined as

M
(0ν)
F =

∑
a

(0+
f ||hF (rmn, Ea)||0+

i ), (5)

M
(0ν)
GT =

∑
a

(0+
f ||hGT(rmn, Ea)σm · σ n||0+

i ), (6)

where the summation runs over all the intermediate states
and the integration is taken over the relative coordinate rmn =

|rm − rn| between the nucleons m and n. The neutrino potential
hK (rmn, Ea), where K = F, GT, is defined as

hK (rmn, Ea) = 2

π
RA

∫
dq

qhK (q2)

q + Ea − (Ei + Ef )/2
j0(qrmn),

(7)

where RA = 1.2A1/3 fm is the nuclear radius and j0 is the
spherical Bessel function. The term hK (q2) in Eq. (7) includes
the contributions arising from the induced currents and the
finite nucleon size [20,28].

Next we write the nuclear matrix elements explicitly in the
pnQRPA framework. They are given by

M
(0ν)
K =

∑
Jπ ,k1,k2,J ′

∑
pp′nn′

(−1)jn+jp′+J+J ′√
2J ′ + 1

×
{
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}
(pp′ :J ′||OK ||nn′ :J ′)

×(
0+

f
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) 〈
Jπ

k1

∣∣Jπ
k2

〉(Jπ
k2

∥∥[c†pc̃n]J
∥∥0+

i

)
,

(8)

where k1 and k2 label the different pnQRPA solutions for a
given multipole Jπ . The operators OK inside the two-particle
matrix element derive from Eqs. (5) and (6), and they can be
written as

OF = hF (r, Ek), OGT = hGT(r, Ek)σ 1 · σ 2, r = |r1 − r2|.
(9)

The expression for the pnQRPA transition densities
(0+

f ||[c†p′ c̃n′ ]J ||Jπ
k1

) and (Jπ
k2

||[c†pc̃n]J ||0+
i ), and for the overlap

factor 〈Jπ
k1

|Jπ
k2

〉 can be found, e.g., in Refs. [11,17].
The traditional way to include the short-range correlations

in the 0νββ decay calculations is by introducing the Jastrow
correlation function fJ (r), which depends on the relative
distance r = |r1 − r2| of two nucleons. In the Jastrow scheme,
the uncorrelated operator O is replaced by the correlated
operator OJ by a procedure

(0+
f ||O||0+

i ) → (0+
f ||OJ ||0+

i ) = (0+
f ||fJOfJ ||0+

i ). (10)

A typical choice for the function fJ in 0νββ calculations is [30]

fJ (r) = 1 − e−ar (1 − br2), (11)

with a = 1.1 fm2 and b = 0.68 fm2. Such application of the
Jastrow correlation function is very rudimentary; conse-
quently, the Jastrow correlation cuts out the r�1 fm part from
the relative two-particle wave function. In Ref. [26] it was
demonstrated that this leads to overestimation of the effects of
short-range correlations on the many-body wave function.

To circumvent the difficulties associated with the Jastrow
correlations, the more refined unitary correlation operator
method (UCOM) [25] was used in the 0νββ decay calculations
of Ref. [26]. In UCOM one obtains the correlated many-body
state |�̃〉 from the uncorrelated one as

|�̃〉 = C|�〉, (12)

where C is the unitary correlation operator. The operator C

is a product of two unitary operators: C = C�Cr , where C�
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describes short-range tensor correlations and Cr the central
correlations. Because of the unitary of the operator C the
norm of the correlated state is conserved. Moreover, since
the correlated matrix element of the operator O can be written
as

〈�̃|O|�̃ ′〉 = 〈�|C†OC|� ′〉 = 〈�|Õ|� ′〉, (13)

it is therefore equivalent to use either correlated states or
correlated operators. For the Fermi and Gamow-Teller 0νββ

nuclear matrix elements, the effect of the tensor correlation
operator C� vanishes and one is thus left only with the central
correlation operator. The UCOM parameters used in our 0νββ

calculations are the Bonn-A parameters taken from [31].

III. NUMERICAL APPLICATION

In Ref. [27] we applied the pnQRPA to compute the
0νββ nuclear matrix elements of 76Ge and 82Se in the model
space containing the 1p-0f -2s-1d-0g-0h11/2 single-particle
orbitals, both for protons and neutrons. Here we add to this
model space the spin-orbit partner 0h9/2 of the 0h11/2 orbital,
both for protons and neutrons, to describe the decays of 96Zr
and 100Mo. For the rest of the decays, namely, for the 116Cd,
128Te, 130Te, and 136Xe decays, we extended the proton and
neutron model spaces to include the 1p-0f -2s-1d-0g-2p-1f -
0h single-particle orbitals. The single-particle energies were
obtained from a spherical Coulomb-corrected Woods-Saxon
potential with a standard parametrization, optimized for nuclei
near the line of β stability. Slight adjustments were made for
some of the energies at the vicinity of the proton and neutron
Fermi surfaces to reproduce better the low-energy spectra of
the neighboring odd-A nuclei and those of the intermediate
nuclei.

We have used the Bonn-A G matrix as the two-body
interaction, and we have renormalized it in the standard
way [32,33] by fitting the pairing parameters of the BCS by
comparing with the phenomenological pairing gaps, extracted
from the atomic mass tables. The particle-hole parameter gph

of the pnQRPA affects the position of the giant Gamow-Teller
resonance, and its value was fixed by the available data on the
location of the giant state. Because of this phenomenological
renormalization of the two-body interaction, we did not
perform an additional UCOM renormalization [34].

After fixing all the Hamiltonian parameters, the only free
parameter left is the proton-neutron particle-particle parameter
gpp of the pnQRPA. We obtained the physical values of gpp by
using the method of Refs. [20,27]. Consequently, we used
the extracted experimental matrix elements of Ref. [20] that
include the experimental error limits and the uncertainty in the
value of the axial-vector coupling constant 1.0�gA�1.25. The
resulting intervals of the experimental 2νββ matrix elements
are shown in the second column of Table I, and they are scaled
by the electron rest mass according to Eq. (2). By performing
the pnQRPA calculations of the 2νββ matrix elements, the
ranges of experimental matrix elements were subsequently
converted to the intervals of gpp values shown in column three
of Table I. For some cases, there exists log f t data on β−
decay from the first 1+ state of the intermediate nucleus to the

TABLE I. Values of the gpp parameter extracted from the data.
First column shows the decay and the second column the matrix
element values extracted from the 2νββ decay data by Ref. [20].
Third column gives the range of gpp corresponding to the matrix
elements of the second column. The gpp ranges of the last column
were extracted from the available β− decay data.

Decay m.e.(2νββ) gpp(2νββ) gpp(β−)

96Zr →96Mo 0.026–0.112 1.06–1.11 –
100Mo →100Ru 0.107–0.181 1.07–1.09 1.07–1.08
116Cd →116Sn 0.058–0.102 0.97–1.01 0.82–0.84
128Te →128Xe 0.011–0.037 0.89–0.92 0.86–0.88
130Te →130Xe 0.014–0.054 0.84–0.90 –

136Xe →136Ba �0.023 �0.74 –

ground state of the double β daughter nucleus. Applying the
above procedure to these data leads to the experimental β−
matrix elements and the corresponding ranges of gpp, listed in
the last column of Table I.

As can be seen from Table I, the values of gpp extracted from
the β− and 2νββ data are (roughly) compatible for the decays
of 100Mo and 128Te, whereas for the 116Cd decay this is not the
case. This discrepancy was already pointed out in Ref. [21].
The reason for this discrepancy is not clear, but an interesting
observation is that the 116Cd decay obeys very closely the
single-state dominance hypothesis, whereas the 128Te decay
obeys it slightly less and the 100Mo decay the least, as clearly
shown in Table 1 of Ref. [35].

IV. DISCUSSION OF RESULTS

In Table II we show the evolution of the values of the 0νββ

nuclear matrix elements as we add more corrections to the
bare matrix element. First we list the gpp value used, which
was taken to be in the middle of the gpp interval of Table I.
The following columns list the bare matrix element (b.m.e.),
the matrix element including the higher-order terms of the
nucleonic weak current (b.m.e.+A), and the matrix element
with finite nucleon size effects added (b.m.e.+A+B). In the
last two columns we have added either the Jastrow (C) or
UCOM (D) short-range correlations. The value gA = 1.25 was
used in these calculations.

Table II shows that the Jastrow method produces a much
larger reduction in the magnitude of M (0ν) than the UCOM.
The UCOM (D) with higher-order term (A) and finite nucleon
size (B) corrections included seems to reduce the magnitude
of M (0ν) by a rough factor of 2/3 from its bare value. A similar
scaling factor was also present for the 0νββ results of 76Ge
and 82Se in Ref. [27]. At the same time one obtains a reduction
factor of 1/2 for the corresponding Jastrow (C) results.

We visualize the gpp dependence of M (0ν) in Fig. 1. The
calculations included the higher-order term (A), finite-size (B),
and UCOM (D) corrections. The calculations are shown for
the interval gpp�1.1, the upper limit lying near the breaking
point of the pnQRPA for all shown nuclear systems.
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TABLE II. Total matrix element M (0ν) of Eq. (3) computed by correcting the bare matrix element
(b.m.e) for the higher-order terms of the nucleonic weak current (A), for the finite nucleon size (B),
and for either the Jastrow (C) or UCOM (D) correlations. The value of gpp used is indicated in the
second column.

Nucleus gpp b.m.e. +A +A+B +A+B+C +A+B+D

96Zr 1.085 −5.308 −4.814 −3.736 −2.454 −3.521
100Mo 1.08 −6.126 −5.571 −4.358 −2.914 −4.113
116Cd 0.99 −5.726 −5.172 −4.263 −3.169 −4.076
128Te 0.905 −7.349 −6.673 −5.260 −3.563 −4.979
130Te 0.87 −6.626 −6.021 −4.777 −3.285 −4.530
136Xe 0.74 −4.715 −4.269 −3.478 −2.537 −3.317

In Fig. 2 we have plotted the multipole decomposition of
the total 0νββ matrix element M (0ν) for all calculated decays.
The upper (lower) end of each bar corresponds to the lower
(upper) end of the gpp interval of Table I. For the 136Xe decay
we can only give upper limits since only the lower limit of gpp

is known, as indicated in the last line of Table I. From Fig. 2 one
can see that the widest spread appears in the bar corresponding
to the 1+ contribution. Furthermore, the gpp interval extracted
from the 2νββ data confines the 1+ contribution in a striking
way: for 96Zr and 100Mo the 1+ contribution is of opposite
sign to the other contributions. This interference with the rest
of the contributions reduces the magnitude of M (0ν) for these
two decays. Another notable feature is that the 1− contribution
is always the leading one, the 2− contribution being usually of
comparable size. This pattern is different from the one of 76Ge
and 82Se decays where the 2− contribution was the dominant
one [26]. All these observations are in qualitative agreement
with the results of Ref. [20].

We have collected the obtained gpp limits of Table I
and their corresponding 0νββ matrix elements of Eq. (3) in
Table III. It is worth pointing out that the magnitudes of the
tensor matrix element M

(0ν)
T are quite small and not indicated

in the table. As discussed earlier, the gpp limits arise from both
the 2νββ and β decay data. For 136Xe, only the experimental
lower limit of the 2νββ half-life is available, yielding only a
lower limit for gpp. For 128Te the available β decay data give

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
gpp
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12
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(0

)
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Xe

96
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100
Mo

FIG. 1. (Color online) Calculated values of M (0ν) for the indicated
0νββ decays as functions of gpp. The UCOM (D) was used with
gA = 1.25 including all the other (+A+B) corrections.

gpp = 0.86, and for 116Cd they give gpp = 0.82. In the last
column of Table III, we also tabulate our predicted half-life
limits in units of yr/(〈mν〉[eV])2. The β decay data yield a
different gpp interval than the data on 2νββ decays for 116Cd
and 128Te. This discrepancy is especially striking for 116Cd.
The implications of this discrepancy and its cure are still open
questions [21].

Our results for 0νββ nuclear matrix elements disagree with
those of Refs. [20] and [28]. In fact, just recently, the Tübingen-
Caltec Collaboration [36] corrected their results for a coding
error in their computer program. The results of the Erratum
[36] agree nicely with our results for the Jastrow corrected
nuclear matrix elements. This means that one can safely say
that the Jastrow short-range correlations reduce the values of
matrix elements some 25–40%. On the other hand, for the
UCOM we obtain only a 4–16% reduction. For this reason,
our present UCOM corrected matrix elements are larger than
the Jastrow corrected ones. Such differences give rise to big
differences in the predicted 0νββ half-lives for a given value
of the effective neutrino mass 〈mν〉. This invariably affects
the sensitivity estimates for the presently running and planned
double β experiments.

TABLE III. Calculated 0νββ nuclear matrix elements, the gpp

and gA values used and the resulting half-lives. The UCOM and other
corrections are included. The half-lives t

(0ν)
1/2 are expressed in units of

yr/(〈mν〉[eV])2.

Nucleus gpp gA M
(0ν)
F M

(0ν)
GT M (0ν) t

(0ν)
1/2

96Zr 1.06 1.00 1.350 −2.969 −4.319 6.1 × 1023

1.11 1.25 1.261 −2.315 −3.117 4.7 × 1023

100Mo 1.07 1.00 1.583 −3.266 −4.849 6.2 × 1023

1.09 1.25 1.543 −2.950 −3.931 3.8 × 1023

116Cd 0.82 (β− decay) 1.25 1.427 −4.021 −4.928 2.3 × 1023

0.97 1.00 1.310 −3.372 −4.682 6.3 × 1023

1.01 1.25 1.275 −3.124 −3.935 3.6 × 1023

128Te 0.86 (β− decay) 1.25 1.939 −4.276 −5.509 5.2 × 1024

0.89 1.00 1.866 −3.975 −5.841 1.1 × 1025

0.92 1.25 1.792 −3.650 −4.790 6.9 × 1024

130Te 0.84 1.00 1.699 −3.743 −5.442 5.3 × 1023

0.90 1.25 1.575 −3.219 −4.221 3.5 × 1023

136Xe 0.74 1.00 1.104 −2.615 −3.719 1.1 × 1024
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FIG. 2. Multipole decomposition of M (0ν) for the calculated 0νββ decays.

V. SUMMARY AND CONCLUSIONS

We have calculated the 0νββ nuclear matrix elements for
the decays of 96Zr, 100Mo, 116Cd, 128Te, 130Te, and 136Xe by
using the proton-neutron quasiparticle random-phase approxi-
mation with realistic two-body interactions in realistic single-
particle spaces. We have corrected the bare matrix elements
for higher-order terms of the nucleonic weak currents, for the
nucleon’s finite- ize, and for the nucleon-nucleon short-range
correlations. The short-range correlations were included by
using the unitary correlation operator formalism. This method
is superior to the rudimentary Jastrow procedure traditionally
adopted for the 0νββ calculations.

The UCOM reduces the magnitudes of the matrix ele-
ments less than the Jastrow procedure. This leads to larger

matrix elements and shorter 0νββ half-lives as compared
to some recent calculations quoted in the literature. This
has a notable influence on the estimated neutrino-mass
sensitivities of the presently running and future double β

experiments.
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[28] F. Šimkovic, G. Pantis, J. D. Vergados, and A. Faessler, Phys.
Rev. C 60, 055502 (1999).

[29] M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl.
83, 1 (1985).

[30] T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).
[31] T. Neff and H. Feldmeier, Nucl. Phys. A713, 311 (2003).
[32] J. Suhonen, T. Taigel, and A. Faessler, Nucl. Phys. A486, 91

(1988).
[33] J. Suhonen, Nucl. Phys. A563, 205 (1993); A700, 649 (2002).
[34] R. Roth, H. Hergert, P. Papakonstantinou, T. Neff, and

H. Feldmeier, Phys. Rev. C 72, 034002 (2005).
[35] O. Civitarese and J. Suhonen, Nucl. Phys. A653, 321

(1999).
[36] V. A. Rodin, A. Faessler, F. Šimkovic, and P. Vogel,
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