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Nuclear matter in the crust of neutron stars

P. Gogelein and H. Miither
Institut fiir Theoretische Physik, Universitdt Tiibingen, D-72076 Tiibingen, Germany
(Received 19 April 2007; published 13 August 2007)

The properties of inhomogeneous nuclear matter are investigated considering the self-consistent Skyrme-
Hartree-Fock approach with inclusion of pairing correlations. For a comparison we also consider a relativistic
mean-field approach. The inhomogeneous infinite matter is described in terms of cubic Wigner-Seitz cells, which
leads to a smooth transition to the limit of homogeneous nuclear matter. The possible existence of various
structures in the so-called pasta phase is investigated within this self-consistent approach and a comparison is
made to results obtained within the Thomas-Fermi approximation. Results for the proton abundances and the
pairing properties are discussed for densities for which clustering phenomena are obtained.
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I. INTRODUCTION

The crust of neutron stars is a very intriguing object
for theoretical nuclear structure physics, as it contains the
transition from stable nuclei in the outer crust to a system of
homogeneous nuclear matter, consisting of protons, neutrons,
and leptons in B equilibrium, in the inner part of this crust.
The question of how matter consisting of isolated nuclei melts
into uniform matter with increasing density has evoked a large
number of studies [1-4]. Already at moderate densities the
Fermi energy of the electron is so high that the g stability
enhances the neutron fraction of the baryons so much that
a part of these neutrons drip out of the nuclei. This leads
to a structure in which quasinuclei, clusters of protons and
neutrons, are embedded in a sea of neutrons. To minimize the
Coulomb repulsion between the protons, the quasinuclei form
a lattice.

Therefore one typically describes these structures in form
of the Wigner-Seitz (WS) cell approximation. One assumes
a geometrical shape for the quasinuclei and determines the
nuclear contribution to the energy of such a WS cell from a
phenomenological energy-density functional. Such Thomas-
Fermi (TF) calculations yield a variety of structures: Spherical
quasi-nuclei, which are favored at small densities, merge
with increasing density to strings, which then may cluster to
parallel plates and so on. These geometrical structures have
been the origin for the popular name of this phase: pasta
phase.

Such Thomas-Fermi calculations, however, are very sensi-
tive to the surface tension under consideration. Furthermore
they do not account for characteristic features of the structure
of finite nuclei, like the shell effects. Shell effects favor the
formation of closed-shell systems and may have a significant
effect on the formation of inhomogeneous nuclear structures in
the crust of neutron stars. These shell effects are incorporated
in self-consistent Hartree-Fock or mean-field calculations,
which can treat finite nuclei, infinite matter, and inhomoge-
neous structures in between within a consistent frame based
on an effective nucleon-nucleon interaction. Such calculations
employing the density-dependent Skyrme forces [5,6] were
done more than 25 years ago by Bonche and Vautherin [7] and
by a few other groups.
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These studies show indeed that shell effects have a
significant influence on details like the proton fraction of the
baryonic matter in the inhomogeneous phase [8]. They also
provide the basis for a microscopic investigation of properties
beyond the equation of state. This includes the study of pairing
phenomena, excitation modes, and response functions as well
as the effects of finite temperature.

Self-consistent Hartree-Fock calculations for such inho-
mogeneous nuclear structures have typically been performed
assuming a WS cell of spherical shape. This assumption of
quasinuclei with spherical symmetry reduces the numerical
work-load considerably. However, it does not allow the
exploration of quasinuclear clusters in form of strings or plates
as predicted from Thomas-Fermi calculations. Furthermore
the limit of homogeneous matter cannot be described in a
satisfactory manner in such a spherical WS cell. Employing
the representation of plane wave single-particle states in terms
of spherical Bessel functions leads to a density profile, which,
depending on the boundary condition chosen, exhibits either a
minimum or a maximum at the boundary of the cell. Bounche
and Vautherin [7] therefore suggested using a mixed basis,
for which, depending on the angular momentum, different
boundary conditions were considered. However, even this
optimised choice leads to density profiles with fluctuations [8].

Therefore the investigations presented here consider cubic
WS cells, which allows for the description of nonspherical
quasinuclear structures and contains the limit of homogeneous
matter in a natural way. Self-consistent Hartree-Fock calcula-
tions are performed for B-stable matter at densities for which
the quasinuclear structures discussed above are expected. For
the nuclear Hamiltonian we consider various Skyrme forces
but also perform calculations within the effective relativistic
mean-field approximation. Special attention will be paid to
the comparison between results obtained in the Hartree-Fock
approach and corresponding Thomas-Fermi calculations.

After this introduction we will briefly review the Hartree-
Fock approximation using Skyrme interactions and the tech-
nique used to solve the equations resulting from this approach
employing the imaginary time step method in Sec. II. We
then turn to the relativistic mean-field approach and the
adaption of the imaginary time step method to be used within
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this relativistic framework. After a short description on the
inclusion of pairing correlations in Sec. IV, we present results
in Sec. V. The main conclusions are summarized in Sec. VI.

II. SKYRME-HARTREE-FOCK CALCULATIONS

A. Energy functional

The Skyrme-Hartree-Fock (SHF) approach has frequently
been described in the literature [5-7,9]. Therefore we will
restrict the presentation here to a few basic equations, which
will define the nomenclature. The Skyrme model is defined
in terms of an energy density H(r), which can be split into
various contributions [6,10]

H = Hk + Ho + H3 4+ Her + Hin + Hso + Heou, (1)

where Hg is the kinetic energy term, H, a zero-range term,
‘H3 a density-dependent term, H.g an effective mass term, Hp,
a finite-range term, and H, a spin-orbit term. These terms are
given by

h2
H K= T,

2m
Ho = 3o[2 + x0)p? — (2x0 + D(02 + p2)].
M = %137 [2 + x3)0% — @x3 + D(p2 + p2)].
Het = §[012 + x1) + Q2 + x2)]tp + §[0Q2x2 + 1)
—112x1 + DITppp + Tapn)
Hin = —35 302+ x1) — 2+ x2)]pAp + 55[361(2x; + 1)
+0(2x2 + DI(opApp + 0nApn),
—3WooV I + 0,V Iy + puV T ).

@

Hso =

The coefficients ¢;, x;, Wy, and « are the parameters of a
generalized Skyrme force [11]. The energy density of Eq. (1)
contains furthermore the contribution of the Coulomb force,
Hcoul, Which is calculated from the charge density p¢ as

e? , pe(r’) 3¢2 3\
Heou = 5pe(r) / d*r' =5 ——(—) p 3

lr —r'| 4 \m

Here the exchange part of the Coulomb term is calcu-
lated within the Slater approximation. Following Ref. [11]
the center-of-mass recoil energy has been approximated as
— Y pi/24m.

The densities p, t, and J are defined in terms of the
corresponding densities for protons and neutrons p = p, +
Pn,Tp+ 71, and J = J, + J,. If we identify the isospin
label (¢ = n, p), the corresponding matter densities are given
by

pe(r) = nf|glr.5)|. @)
ks

where <pZ (r, s)is the single-particle wave function with orbital,
spin and isospin quantum numbers k, s, and g. The occupation
factors 7/ are determined by the Fermi energy and the desired
scheme of occupation (see discussion below). The kinetic
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energy and spin-orbit densities are defined by

2

(1) =Y iVl )|,
k,s

&)

Tor)y=—i > 0l (@) r.s) Vglr.s) x (s'lals).  (6)
k,s,s'
The gradient of the spin-orbit density V.J = VJ, + V J, can
be directly evaluated without first calculating J:

VJ,(r)=—i Z nt V((p,f)*(r, s") x Vol (r,s)- (s'|o]s).

k,s,s'
(7

We left out the spin-gradient term [10], which is cumbersome
to evaluate in three-dimensional calculations numerically and
not very important.

The single-particle wave functions are determined as
solutions of the Hartree-Fock equations

2
— —_— / . q
|: VZm;(r)V + Uy(r) —iW,(r)-(V x a)] @ (1)

= SZ(pZ(I', s), )

with an effective mass term m™*(r), which depends on the H.g
part of the energy-density functional

2mh;(r) = % + 312+ x1) + Q2+ x2)] p(r)
+ ¢l (1 +2x0) — 61(1 +2x)] pg(r),  (9)
a nuclear central Potential
Uy(r) = 110l + x0)p — (1 + 2x0)p,]
+ 5162+ x3)2 + a)p* ™ — S 13(2x3 + 1)

x [20%pg +ap*~(p; + pn)] + §[10(2 + x1)
(10)
+ 52+ )]t + §[HQ2x + 1) — 1(2x; + D]z,

+ &[22+ x2) = 302+ x1)]Ap
+ 151301 2x1 + 1) + 62x: + D]Ap,
— IWo(VT + VI )+ 384 Veou

with the Coulomb field
’ 3 1/3
Veou(r) = ¢ f B LT o (3N s gy
|lr — 7| b4
and a spin-orbit field:
W,(r)= 1Wo(Vp+ Vp,). (12)

B. Imaginary time step

Various different methods have been developed to solve the
Hartree-Fock equations. Frequently the single-particle wave
functions are expanded in a basis like, e.g., the eigenfunctions
of an appropriate harmonic oscillator. This is appropriate for
describing the wave functions for single-particle states, which
are deeply bound. It is not so appropriate for the description of
weakly bound or unbound single-particle states, because the
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asymptotic behavior of the harmonic oscillator basis states is
not appropriate for these states.

This can be cured by employing the eigenstates of a
spherical box with an appropriate radius R [8], which can also
be considered as a WS cell for describing periodic systems.
Such a spherical box, however, is not appropriate for the
description of deformed nuclei and nuclear structures as they
are expected for the pasta phase in the crust of neutron stars.
This, as well as the problems with the boundary conditions in
a spherical WS cell discussed already in the introduction, calls
for a Cartesian WS cell.

The single-particle wave functions in such a cartesian
WS cell can be represented by its values on a discretized
mesh in this cell. The spacings between the mesh points,
Ax, Ay, and Az correspond to truncations in momentum
space. Smaller values for these spacings account for larger
momentum components in the wave functions. The obvious
disadvantage of such calculations is the huge amount of mesh
points that has to be taken into account. Therefore one needs
a fast iterative procedure for the solution of the self-consistent
Hartree-Fock (HF) equations, which evaluates only the desired
states.

Davies et al., presented in Ref. [12] an efficient method for
this problem, the imaginary time step method, which we want
to outline briefly. The origin for the name of this method is the
analogy to the time-dependent Hartree-Fock (TDHF) method
that solves the equations

. 0Qk

zhyzH(t)gok(t), k=1,..., A, (13)
for an orthonormal set of A wave functions {¢;}, and a
Hamiltonian H that depends on the time ¢. This is the
case when we identify H(¢), e.g., with the HF Hamiltonian
represented in Eq. (8), that depends on 7 as it depends on the
resulting wave function ¢ (¢) in a self-consistent way. These
equations are discretized in time introducing a time step Af,
with t, = nAt. Then the time evolution of the set of wave
functions {¢;} may be approximated by the iterative procedure

T T L

in which ¢

represents the wave function ¢; at the time
t, and H"+2) denotes the numerical approximation to the
Hamiltonian H(¢) at the time (n + %)At. The idea of Davies
et al., was to replace the time step Ar by the imaginary
quantity —i At. Introducing the positive parameter A = At /h

the procedure for the imaginary time step gets
~(n n4+l n
oY) = exp (= AH" ) [o"), k=1,...,A, (15

where {gZ,i"H)} is no longer an orthonormal set of wave
functions because the imaginary time operator exp(—A H (n+3))
is not unitary. Applying the Gram-Schmidt orthonormalization
method O we get the orthonormal set {(p,((”H)} by

lo" Y = 0lg"tD) k=1,..., A. (16)

This procedure converges leading to those eigenfunctions
of the Hamiltonian H, which correspond to the lowest A
eigenvalues of the Hamiltonian H.
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In practical applications the Hamiltonian H "+ 2is replaced
by the Hamiltonian H™ of the n-th step, which makes
the calculation fast keeping the algorithm stable. After this
replacement, we get the following operation on the wave
functions

o = O[exp(—AH™)¢"] k=1,....,A. (17

For numerical application one has to truncate the exponential
series to a certain order. In earlier HF calculations the
gradient method was used with the operation O(1 — AH)
on the wave functions [9]. If one truncates the exponential
series in the imaginary time step going beyond the first
order one obtains an improvement of the gradient method.
Davies et al. recommended a truncation to fourth or fifth
order for a HF calculation of “°Ca together with a time step
At = 4.0 x 107%*s and a mesh size of 1.0 fm.

In our calculations we used the same mesh size as Davies
et al. but the convergence got worse because we consider in
our studies a larger number of nucleons, which implies a larger
number of wave functions A have to be evolved. Hence we
truncated the exponential operator at ninth order and the time
step At was set to 2.0 x 1072*s. For the check of convergence
the mean square deviation of the single-particle energies for
N Nucleons and 7y, the occupation probability is calculated by

I o ’
) = [0 316 - )
k=1

(18)

which provides a better criterion as calculating energy differ-
ences.

The HF equations have been solved by discretization in
coordinate space within a cubic Wigner-Seitz cell similar to
that used in Ref. [11] with periodic boundary conditions. The
box sizes typically considered vary from 2 x 10 fm to 2 x
16 fm. This technique is able to allow for general deformations
of the quasinuclear structures. The densities we are considering
requires accounting for around 1500 nucleons, which implies
that up to A = 2600 wave functions had to be evolved to
account for pairing correlations with occupation probabilities
ny. different from zero.

To decrease the numerical effort we assume two symmetries
like in Ref. [11]:

(1) parity
pr==%1

Poi(r,s) = gi(—r, 5) = prou(r, s), (19)

(ii) z signature

explin (L. — 1) }eu(x. y, 2, 9)
=og(—x, =y,2,8) = mp(x, ¥, 2, 5),
(20)
Nk = +1.

These symmetries still allow triaxial deformations and
reduce the calculation to the positive coordinates in each
direction. As additional symmetry time-reversal-invariance is
assumed for the time-reversed pairs ¢, and ¢f:

oe(r,s) = (T )(r, s) = o (r, —s). 21
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TABLEI Parity properties of the Pauli spinors
with respect to the coordinate planes.

x=0 y=0 z=0
Re @i (r, +3) + + Px
Im g (r, +%) - - DPx
Re ¢ (r, — ) - + — Dk
Im g4 (r, ——) + - — D

Summarizing this symmetries it is sufficient to solve the HF
equations for one wave function of the time-reversed pairs.
We choose the positive z-signature orbital for which we get
the symmetries summarized in Table I. The wave functions
@i (r, s) are realized as complex Pauli spinors. The reflections
at the x =0 and y = 0 planes are realized by the parity
operator of the real part together with complex conjugation.
The iteration is performed with accurate numerical meth-
ods. For the differential operators 11-point formulas are used,
which have been derived by eliminating errors for functions
S with f(x) = x" up to a certain ny € N. The ansatz for the
numerical approximation of the derivatives on an equidistant
mesh with the points x; and f; = f(x;) is for the first derivative

_a . ~ _a . —_— N A—l . . . .
ax S~ (ax)num fxi) = j}:l aj 2 Ax (fivj — fi=i)
(22)

with N = 5 for 11-point formula and a; the coefficients of the
formula. Requiring that the approximation gets equal up to a
certain np € N we obtain a linear equation. Inserting the result
in the ansatz we finally obtain

d
(a—x)m,m 7

1
= |:19860( 1 fits — 4500 f;+2 + 16350 fi 1
— 16350 f;_ 4500 ;o — 11 f;— 445 f;
fior + fia fi 5)+55608( Sita
12950 145 — 2950 f;_3 + 445 ﬁ@} . 23)

For the second derivative used in the Laplacian the ansatz is

0 d
gf(xi) ~ <a>num J(xi)
t 1
= ;“" Garp e =2+ fiep- 29

and finally the formula gets

82
<ﬁ) fxi)
1
= — 11f; 11250 f; 81750 f;
(Ax) |:49650( fits — fivr + fit1
1729639
81750 f;—; — 11250 f;_ 11fis)— ——f:
+ fic1 fica + 11 fios) 595800
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1
1 ; 11 ; 11 i
333648( 335 fita + 11800 fi 13 + 11800 f; _3

1335 f,»_4)} . 25)

In the case of the WS cell calculations charge neutrality is
assumed and electrons are taken into account as relativistic
Fermi gas that contributes to the charge density pc(r) =
pp(r) — p.. For the calculation of finite nuclei the electrons
are not taken into account (p, = 0).

There are different methods to solve the Poisson equation

— AVe(r) = 4mpe(r). (26)

It turned out that the numerically most accurate and stable
method is the integration applying the Green’s function for
this problem

Ve(r) = / dr®pc(r') 27
1%

1
lr—r|
Unfortunately, this integral has lots of singularities, but it can
be rewritten. First, the Green’s function is written as [13]:

1
r—rl "

A r —7r'|. (28)

Then the integral is transformed by Green’s theorem for scalar
functions f and g defined on a Volume V with closed surface
A =0V [14]:

/ dV(fAg) — / dV(gAf) = f dA - (fVg — gV ).
\%4 \% A=0V
29)

Identifying and f = pc(r’) and g = %lr — r'| the final result
gets

1 1
Ve(r) = 5/ dr® Apc(X)|r — r'| + Eyﬁ dA
|4 A=0V

X [pc(r)Vyplr —r'| = [r = r'[Vypc()],  (30)

which has no singularities. Altogether the result of this
transformation behaves very well in numerical calculations
and the numerical result is practically the same as the exact one.
For finite nuclei it is possible to drop the boundary integrals
as has already been discussed by Vautherin [13].

We tested the computer program for the parameter set
Skyrme III by comparing results for finite nuclei with those
of Ref. [11]. Additional tests have been performed using the
parameter set SLy4 [10].

III. RELATIVISTIC MEAN-FIELD CALCULATIONS

To test the sensitivity of the results on the model under
consideration we also investigated the quasinuclear structures
in the crust of neutron stars employing the relativistic mean-
field approach in a cubic box.

A. From the Lagrangian to the Dirac equation

The relativistic mean-field approach is based on a
Lagrangian is similar to that in Ref. [15] and consists of three
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parts: Lagrangian for the free baryons L, the free mesons £y
and the interaction Lagrangian L;,:

L=Lp~+ Ly ~+ Lin, 3D
which take the form
Lp=U(iy,0" —m)V¥,

1
Ly = E(aﬂcbaa”cbg —m2®2)
1 1
-5 > |:§F/§’;) - mfAEf)A(")":| : (32)

K=w,p.y

‘Cint = —\IJgU@a\IJ — ‘i’gwyMA(’”)"\p
-1 _ 1
— \I/EgpyMTA(P)M\If — \Deyui(l + 1) AV,

with the field-strength tensor F/(fu) =9, Al — avAff), the
meson fields ®,, A@, A("), and the electromagnetic field
A", The bold symbols are isovectors, the y* are the Dirac
y matrices, and W is a nucleon field that consists
of Dirac four-spinors with isospin space. The masses
are the baryon mass m =938.9 MeV and the me-
son masses m, = 520 MeV,m, =783 MeV, and m, =
770 MeV according to a parameter set for the linear
model from Horowitz and Serot [16] cited as L-HS in
Ref. [15]. The coupling constants of this parameter set
are g, = 10.4814, g, = 13.8144, and g, = 8.08488. The
charge of the electron e = \/ahc/4w where « is the fine
structure constant and 7ic = 197.32 MeV fm.

Applying the equations of motion and taking the static
limit we obtain in the Hartree approximation the static Dirac
equation [17]

eao = [ap+V + B(m — ], (33)

where « and f are matrices like in Ref. [18], &, the single-
particle energy of the state ¥,, p the momentum operator, and
S and V the the scalar and vector fields
S = —8o D,
(@) 1 (p) 1 ) (34)
V =g,Ay + Egp1:3A0 +e§(1 — 1A, .

For the mesons fields we get Klein-Gordan equations. After
neglecting retardation effects and taking the Hartree approxi-
mation the meson-field equations read

(—A+ml)®, = —g,p°
(A +m3) AL = gup
(A +m}) AL = 38,03

—AAY = epc

35)

with the scalar density p*, the baryon density p. The densities
are calculated taking into account only the occupied positive
energy states in the Fermi sea and neglecting the negative
energy states in the Dirac sea (“no sea” approximation)

N
p' = Znoﬂzfcﬂpa

a=1
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N
p= NaVaVoVe

a=1

N
pP3 = Z T)al,}afﬂfolﬂa

a=1

N
-1
pe =) Puz (1= t)po¥a(—po).

a=1

where 7, are the occupation numbers determined by the BCS
formalism. The electron density p, has been considered for
the WS cell calculations but not for studies of finite nuclei.

B. Solving the triaxial Dirac equation

The solution of the Dirac equation for nucleons in a cubic
box differs of course in some aspects from that in the spherical
one. Therefore we briefly outline the numerical solution in the
following.

We decompose v, in an upper and lower component Pauli

spinor:
m=(%). (36)
Xa

Hence after applying the transformation &, — &, —m to
energy levels without rest-mass the Dirac equation becomes

EqPa = O PXo + U(nga
EaXa = O PPy + Uxon

37

with the potentials
Uy=-S+V

(38)
Uy =—=2m+S+V.

Now we obtain an “effective Schroedinger equation” by
inserting the lower component into the equation for the upper
one. This method is according to Reinhard [15] the most
efficient way to solve the Dirac equation. First we modify
the lower component

(Sa - UX)XOt =0 PPu (39)

and then we introduce an “effective mass term” that depends
on the wave function

1
= ————— 40
Bi= (40)

and finally get the “effective Schroedinger equation”
EqPa = UPBaGP% + U(p(pm (41)

So far the procedure corresponds to the method employed
in calculations assuming spherical symmetry [19]. Using the
discretization in a Cartesian box, however, requires a different
treatment of angular momentum and spin-orbit terms. With
the help of the following formula for vector fields A and B
commuting with o

0AoB = AB +ic(A x B) (42)
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we obtain from the relativistic kinetic energy term
0 pBao ppa = —VB,Vpy —i(VBy) - (V x 0)pa,  (43)

which is like the nonrelativistic kinetic energy term plus
the spin-orbit term for the upper component. From a further
modification we obtain an expression called “effective Hamil-
tonian” ready for implementation

qu,a(pa = _BDtA@ot - (VBot) : (V%) - l(VBa) . (V X 0—)9011
+ Uy@q. (44)

To calculate the eigenvalue ¢, we cannot use the “effective
Hamiltonian” like a normal Hamiltonian because we have to
take into account the effects of the lower component. This we
do in the following manner:

Xa = Baap(/)a (45)

and hence the next approximation of the eigenvalue "1 in
the iteration scheme gets

g0 th — f d&’r (9 HpoPo + €8x Xa)- (46)

This means that in the lower component the whole new
information is contained in the new Pauli spinor. The total
binding energy is calculated like in Ref. [20] using Cartesian
coordinates

1 .
E=Ynen =5 [ @[ = g0+ g0

1

2

8o Ay p3(r) + eAE)y)pc(r)} + Een + Epir (47

with a center-of-mass correction in the case of finite nuclei
Eew = —3ho  with ho=41A""°MeV (48)

in compliance with Ref. [21] and a pairing energy Epq
described in the next section.

For the variation of the wave functions in the cubic box we
employ once more the imaginary time step in the following
manner. First we operate on the upper component with the
imaginary time step and the “effective Hamiltonian™:

o = exp(=AHy.0)e," (49)

o o

and then the lower component is calculated:
o([n+1) — Boz Gp(ng—l) (50)

and finally both components are orthonormalized together
via the Gram-Schmidt method considering the symmetries
of the Dirac spinors. The symmetries are the same as in
the SHF calculations: time-reversal invariance, parity, and
z signature. These symmetries furthermore prevent the solution
from “slipping” into the Dirac sea. In the case of a Dirac spinor
these symmetries result in parity properties summarized in
Table II that corresponds to the Dirac spinor ansatz in spherical
symmetry written in Ref. [22].

For a comparison the energy of homogeneous asymmetric
nuclear matter is calculated similarly to that in Ref. [23].
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TABLE II. Parity properties of the Dirac
spinor with respect to the coordinate planes.

x=0 y=0 z=0
Re ¢4 (r, +3) + + D
Im @ (r, +3) - - Pa
Re ¢,(r, —3) - + —Da
Im @, (r, —3) + - —Pa
Re xo(r, +1) - - —Pa
Im xo(r, +1) + + —Pa
Re x,(r, —3) + - P
Im o (r, —3) - + P

C. Numerical procedure

The numerical method for solving the equations for the
baryonic wave functions (49) and (50) is essentially the same as
in the case of the SHF approach. Thus we restrict the discussion
in this section to the solution of the meson-field equations (36)
and add some comments on the imaginary time step.

The meson equations have been solved with a finite
difference scheme employing the conjugate gradient iterator
operating on the meson fields with periodic boundary con-
ditions. The conjugate gradient iterator has the numerical
advantage that there is no operator matrix needed but only
the operation of the differential operator on the meson field.
The conjugate gradient method has been developed to solve
linear equations [24,25] and is now applied to a whole variety
of numerical problems, for example, to finite element solver
for elliptic boundary value problems on an adaptive mesh with
hierarchical basis preconditioning [26], which provides a very
fast algorithm. The main idea of the conjugate gradient step
is to solve the linear equation Ax — b = 0 with the linear
operator A and a vector b by searching the minimum of the
quadratic form

q(x) = %xTAx —bTx. (G20

To search the solution numerically one can use an iteration
scheme following the gradient method. Then it was discovered
that the iteration is accelerated if one searches not straight in
gradient direction but in the hyperplane perpendicular to all
previous directions. Theoretically the conjugate gradient step
converges in less or equal steps than the dimension of the vector
space. In practical applications the machine errors require a
restart after a certain amount of steps.

The overall numerical procedure has a good convergence.
In the imaginary time step the step At for A = At¢/h could
be set to 4.0 x 10724s, which is even larger compared to
the corresponding Skyrme calculations. In the test runs we
obtained results with the parameter set L-HS that agree with
Ref. [16] within numerical accuracy. We used this parameter
set also for the actual calculations to compare the main
properties of the relativistic mean field with the Skyrme
calculations in the WS cell.

The energy surface for baryonic matter at a given density
may exhibit local minima corresponding to various nuclear
geometries. To avoid that the imaginary time-step procedure
leads to such a local minimum, we considered various starting

024312-6



NUCLEAR MATTER IN THE CRUST OF NEUTRON STARS

points and show results only for the minimal solution. All our
studies were restricted to cubic lattice geometries.

IV. PAIRING CORRELATIONS

Various properties of a neutron star, like, e.g., its fluidity,
the opacity with respect to neutrino propagation, etc., are very
sensitive to occurrence of pairing correlations. Therefore we
included the possible effects of pairing in all calculations. Our
special attention was focused on isospin 7' = 1 pairing for
nucleon pairs with total momentum equal to zero in the 'S,
partial wave like in an earlier approach in a spherical box [8].
Using the standard BCS approach the pairing gap A for pair
of nucleons with momenta k and —k is obtained by solving
the gap equation [27]

Ay

2,/(e; —ep)? + AL,

Here V (k, k") denotes the matrix elements of the NN interac-
tion in the 'Sy partial wave, & the single-particle energy for a
nucleon with momentum k and ¢ the Fermi energy.

Instead of using the matrix elements of a realistic NN
interaction which is fit to the scattering data we have decided
to use the density-dependent zero-range effective interaction
by Bertsch and Esbensen [28]:

2 o0
Ap=—= / dK'K?V (k, k) (52)
T Jo

p(ry)
£0

with the parameters Vy = 481 MeV fm3, k=07 a =045
and the cut-off parameter for the gap equation &, =
60 MeV. These parameters were derived from a realistic NN
interactions by Garrido et al. [29].

The occupation probabilities 1, = v,% that are used to define
the densities of the SHF or the relativistic mean-field approach
are determined from the quasiparticle energies Ej [9]

Vir,r) =V |:1 — K ( ) i| 8(r;y — 1) (53)

1 & — EF
P=—(1- 54
Uk 2( Ek) GV
1 & — &
R | IR L 55
uy 2<+ E. (55)

with

Ep = /(e —ep)* + AZ, (56)

in which the pairing gap Ay, the single-particle energy ¢; and
the Fermi energy ¢p enters. The BCS equations have to be
solved in a self-consistent procedure fixing the Fermi energy
e by the particle number condition for N nucleons:

N = Z V2. (57)
k

From the coefficients u; and v, of the standard BCS
approach [9] and the corresponding single-particle wave
functions ¢y one can calculate the anomalous density

1
OEEDIIIC]S (58)

k
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For a zero range pairing interaction as the one of Eq. (53), a
local gap function can be defined:

A(r) = =V ()x(r). (39)

The pairing correlations for continuous asymmetric nuclear
matter have been evaluated using the techniques described in
Ref. [27,30].

V. RESULTS AND DISCUSSIONS

In the first part of this section we are going to discuss the
results of HF calculations using the Skyrme force with the
parameter set SLy4 as defined in Ref. [10]. The calculations
are performed in a WS cell with a shape of a cubic box.
The size of the box R has been assumed to be identical
in all three Cartesian directions and has been adjusted to
minimize the total energy per nucleon for the density under
consideration. This means that the size of the cell for the
HF as well as the relativistic mean-field calculations is just an
additional variational parameter. Because we observed that the
optimal boxsizes in HF and TF calculations [see Egs. (60)—
(62) below] coincided in most cases, the TF calculations were
used to reduce the numerical effort for the HF variation. The
calculations have been performed for charge neutral matter
containing protons, electrons and neutrons in 8 equilibrium.

A few typical density distributions resulting from these
variational calculations are displayed in Fig. 1 with densities
increasing from top to bottom and all densities displayed in
the left column being larger than those in the right part of the
figure.

We start our discussion with the top panel in the left
column representing a nuclear structure at a baryonic density of
0.0166 fm~3. In this case the density profiles are identical in
all three Cartesian directions. This means that we obtain a

— proton

— neutron

o/

density p [fm'j]

10

5
X,y,z [fm]

FIG. 1. (Color online) Density distributions resulting from SHF
calculations for protons (black color) and neutrons (red color) as
a function of Cartesian coordinates x, y, z. The panels in the left
column refer to densities 0.0166 fm~ (top), 0.0317 fm~3, and
0.0565 fm~> (bottom), whereas those in the right column are obtained
for baryon densities 0.0681 fm~ (top), 0.079 fm~—3, and 0.1 fm~3.
Further discussion in the text.
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0.04 1
0.03 1

0.02 1
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FIG. 2. Profiles for the proton density distribution forming a rod structure at a density of 0.0625 fm~3.

quasinuclear structure with spherical symmetry in the center
of the WS cell. The proton density drops to zero at a radial
distance of around 4 fm. The neutron density profile drops
around the same radius from a central density of around
0.1 fm™3 to the peripheral value of around 0.01 fm~3. This
means that at this density we have obtained a structure
of quasinuclear droplets forming a cubic lattice, which is
embedded in a sea of neutrons.

The second panel in the left part of Fig. 1 displays the
density distributions, which have been obtained at a density
of 0.0317 fm ™. In this case we obtain deformed quasinuclear
droplets with radii, which are slightly larger in one direction
(chosen to be the z direction, dashed curves) than in the other
two, which means that we find prolate deformation.

At slightly larger densities the deformation of the quasin-
uclear structures increase until we reach a density at which
the proton density does not vanish along one of the three axis.
Such an example (baryon density 0.0565 fm~3) is displayed
in the bottom panel of the left column. In this case we have
quasinuclear structures in the shape of rods parallel to the
z-axis. The density of these rods is not homogeneous along
the symmetry axes. Note that in this example size of the WS
cell became so small (R = 10 fm) that the distance from the
center to the boundary of the WS box lies within the range
displayed in this figure and therefore has the boundary been
indicated by the dotted line in this panel. This structure is also
displayed in Fig. 2, where the profile of the proton-density is
displayed in the xy- and xz-plane, respectively.

Performing HF calculations at a density of 0.0681 fm~ led
to a density density distribution as displayed in the top panel of
the right column in Fig. 1. In this example the proton as well as

1
y [fm] 8 8

X [fm]

the neutron density is essentially constant in the (x, y, z = 0)
plane. As a function of the third coordinate (z, dashed lines)
the proton density is reduced from the central value at z = 0 to
zero at the border of the WS cell and also the neutron density is
reduced by about 25% going from the central to the peripheral
values of z. Therefore in this case we observe a structure in
form of parallel slabs. This slab structure is also displayed in
Fig. 3. From this presentation in particular it gets obvious that
the density within such a slab at z = 0 is not really a constant
but drops in particular along the diagonals of the WS cell with
x=y,z=0.

At even larger densities the SHF calculations in a cubic
WS cell yield structures, with smaller neutron densities in
the center of the WS cell as compared to the boundaries. An
example of such an inverse structure, which corresponds to
bubbles in the sea of nuclear matter, is displayed in the second
panel of the right column of Fig. 1 at a density of 0.079 fm 3.
The proton density, which is hardly visible in this example,
drops from a peripheral value of around 0.004 fm~ to a central
value of zero.

As a final example we present in the bottom panel of the
right column of Fig. 1 the results of the HF calculation at
a baryonic density of 0.1 fm~3. At this and larger densities,
the variational calculation yields homogeneous nuclear matter
in B equilibrium. This example also demonstrates that the
Cartesian box allows for a clean representation of the limit
of homogeneous matter. This is in contrast to calculations
employing a spherical WS cell. Depending on the boundary
conditions used, calculations within such a spherical box can
lead to density profiles, which either show a maximum or a
minimum at the boundary. Even if one tries to use a set of

proton density p, [fm~]

X [fm]4 8 8 z [fm]

FIG. 3. Profiles for the proton density distribution forming a slab-structure at a density of 0.0775 fm™=3.
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FIG. 4. (Color online) Proton abundances and energy per nucleon
as obtained from SHF calculations at different densities. The results
evaluated in cubic WS cells (various symbols) are compared to those
of homogeneous infinite matter (solid lines) and of TF calculations.
Further details are given in the text.

boundary conditions, which minimize this effect, the resulting
density profile does not correspond to the homogeneous
solution [8].

From this discussion we see that the HF calculations in a
Cartesian WS cell for densities in the range of 0.01 fm~— to
0.1 fm~3 leads to quite a variety of shapes and quasinuclear
structures with smooth transitions in between. Following the
discussions above these structures may be characterized as
quasinuclei, rod structures, slab structures (all embedded in
a sea of neutrons), and, finally, the homogeneous matter.
The densities at which the transitions from one shape to
other occur according to our SHF calculations are listed in
Table III. The transition densities are very similar to those
obtained in [31].

The energies per nucleon and the proton abundances
resulting from SHF calculations are are displayed in the
lower and upper panel of Fig. 4, respectively. The solid lines
indicate the results for the evaluation of homogeneous matter

TABLE III. Comparison of densities at which shape transi-
tions occur using the Skyrme and relativistic mean-field (RMF)
approach. Results are compared, employing the microscopic
Hartree-Fock (HF), Hartree (H), or the Thomas-Fermi (TF)
approach. All entries are presented in fm=.

Skyrme RMF
HF TF H TF
Droplet-rod 0.042 0.066 0.070  0.062
Rod-slab 0.070 0.078 - -
Slab-homogeneous 0.080 0.085 0.075  0.072
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in B equilibrium. The results of calculations performed in
cubic WS cells are presented in terms of individual symbols.
Those symbols, which scatter around the homogeneous matter
results are obtained from WS calculations, constraining the HF
single-particle wave functions to plane waves. Therefore the
scattering of these homogeneous matter calculations within
WS cells of finite size around the homogeneous result for
infinite matter is a measure of the shell effects in the WS
calculations on the calculated energy and proton abundances.

The HF calculations, which allow for the formation of
inhomogeneous quasi-nuclear structures, lead to a reduction
of the calculated energy of 1 to 2 MeV per nucleon. This gain
in energy is reduced with increasing density up to the density
of 0.085 fm~> at which the energies of the inhomogeneous
structures merge into the results for the homogeneous matter.
At densities below this value of 0.085 fm~ the balance
between the gain in binding energy due to a local increase
of the baryon density and the loss of binding energy due
to the localization of nucleons and surface effects favors
the occurrence of inhomogeneities in the baryon densities.

This balance between bulk energy arising from the en-
ergy density of nuclear matter treated in a local-density
approximation and surface effects is also contained in the
TF approach. In this section we want to investigate to which
extent the results of our HF calculations can be reproduced by
corresponding TF calculations. For that purpose we consider
simple parametrizations for the density distribution for protons
and neutrons, which contain a constant peripheral density ,03”‘
(g = p or n for protons and neutrons, respectively) and an
inner part describing the density distribution in the center of
the WS cell. For spherical quasinuclear structures we employ
the parametrization of [4]

r <Ry
R, <r .

in __ ,out 1 — Lt¢,3+ out’
pq(r):{(‘o’zt Pyt =G ]+ o
P
(60)

q >

As an alternative we also consider a Wood-Saxon density
parametrization of the form

~1
Pg(r) = (0 — pg") [1 + exp <r p rq)} +pg". (61)
q
For the description of rod-shape quasinuclear structures we
use cylindrical coordinates and parametrize the dependence of
the densities on the radial coordinate in a way corresponding
to Egs. (60) or (61). In the case of quasinuclear structures in
form of slab shapes these parametrizations are considered for
the dependence of the densities on the Cartesian coordinate z.
Assuming those density distributions, the TF energy is
calculated as a sum of the bulk-energy, i.e., the integrated
nuclear-matter energy densities, plus the contribution of a
surface term of the form [3,4]

Ewt = Fo / &Er VP 62)
WS-cell

The parameters of the density distributions in Egs. (60) and
(61) are varied to minimize the energy of the system under
consideration. The parameter Fy for the surface energy term
in Eq. (62) has been adjusted in two different ways. In a first
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approach we have considered the properties of the nucleus
208 pp and adjusted Fy in such a way that the TF calculation
reproduced the energy and radius of this nucleus derived from
SHEF. This leads to a value of F; of 68.3 MeV fm> and 59.7 MeV
fm? using the parametrization of Eq. (60) and the Wood-Saxon
parametrization of Eq. (61), respectively.

Adjusting the surface parameter Fj in this way, one can
evaluate the energies of quasinuclear structures in a WS cell
using the TF approximation. The results for these TF energies
are presented by the dashed-dotted line in the lower panel of
Fig. 4. One finds that this procedure leads to energies that
are consistently larger than those obtained in the Hartree-Fock
calculations. It seems that the TF approach, as it is used here,
is underestimating the gain in energy due to the formation of
inhomogeneous structures. This could be a general problem
of the TF approximation or a result of the limitation in the
variational ansatz for the density functions.

To investigate these possibilities we have considered the
different parametrizations displayed in Egs. (60) and (61).
It turns out that these two parametrizations lead indeed to
different density distributions, as displayed in the example of
Fig. 5, but it turns out that the resulting energy predictions do
not exhibit significant differences, so that we present only one
example for the TF approach in Fig. 4.

We then readjusted the the surface term in Eq. (62) to
obtain an optimal fit of the HF energies for the quasinuclear
structures in B equilibrium. This readjustment of the surface
term leads to values of the surface parameter Fy, that are about
a factor of one-half smaller than that obtained from the fit to the
properties of 2%Pb. Using these readjusted surface parameters
we observe critical densities for the shape transitions of the
quasinuclear structures from droplets to rods to slabs and to
homogeneous nuclear matter at values that are similar to the
results obtained in the HF calculations. If, however, one uses
this reduced values derived from the fit to inhomogeneous

0.1 = =27 s - .- TF, Wood-Saxon
. ~e --- TF, expon.
: — HF

density p [fm'S]
(=]
>
T
!

r [fm]

FIG. 5. (Color online) Density distributions resulting from SHF
calculations for protons (black color) and neutrons (blue color) as
a function of the distance from the center of the WS cell. The
densities resulting from HF are compared to those determined in
TF calculations, assuming the parametrization of (60), dotted line,
and (61), dashed line. The example refers to a global baryon density
of 0.0166 fm~3.
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matter in B equilibrium the TF calculation do not give an
accurate description of HF energies, in which the proton
abundance has been fixed, e.g., to a value of 10%. This result
can be taken as an indication that in addition to the isoscalar
surface term of Eq. (62) an isovector surface term might be
required in addition to obtain a reliable TF approximation to
the results of corresponding Hartree-Fock calculations over a
wide range of proton-neutron asymmetries.

The upper panel of Fig. 4 contains results on the pro-
ton abundances for baryonic matter plus electrons in S
equilibrium. The value of the proton abundance assuming
homogeneous matter increases with density reaching a value
of about 4% at a baryonic density of 0.1 fm~3. Allowing for
inhomogeneous, however, this value is almost constant around
3.2% in the density interval from 0.03 to 0.08 fm~ and yields
even larger values for densities below 0.03 fm~3. This trend
is also reproduced in the TF calculations. The increase of the
proton abundances at smaller global densities reflects the fact
that at those small densities we observe local structures in the
center of the WS cells, with large local densities. The proton
abundance in these quasinuclear droplets is significantly larger
than the proton abundance in the homogeneous matter with
the same global density. The scattering of the results for the
proton abundances as a function of density resulting from the
HF calculations reflects the shell effects, which preferentially
yield quasinuclear with closed shells for the protons.

A comparison of energies resulting from relativistic mean-
field calculations in a Wigner Seitz cell are displayed in
the lower panel of Fig. 6. Comparing these results with the
corresponding values displayed in Fig. 4 one finds that the
energy gain due to the formation of inhomogeneous structures
is much weaker in the relativistic mean-field calculations as

1= — Homog. Matter _|
+ — Thomas Fermi

proton abundance [%]

energy/nucleon [MeV]
\
[}

0 1 l 1 l 1 l 1 l 1 l
0 0.02 0.04 0.06 0.08 0.1

density p [fm”]

FIG. 6. (Color online) Proton-abundances and energy per nucleon
as obtained from relativistic mean-field calculations at different
densities. The results evaluated in cubic WS cells (various symbols)
are compared to those of homogeneous infinite matter (solid lines)
and of TF calculations. Further details are given in the text.
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compared to the Skyrme model. This is also reflected in the
corresponding TF calculations. Note that also in this case we
have adjusted the constant Fj of the surface term in Eq. (62)
to reproduce the bulk properties of 2°*Pb as predicted by the
relativistic mean-field calculations. This leads to value for Fj
of 87.4 MeV fm?> and 80.3 MeV fm? using the parametrization
of Eq. (60) and the Wood-Saxon parametrization of Eq. (61),
respectively. Both values are significantly larger than the
values required for Fj in the case of the Skyrme model used
above.

The different interplay between volume, surface, symmetry,
and Coulomb effects in the relativistic mean-field model as
compared to the Skyrme model also leads to smaller values
for the proton abundance in the region of nuclear densities, in
which inhomogeneous structures emerge. The values around
p = 0.02 fm~3, displayed in the upper panel of Fig. 6, are
about 40% smaller than the corresponding values obtained in
the Skyrme model (see Fig. 4). The differences in the balance
between volume and surface contributions to the energy also
lead to different quasinuclear structures in the nuclear models
under consideration. It is worth mentioning that within the
relativistic mean-field mode we do not find any formation of
slablike structures. Therefore the Table III contains for this
case only transition densities for droplet to rod structures and
the formation of a homogeneous structure.

The density profiles obtained from these two approaches
also yield different results. As an example we present in Fig. 7
the density profiles at p = 0.032 fm~3, a density at which both
the relativistic as well as the Skyrme model yield a droplet
structure. Note, that in the case of the Skyrme calculation
we obtain a WS cell with a length of 26.4 fm that leads
to a borderline as indicated by the dotted line, whereas the
corresponding borderline for the RMF calculation is identical
to the frame of the figure.

Finally, a feature of the pairing correlations obtained in
these calculations shall be discussed. For that purpose we
present in the upper panel of Fig. 8 the local pairing gap
A(r) [see Eq. (59)] for the formation of neutron pairs, as
obtained in the Skyrme and relativistic mean-field model at

O.1F—=7=~-~ — RMF : -
- — Skyrme .
-- - WS border (Skyrme)

density p [fm'3]
(=}
S

r [fm]

FIG. 7. (Color online) Density profiles for protons and neutrons
as derived from SHF and relativistic mean-field calculations at a
global density of p = 0.032 fm~3.
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FIG. 8. (Color online) Local pairing gap A(r) [upper panel, see
Eq. (59)] and anomalous density x (r) [lower panel, see Eq. (58)] for
the configurations, which are also considered in Fig. 7.

p = 0.032 fm~3. In both of these approaches one observes
a suppression of the local gap A(r) in the region of the
quasinuclear structure, i.e., in the region where the density
is large.

This phenomenon has been observed before [8,31-33] and
has lead to discussions about various phenomena, which are
related to to this periodic structure of the gap parameter.
It should be noted, however, that this suppression of the
gap parameter in the high-density region of the quasinuclear
structure is either to the local-density approximation, which
is used to calculate this local gap or to the assumption of the
density dependence of the interaction strength for the pairing
interaction, like the one we considered in our calculations [see
Eq. (53)]. If, rather than looking at the local gap parameter
A(r), we inspect the anomalous density x(r) [see Eq. (58)],
one finds even a small enhancement of the anomalous density
in the region of the quasinuclear structure. This suggests that
the reduction of the pairing gap in the region of high densities
might be an artifact of the special interaction considered.

VI. CONCLUSIONS

The structure of neutral baryonic matter is investigated
in a region of baryon densities between 0.01 and 0.1 fm—3
performing various HF and mean-field calculations with
inclusion of pairing correlations in a periodic lattice of WS
cells of cubic shapes. In this region of densities, which
should occur in the crust of neutron stars, one observes
structures ranging from neutron-rich nuclei embedded in a sea
of neutrons to homogeneous matter. The symmetries of the WS
cell allow the formation of triaxial structures but also include
rod and slablike structures and provide a natural transition to
the description of homogeneous matter.

For the baryonic components a SHF approximation has
been considered as well as a relativistic mean-field model.
Both approaches yield an intriguing variety of quasinuclear
structures with smooth transitions in between. The occurrence
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of special structures as well as the critical densities at which
transitions between those structures occur depend on the
nuclear model considered.

The resulting energies as well as the proton abundances can
fairly well be reproduced by a TF approach, if the constant,
determining the strength of the surface term is adjusted to
reproduce the results of the microscopic calculations. A surface
term depending on the isospin asymmetry might be required
to obtain TF results, which are reliable over a large interval of
proton-neutron asymmetries.

Pairing-correlations have been evaluated within the BCS
approach, assuming a density-dependent contact interaction.
This leads to local pairing gaps for neutron pairing that
are significantly smaller in the regions of the quasinuclear
structures as compared to the bulk of the neutron sea. It is

PHYSICAL REVIEW C 76, 024312 (2007)

argued, however, that this feature might be an artifact of the
density dependence of the effective pairing interaction.

The present studies provide an interesting starting point
for further studies on the properties of matter in the crust
of neutron stars. The single-particle energies and wave
functions could be used for a microscopic study of response
functions, which allow, e.g., the evaluation of neutrino
opacities.
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