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Generic strong coupling behavior of Cooper pairs on the surface of superfluid nuclei
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With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of
small sized Cooper pairs (2–3 fm) in the surface of superfluid nuclei. This study confirms and extends previous
results given in the literature that use more schematic approaches.
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The opportunities offered by the new radioactive beam
facilities to study the properties of weakly bound nuclei with
large neutron skins or halos triggered new interest for the issue
of space correlations induced by the formation of Cooper
pairs. The spatial correlations of Cooper pairs in superfluid
nuclei have not been extensively studied in the past, but
nevertheless a certain number of investigations, some rather
early, do exist. Mostly this was done for the single Cooper pair
problem. For example the rms diameter of the extra neutron
pair in 18O is shown as a function of the nuclear radius by
Ibarra et al. [1]. One sees a strong minimum in the nuclear
surface, indicating a rms separation between the two active
neutrons of the order of 2–3 fm. A similar behavior was
found later by Catara et al. [2] and Ferreira et al. [3] for
a neutron pair in 206Pb and 210Pb. More recently, there are
also many investigations of the single Cooper pair problem
in the halo nucleus 11Li (see, e.g., Refs. [4,5] and citations in
there).

One of the rare papers where spatial correlations of Cooper
pairs are investigated in superfluid nuclei is the one of Tischler
et al. [6] where the probability distribution of the pairs is
shown as a function of the center of mass R = 1

2 |�r1 + �r2| and
the relative distance of the nucleons in the pairs r = |�r1 − �r2|
with (�r1, �r2) the coordinates of two nucleons. They showed that
in the open shell isotope 114Sn one also finds Cooper pairs with
short range space correlations, as in one pair systems. They
also confirmed the finding of Catara et al., i.e., the important
role played by the parity mixing for inducing short range space
correlations. Most of those older works were, however, done
using rather schematic models and/or pairing forces. There
exists, however, one study with a realistic pairing force (i.e.,
the Gogny interaction) by Barranco et al. [7], dedicated to
nuclei embedded in a neutron gas, a system found in the inner
crust of neutron stars. One of the first systematic analyses of
strong dineutron spatial correlations induced by the pairing
interaction was done recently by Matsuo et al. [8], using a
zero range pairing force. The study of nuclear surface pairing
properties was also the aim of several half infinite matter
investigations [9,10]. It was found that the pair density reaches
out further than the ordinary density but neither the local
coherence length nor the probability distribution of the pairs
were calculated.

The aim of the present work is to verify how much all these
relatively scattered pieces of information withstand a general
study of superfluid nuclei using one of the most performing
HFB approaches, that is employing the finite range D1S Gogny
interaction [11]. As a matter of fact we will see that many
of the earlier findings are qualitatively or even quantitatively
confirmed. Indeed, we will show that the strong concentration
of pair probability of small Cooper pairs in the nuclear surface
is a quite general and generic feature and that nuclear pairing
is much closer to the strong coupling regime [8,12] than
previously assumed.

We will start by explaining shortly how the spatial
properties of nuclear pairing are investigated within the
HFB approach and then we shall present our results and
conclusions. For further understanding of the phenomena, a
simple semiclassical analytic model for nuclear pairing will
also be considered.

It is well known [13] that pairing correlations can be
adequately studied with the Cooper-pair probability |κ|2. The
latter can be introduced by considering the two-body density
matrix in the HFB approximation given by [14]

ρ(�r1s1, �r2 − s2, �r1s1, �r2 − s2)

= 〈ψ+(�r1, s1)ψ+(�r2,−s2)ψ(�r2,−s2)ψ(�r1, s1)〉
= ρ(�r1s1, �r1s1)ρ(�r2 − s2, �r2 − s2) − ρ(�r1s1, �r2 − s2)

× ρ(�r2 − s2, �r1s1) + |κ(�r1s1, �r2s2)|2. (1)

In Eq. (1), 〈. . .〉 = 〈HFB| . . . |HFB〉, ψ+ and ψ are creation
and annihilation operators, ρ(�r1s1, �r2s2) = 〈ψ+(�r2s2)ψ(�r1s1)〉
is the single particle density matrix and κ(�r1s1, �r2s2) =
〈ψ(�r2 − s2)ψ(�r1s1)〉 is the anomalous density matrix or pairing
tensor in r-space. The first two terms on the right hand side of
Eq. (1) represent the antisymmetrized mean field factorization
into products of single particle density matrices which also
survive in the pure Hartree-Fock limit. It is the trivial and
uncorrelated part of the density matrix. The genuine two-body
correlations of interest here, i.e., the pairing correlations, are
contained in |κ(�r1s1, �r2s2)|2.

In this paper we analyze the space properties of the pairing
tensor calculated in HFB approximation, using the two-body
D1S Gogny force [11]. The HFB equations are solved for
spherical symmetry and using a harmonic oscillator basis. In
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this framework the pairing tensor corresponding to pairs of
like particles and coupled to the total spin S = 0 writes

κ(�r1, �r2)S=0 =
∑

s

〈ψ(�r2 − s)ψ(�r1s)〉

= 1

4π

∑
n,n′lj

2j + 1

2
κ

lj

n′,nun′l(r2)unl(r1)(−)l

×Pl(cosθ12), (2)

where unl(r) are the radial wave functions of the harmonic
oscillator and κ

lj

n′n is the matrix of the pairing tensor for a
given angular momentum lj. As defined here, the latter has
an intrinsic parity (−)l . In the Gogny-HFB calculations the
pairing tensor has also a component with the total spin S = 1.
Since in open shell nuclei this component is very small
compared to the S = 0 part, it is neglected in the present study.

In order to analyze the nonlocal properties of pairing
correlations, we write the pairing tensor in terms of relative
and center of mass (c.m.) coordinates, i.e., �r = �r1 − �r2 and
�R = (�r1 + �r2)/2. This is done by using the Brody-Moshinski

transformation. One thus obtains

κ( �R, �r)S=0 = 1

4π

∑
n,n′,l1j1

(2j1 + 1)κl1j1
n2,n1

×
∑
nNl

(−)l
(

2l + 1

2l1

)1/2

unl(r/
√

2)uNl(
√

2R)

×Pl(cosθ )〈nlNl; 0|n1l1n2l1; 0〉, (3)

where 〈nlNl; 0|n1l1n2l1; 0〉 is the Brody-Moshinski bracket
and θ is the angle between �r and �R. The values of |κ|2 and the
related quantities presented below have been averaged over the
angle θ . In the calculations, a basis with 15 harmonic oscillator
shells have been considered.

We start by analyzing the space distribution of the pairing
tensor |κ(R, r)|2. In Figs. 1, 2, and 3 are shown the results for
Sn, Ni, and Ca isotopes.

One notices a rather strong concentration of the Cooper
pairs along the R-axis. However, the true extension of the
Cooper pairs (r-direction) can only be judged once κ(R, r)
is properly normalized, as in the definition of its rms radius
[see Eq. (4) below]. Thus, we will see that the large extensions
of |κ(R, r)|2 in the r-direction for small R-values which one
can guess from Figs. 1–3, are quite important, giving rise to
large coherence length values for the Cooper pairs located in
the interior of nuclei. One also notices that the distribution
in R is rather different for various isotopes. The difference
comes from the localization properties of the single-particle

FIG. 1. (Color online) Pairing tensor |κ(R, r)|2 for Sn isotopes.

FIG. 2. (Color online) Pairing tensor |κ(R, r)|2 for Ni isotopes.

states which are the closest to the chemical potential. For
example, the pronounced concentration of |κ(R, r)|2 around
R = 2.5 fm in 104Sn is due to the surface localization of the
single-particle wave function 2d5/2, which is the closest state
to the chemical potential for this isotope. One can also see that
in 120Sn the pair probability has a sizable value for small values
of R, which comes mainly from the contribution of the state
3s1/2 to pairing correlations. On the other hand, in the isotopes
136−170Sn, 52−66Ni, and 44−62Ca, in which there is no s-state
in the major shell, we see a depression of pair probability at
the origin. Therefore, the distribution of Cooper pairs in nuclei
is a subtle question as it depends rather strongly on the shell
structure (see also [15]).

The fact that the Cooper pairs with small size are concen-
trated in the surface can be seen from the dependence of the
coherence length on the center of mass of the pairs. The local
coherence length is defined as

ξ (R) =
( ∫

r4|κ(R, r)|2dr
)1/2

( ∫
r2|κ(R, r)|2dr

)1/2 . (4)

It is shown for Sn, Ni, and Ca isotopes in Figs. 4, 5, and 6.
One sees well defined and pronounced minima at ξ ∼ 2–

3 fm for R of the order of the surface radius. As we have
already mentioned, a small coherence length in the case of a
single Cooper pair has already been found previously for 18O
in Ref. [1]. It is also the case for the Cooper pair in 11Li [4,5].
Our calculations did not allow to go much beyond the minima
because of the employed harmonic oscillator basis which
becomes inaccurate far outside the nuclear radius. However,
the position of the minima is always clearly identified and
seen to be similar in all cases. What is surprising is that the
size of the Cooper pairs starts to decrease already well inside,
around R = 2 fm. Moreover, the decrease toward the surface
is approximately linear.

In order to get a better understanding of the structure of the
local coherence length, it is appropriate to consider the locally
normalized pairing tensor, as it enters in the definition of the

FIG. 3. (Color online) Pairing tensor |κ(R, r)|2 for Ca isotopes.
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FIG. 4. Coherent length ξ (R) for Sn isotopes.

coherence length [Eq. (4)], that is

W (R, r) ≡ r2κ(R, r)2/N (R), (5)

where N (R) = ∫
drr2κ(R, r)2. This quantity is shown in

Fig. 7 for 120Sn, which presents common features seen in all
analyzed isotopes. One clearly notice the large extension of
the pair close to the center of the nucleus. One can also notice
a rather linear decrease of the extension of the pairs toward the
surface, where W (R, r) has the highest concentration. How the
radial structure W (R, r) looks like for various values of R is
shown in Fig. 8. A very typical and generic feature is revealed
there. At high particle densities, i.e., close to saturation, the
pair tensor function strongly oscillates with a wide extension.
Going to lower densities, i.e., toward the surface, these
oscillations die out and a compact structure appears. Such
behavior have been pointed out in infinite matter studies [16]
and also for finite nuclei [5]. The oscillatory behavior is well
understood as an effect of the orthogonalization of the pair
tensor function with the remaining Fermi sea. For infinite
systems this behavior is known since long in condensed matter
physics [17]. That there is qualitatively the same behavior in
finite nuclei is somewhat a surprise, although it has been seen
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FIG. 5. Coherence length ξ (R) for Ni isotopes.
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FIG. 6. Coherent length ξ (R) for Ca isotopes.

for the one Cooper pair problem [5]. It seems to be a quite
generic behavior for all kinds of paired Fermi systems, be they
homogeneous, inhomogeneous, or finite.

Next we shall discuss the probability distribution of pairing
correlations defined by

P (R, r) = R2r2|κ(R, r)|2. (6)

This quantity is important because it enters in the calculation
of the mean value of two-body operators, as pairing energy or
spectroscopic factor used in the evaluation of cross sections
for two-neutron transfer reactions. The results for P (R, r) are
shown in Figs. 9, 10, and 11 for Sn, Ni, and Ca isotopes. The
striking feature is that for all nuclei the same scenario emerges:
the probability distribution P (R, r) is strongly concentrated
in the surface with a diameter of 2–3 fm, along the isotopic
chain. This effect is not practically dependent on the exoticity
of nuclei. This fact explains why one finds in all superfluid
nuclei a high probability for two-neutron transfer reactions.

In order to demonstrate that the strong concentration of
small Cooper pairs in the surface of the nuclei is not a trivial
effect, we decompose κ(R, r) in a part κe(R, r) which contains

FIG. 7. (Color online) W (R, r) for 120Sn.
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FIG. 8. W (R, r) for given values of R in the case of 120Sn.

only even parity wave functions and a part κo(R, r) which
contains only the odd parity ones, i.e., κ(R, r) = κe(R, r) +
κo(R, r). In Fig. 12, we show what are the corresponding
probability distributions for Pe(R, r), Po(R, r), and Peo(R, r)
in the case of 120Sn. The quantity Peo(R, r) corresponds to
the interference term 2κeκo. From Fig. 12, one can see that
selecting only either even or odd parity states in κ(R, r) has
a strong delocalization effect on the Cooper pairs: they are
democratically distributed with respect to an interchange of R

and r variables [one should notice that in Eq. (3) the symmetry
between R and r involves a factor 2, which comes through the
standard definition of Brody-Moshinsky transformation]. So
no small Cooper pairs in the nuclear surface are preferred at
all in those cases. The concentration only shows up when even

FIG. 9. (Color online) Probability distribution P (R, r) for Sn
isotopes.

FIG. 10. (Color online) Same as Fig. 9 for Ni isotopes.

and odd parity states are mixed. This is clearly revealed in
looking at the interference term Peo(R, r). We see that it is
negative for regions close to the r-axis and positive close to
the R-axis. We checked that this scenario stays the same for
all other superfluid nuclei considered.

The parity mixing scenario is also well described in the
papers by Catara et al. [2] and Tischler et al. [6]. Mixing
of parities naturally occurs in heavy nuclei because of the
presence of intruder states of unnatural parity in the main
shells of given parity. However, the concentration of Cooper
pairs can also occur in light nuclei as the oxygen isotopes
where no intruders are present in the valence shell. This
means that pairing in nuclei is sufficiently strong so that κ

contains contributions from several main shells, allowing for
parity mixing even in light nuclei. If one artificially restricted
the pairing configurations, e.g., in 22O to the s-d shell, then
certainly no concentration effect at all would be seen (in
this respect, see also the study in [6]). So to grasp the full

FIG. 11. (Color online) Same as Fig. 9 for Ca isotopes.
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FIG. 12. (Color online) Contributions of definite parity to P (R, r)
calculated with HFB-D1S for 120Sn.

physics of nuclear pairing it is very important to work in a
large configuration space, comprising several shells below and
above the active one (see also [8]). The only exception to parity
mixing we found for the analysed isotopes concerns 36Ca. In
this nucleus the presence of two additional neutrons in the
2s1/2 state strongly inhibits the parity mixing with the p states
of the lower major shell.

In order to understand in more detail where this ex-
traordinary concentration effect from even-odd parity mix-
ing comes from, let us consider a very simple model.
We got inspired by the Thomas-Fermi model presented in
Ref. [3] where the anomalous density matrix is given by
κT F (R, r) ∼ kF (R)j0(kF (R)r) with j0(x) a spherical Bessel

function, kF (R) =
√

2m

h̄2 (µ − V (R))�(µ − V ) the local Fermi

momentum, µ the chemical potential (or Fermi energy), and
V (R) a phenomenological mean field potential. It can be
shown [18] that a slightly more elaborate semiclassical version
can be written as

κsc(R, r) = m

h̄2π2

∫
dEκ(E)kE(R)j0(kE(R)r), (7)

where kE(R) is the local momentum at energy E, obtainable
from kF in replacing µ by E, and κ(E) is the continuum
version of the κ’s for the individual quantum levels: κ(E) =
�(E)/(2

√
(E − µ)2 + �(E)2). We see that for very small �′s,

one gets back the TF model [3]. However, for realistic gap
values the distribution of κ’s is very important, otherwise the
concentration effect will not show up. For �(E) we adjust
a Fermi function to represent on average the gap-values of
the individual single particle levels. An example can be seen
on Fig. 12 of Ref. [19]. In the present work, we have fitted
the function �(E) on HFB-D1S results for 120Sn. A good
fit function is given by �(E) = 4/[1 + exp(E − µ)/20] (all
numbers are in MeV). For the mean field potential V (R)
we take the Woods-Saxon form of Ref. [20]. The chemical
potential µ is determined, as usual, via the particle number
condition.

In Fig. 13, we show the corresponding semiclassical
probability P sc(R, r). We see qualitatively good agreement
with the quantal HFB results, for instance in what concerns

FIG. 13. (Color online) Parities contributions P sc(R, r) calcu-
lated with the semiclassical model for 120Sn.

the concentration of small Cooper pairs in the surface. We
also show in Fig. 13 the parity projected probabilities. As
in Fig. 12, one sees the strong delocalization effect. In our
model this can be understood analytically. Parity projection
can be written as κe/o(�r1, �r2) = 1

2 [κ(�r1, �r2) ± κ(�r1,−�r2)] =
1
2 [κ( �R, �r) ± κ( �r

2 , 2 �R)] (see Ref. [21]). We therefore see that
good parity implies, up to a scale factor, a symmetrisation in
coordinates R and r . This is general and can be investigated
analytically in the TF model.

The analytic model also allows to quickly grasp the
significance of the coordinates used by Matsuo et al. [8]. There,
one takes a reference particle at position �r1 on the z-axis, i.e.,
�r1 = z1�ez. Moving the second particle on the z-axis we see
that for Pe/o two symmetric peaks at �r2 = z1�ez and �r2 = −z1�ez

appear whereas for the total probability only one peak on the
side of the test particle appears. This is a clear signature of
strong pairing correlations as also pointed out in [8].

Finally we shall discuss shortly the global properties of
the pair tensor distribution. The value of |κ|2 integrated over
the whole space is commonly associated to the number of
correlated pairs [24]. Thus, for the isotopes 104Sn, 120Sn, and
128Sn this number is equal to 2.09, 9.61, and 3.14. One can
notice that for the first two isotopes the number of correlated
pairs stays close to the number of pairs which can be formed
with the valence neutrons in the shell N = 50–82 while for
128Sn this number is closer to the half of the number of holes
in the closed shell N = 82.

In conclusion, we showed that Cooper pairs in superfluid
nuclei preferentially are located with small size (2–3 fm) in
the surface region. There, they maximally profit from the
Cooper phenomenon, that is, with respect to the neutron-
neutron virtual S-state in the vacuum (rms 12 fm [5]), strong
extra binding occurs, as long as the density is not too high.
Further to the center of the nucleus the stronger effect of the
orthogonalization of the pair with respect to the denser core-
neutrons perturbs the pair wave function. It starts to oscillate
and expands again [5]. That this simple, physically appealing
and generic picture, is so pronounced, has come as a surprise.
It is certainly important for the interpretation of pair transfer
reactions. Most of these facts had already been revealed in the
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past for specific examples and schematic models and forces.
We think, it is the merit of this work that it demonstrates with
realistic HFB calculations using the finite range D1S force the
generic aspect of strong coupling features of singlet isovector
pairing in nuclei. These features are in agreement with the
ones recently put forward by Matsuo et al. [8]. Let us mention
that the strong coupling features revealed here are somewhat
contrary to the old belief [22] that the coherence length of
nuclear pairs is of the same order or larger than the nuclear
diameter. On the contrary, a much more diverse local picture
has emerged. This may also be the reason for the rather good
success of LDA for nuclear pairing found in the past [23].
In spite of the strong coupling aspects revealed in this work,

we hesitate to say that there is Bose-Einstein condensation
(BEC) of isovector Cooper pairs, since this, strictly speaking,
occurs only for (in infinite matter) negative chemical potential,
what means true binding. However, µ never turns negative for
isovector pairing in infinite nuclear or neutron matters. Nuclear
isovector pairing is just in the transition region from BEC to
BCS.
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