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Bohr Hamiltonian with different mass coefficients for the ground- and
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Based on experimental data for axially symmetric well deformed nuclei it is shown that the “Grodzins product”
of the energy of the 2+

γ state with the B(E2; 2+
γ → 0+

g.s.) for the transition from the 2+
γ state to the ground state

is a relatively smooth function of Z and A. It is shown also that a ratio of the mass coefficients for the γ -motion
and for the rotational ground band extracted from the experimental data take the values in the limits 3–5. The
implied large difference between the two mass coefficients means that the mass tensor of the Bohr Hamiltonian
cannot be reduced to a scalar as it usually assumed.
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I. INTRODUCTION

In the description of collective nuclear dynamics the mass
coefficient plays as important role as the potential energy.
However, much less is known about the mass coefficient in
comparison with the numerous calculations of the potential
energy. Frequently, it is assumed that the mass coefficient
is a constant and in the case of the well deformed nuclei
the same mass coefficient is used for description of the
rotational motion of the ground band and of the γ -vibrations.
However, an information about the mass coefficient can be
extracted from the experimental data on excitation energies and
electric quadrupole transition probabilities. In the framework
of the Bohr-Mottelson model and if the well-deformed axially
symmetric nuclei are considered the two “Grodzins products”
E(2+

1 )B(E2; 2+
1 → 0+

g.s.) and E(2+
γ )B(E2; 2+

γ → 0+
g.s.) are in-

versely proportional to the corresponding mass coefficients.
The same is true for the first 2+ state in the vibrational limit.

In a previous paper [1] we have used the experimental values
of the “Grodzins products” to obtain information about mass
coefficients for the γ - and rotational motion. Our analysis has
been based on the Bohr Hamiltonian [2] admitting the use
of different values of the mass coefficient for different bands
of eigenstates. In fact different Hamiltonians were used for a
description of different rotational bands. It was found that the
mass coefficient for the γ -motion is significantly larger than
that for the rotational motion. However, it was assumed that
the mass coefficient is a scalar function of the shape variables.

In this paper we will use one Hamiltonian for all bands.
This Hamiltonian in the intrinsic frame is derived from a
Hamiltonian in the laboratory frame of the Gneuss-Greiner
type [3–5] which has a more general kinetic energy term than
is usually assumed (however, see [3–5]). In this respect our
present analysis is different from the analysis presented in [1].
We will furthermore compare with a larger set of data including
all data on axially symmetric and beta-rigid nuclei in the rare
earth and actinide regions.

*jolos@theor.jinr.ru

II. COLLECTIVE HAMILTONIAN

To analyze the experimental data we use the Bohr Hamilto-
nian with a kinetic energy term having a general form. In the
laboratory frame this term looks as

T̂ = −h̄2

2

∑
L=0,2,4

∑
M,µ,µ′

√
(5)CLM

2µ2µ′
∂

∂α2µ

(B−1)lab
LM

∂

∂α2µ′
,

(1)

where (B−1)lab
L is an inverted mass tensor. The usual form of

T̂ takes only a scalar component (L = 0) into account and it
assumes that (B−1)lab

00 is independent on β and γ . Then the
kinetic energy term Eq. (1) is approximated by the expression

T̂ = − h̄2

2B

∑
µ

(−1)µ
∂

∂α2µ

∂

∂α2−µ

. (2)

In this paper we use, however the more general form of the
kinetic energy given by Eq. (1). In our previous paper [1] we
used only the scalar part of the mass tensor but assumed that
it depends on the shape variables β and γ and being averaged
over the wave functions of the 2+

1 and 2+
γ states it takes different

values for the ground and gamma band. Below we use an
alternative approach, namely, we start in Eq. (1) with a general
expression for the mass tensor. Then using the expression
Eq. (A2) for the derivative ∂/∂α2µ and the representation
Eq. (A3) for the components of the mass tensor in terms
of the intrinsic variables and the Euler angles we obtain the
kinetic energy term of the Bohr Hamiltonian with different
mass coefficients for different terms. Following our main
assumption of small amplitudes of the β- and γ -oscillations
around β = β0 and γ = 0 it follows that Bβ,Bγ , and Brot

are constants and we obtain after lengthy but straightforward
calculations

T̂ = T̂β − h̄2

2Bγ β2
0

1

γ

∂

∂γ
γ

∂

∂γ
+ h̄2

6Brotβ
2
0

(
L̂2

1 + L̂2
2

)

+ h̄2

2Bγ

L̂2
3

4β2
0γ 2

, (3)
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where L̂i is the projection of the angular momentum on the
intrinsic axis i and 3Brotβ

2
0 is the moment of inertia. The

detailed form of the kinetic energy term of β vibrations
is unnecessary for the discussion below but we give it for
completeness

T̂β = −h̄2

2

(
1

Bβ

∂2

∂β2
+ 2

Bγ

1

β

∂

∂β
+ 2

Brot

1

β

∂

∂β

)
. (4)

It is interesting to note that the mass coefficient in the fourth
term of Eq. (3) coincides with that of the second term and
differs from the mass coefficients in the third term. This result
was obtained before in [6], however, for the less general kinetic
energy term with a cubic anharmonicity only. The reason for
the coincidence of the mass coefficient in the second and fourth
terms of Eq. (3) is related to the following. This is seen from the
expression for the derivative ∂/∂α2µ shown in Eq. (A2). The
term producing the rotation around axis 3 changes K by two
units as is also the case for the term producing γ -vibrations.
In contrast, rotations around the first and second axes change
K by one unit only.

The full Hamiltonian

H = T + U (5)

is obtained by adding the kinetic energy term Eq. (3) and the
potential U which in the case of the well deformed axially
symmetric nuclei takes the form

U = 1

2
Cβ(β − β0)2 + 1

2

Cγ

β2
0

γ 2. (6)

Since in these nuclei the γ -motion is separated from rotation
the second and the fourth terms in Eq. (3) together with the
corresponding potential energy term form a sub-Hamiltonian
describing the γ -vibrations. We stress once more that the mass
coefficients Bβ,Bγ , and Brot and the parameters Cβ and Cγ

can be taken as constants in the case of the well deformed
nuclei. This is an advantage of using the intrinsic frame [see
Eq. (A2)]. The expressions for Bβ,Bγ , and Brot are given in
Appendix A.

The normalized eigenfunctions of the states of the ground
and γ bands of the Bohr Hamiltonian Eq. (5) are

�gs(IM) =
√

2I + 1

8π2
DI

M0ψ0(β)

(
2
√

Bγ Cγ

h̄

)1/2

× exp

(
−

√
Bγ Cγ

2h̄
γ 2

)
, (7)

�γ (IM) =
√

2I + 1

16π2

(
DI

M2 + DI
M−2

)
ψ0(β)

√
2Bγ Cγ

h̄2 γ

× exp

(
−

√
Bγ Cγ

2h̄
γ 2

)
. (8)

Here ψ0(β) describes β oscillations around β = β0 and its
detailed knowledge is not needed here. The excitation energy
of the 2+

1 state is equal to

E
(
2+

1

) = h̄2

Brotβ
2
0

. (9)

The excitation energy of the 2+
γ state is

E
(
2+

γ

) = 1

β2
0

h̄

√
Cγ

Bγ

+ h̄2

3Brotβ
2
0

. (10)

Taking the general quadrupole transition operator given by
Bohr and Mottelson [7] and following our main assumption
that the amplitudes of the β- and γ -oscillations around
average values are small we obtain the following approximate
expression:

Q2µ = q
(
D2

µ0β0 + D2
µ0(β − β0)

) + q√
2

(
D2

µ2 + D2
µ−2

)
β0 γ.

(11)

Using the wave functions Eqs. (7) and (8) we get the relations

E
(
2+

1

)
B

(
E2; 0+

g.s. → 2+
1

) = h̄2q2

Brot
, (12)

E
(
2+

γ

)
B

(
E2; 0+

g.s. → 2+
γ

) = h̄2q2

Bγ

, (13)

E
(
2+

γ

)
B

(
E2; 0+

g.s. → 2+
γ

)
E

(
2+

1

)
B

(
E2; 0+

g.s. → 2+
1

) = Brot

Bγ

, (14)

where we have neglected a small contribution [second term in
Eq. (11) of the rotational energy term of the Hamiltonian in
the energy of the 2+

γ state]. The expressions of Eqs. (10) and
(14) are different from those obtained in [1] because of the
different forms of the Hamiltonians used.

The relations Eqs. (12) and (13) can be derived also using
a double commutator of the corresponding transition operator
with the Hamiltonian as in a derivation of the energy weighted
sum rules [8]. The electric quadrupole transition operator
Eq. (11) consists of the three terms

Q2µ = Qrot
2µ + Q

β

2µ + Q
γ

2µ, (15)

where

Qrot
2µ = qβ0D

2
µ0,

Q
β

2µ = q(β − β0)D2
µ0, (16)

Q
γ

2µ = qβ0
1√
2

(
D2

µ2 + D2
µ−2

)
γ.

The operator Qrot
2µ produces transitions only inside the rota-

tional bands, Q
β

2µ excites only the states of the β-band acting
on the states of the ground state band, Q

γ

2µ excites only the
states of the γ -band acting on the states of the ground state
band. Let us derive the relation Eq. (13). A derivation of
the relation Eq. (12) can be done in the same way. Using
the expression Eq. (3) for the kinetic energy term and the
expression Eq. (16) for Q

γ

2µ we obtain (see also [9])

∑
µ,µ′

C00
2µ2µ′

[[
H,Q

γ

2µ

]
,Q

γ

2µ′
] = − 2√

5

h̄2q2

Bγ

− 2√
5

h̄2q2

3Brot
γ 2,

(17)

where both the γ -vibrational and rotational terms in H

contribute to the right hand side of Eq. (17). Averaging this
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FIG. 1. (Color online) Evolution of
the values Pg.s. = E(2+

1 ) B(E2; 0+
1 →

2+
1 ) Z−2 A2/3 and Pγ = E(2+

γ ) B(E2; 0+
1 →

2+
γ ) Z−2 A2/3 given in the units keV e2 b2

over a range of isotopes. The average values
〈Pg〉 = 2.790 and 〈Pγ 〉 = 0.712 over all
considered isotopes are plotted as dotted lines.
The experimental data are taken from [16].

expression over the ground state wave function we get

E
(
2+

γ

)
B

(
E2; 0+

g.s. → 2+
γ

) = h̄2q2

Bγ

+ h̄2q2

Brot

〈
0+

g.s.

∣∣γ 2
∣∣0+

g.s.

〉
.

(18)

Neglecting by a small term proportional to 〈0+
g.s.|γ 2|0+

g.s.〉 we
obtain the relation Eq. (13).

III. THE “GRODZINS PRODUCTS” AND
THE MASS COEFFICIENTS

Equations (12) and (13) indicate that the “Grodzins prod-
ucts” for the ground band and the gamma band are inversely
proportional to the mass coefficients which in hydrodynamic
approach are slowly varying functions of the mass number
A and the charge number Z. This is well known for the
“Grodzins product” for the ground band. For the ground
band an empirical dependence of the product proportional to
Z2A−2/3 was established by Raman [10]. In the following we
put this dependence in the definition of a “modified Grodzins
products” Pg and Pγ :

Pg = E
(
2+

1

)
B

(
E2; 0+

g.s. → 2+
1

) · Z−2A2/3, (19)

Pγ = E
(
2+

γ

)
B

(
E2; 0+

g.s. → 2+
γ

) · Z−2A2/3. (20)

The experimental data for the products Eqs. (19) and (20)
are given in Fig. 1 and in Table I. Let us consider at first
the results presented in Fig. 1. It is seen that the value of
the product of the excitation energy and B(E2) for the
γ -band demonstrates a smooth dependence on the charge
Z and mass A numbers as the value for the 2+

1 state
although the relative fluctuations are larger. It is surprising that
the modified product E(2+

γ )B(E2; 0+
g.s. → 2+

γ ) · Z−2 · A2/3 is
approximately a constant. In this modified product for the
2+

γ state we use the same dependence on Z and A as was
suggested in [10] for the 2+

1 state. This constancy of the
considered product is well known for the 2+

1 state and was
considered by Grodzins [11] and Raman [10]. However, for
the 2+

γ [12] state there are much less data and the “Grodzins
product” was not considered (see, however, [1]). The observed

larger fluctuations of the product corresponding to the 2+
γ state

as compared to the 2+
1 state can be explained by a smaller

collectivity of the 2+
γ state. The relation Eq. (14) can be used

to obtain the ratio Bγ /Brot from the experimental data on the
energies and the E2 transition probabilities.

TABLE I. Experimental values of Pg.s. =
E(2+

1 ) B(E2; 0+
g.s. → 2+

1 ) Z−2 A2/3 and Pγ =
E(2+

γ ) B(E2; 0+
g.s. → 2+

γ ) Z−2 A2/3 given in the
units keV e2 b2 and the values of the ratio Bγ /Bror

calculated using the Eq. (14). The experimental data
are taken from [16].

Nucleus Pg.s. Pγ Bγ /Brot

152Sm 3.12(8) 0.70(3) 4.46
154Sm 2.63(8) 0.83(13) 3.17
156Gd 2.94(8) 0.96(3) 3.06
158Gd 2.86(8) 0.73(8) 3.92
160Gd 2.81(3) 0.70(5) 4.01
158Dy 3.07(13) 0.96(18) 3.2
160Dy 2.94(8) 0.75(5) 3.92
162Dy 2.89(8) 0.73(3) 3.96
164Dy 2.81(5) 0.57(5) 4.93
162Er 3.28(3) 0.94(8) 3.49
164Er 3.43(10) 0.78(8) 4.40
166Er 3.04(16) 0.75(5) 4.05
168Er 2.96(5) 0.62(3) 4.77
168Yb 3.15(10) 0.78(16) 4.04
170Yb 2.96(8) 0.55(13) 5.38
172Yb 2.99(3) 0.34(3) 8.79
176Yb 2.81(10) 0.42(5) 6.69
174Hf 2.39(13) 1.01(47) 2.37
176Hf 2.96(10) 0.94(13) 3.15
178Hf 2.68(8) 0.83(10) 3.23
180Hf 2.68(8) 0.86(13) 3.12
230Th 1.98(8) 0.44(16) 4.5
232Th 1.92(10) 0.44(5) 4.36
234U 1.95(8) 0.52(8) 3.75
238U 2.50(3) 0.65(3) 3.85
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The large deviation of the ratio Bγ /Brot from unity was
already discussed in our previous paper [1], however, a smaller
set of data has been used there and also a different form of the
kinetic energy term of the total Hamiltonian has been used.
As a consequence the values of the ratio Bγ /Brot presented in
Table I are different from those given in [1].

To get some explanation of the fact that the ratio Bγ /Brot

deviate so strongly from unity we have estimated the value
of this ratio based on the cranking model expressions for the
mass coefficients. We used a technique suggested by Migdal
in his paper on the nuclear moment of inertia [13]. Details
of calculations are given in Appendix B. We have obtained
the value 4.3 for the average ratio Bγ /Brot which agrees
with the values presented in Fig. 1 and Table I. The main
sources of a deviation of Bγ /Brot from unity are the rather
large value of the frequency of γ -vibrations and the difference
in the characteristic energies of the most important transitions
produced by the operators jx and ∂/∂a22.

IV. SUMMARY

Considering the experimental data for the energies and the
E2 reduced transition probabilities for the 2+

1 and 2+
γ states

in the well deformed axially symmetric nuclei we have shown
that the mass coefficients for the rotational and γ -vibrational
motion are significantly different. A simplified estimate of the
ratio Bγ /Brot obtained using the cranking model expression
for the mass coefficients is in agreement with the experimental
data. Thus, even for nuclei in the middle of the rare earth
region which are axially symmetric and have small fluctuations
in β and γ the usual assumption of a single constant mass
coefficient does not work. These nuclei can be described
correctly, however, with a form of Bohr Hamiltonian with
different but constant values for mass coefficients for the
ground and γ bands [see Eqs. (3) and (4)]. An analysis of
the kinetic energy term for the Bohr Hamiltonian given in the
intrinsic frame shows that an inclusion into consideration of
not only scalar but also other components of the mass tensor
can explain the difference in the values of the mass coefficients
for the γ -vibrations and the ground state rotations.

The description of the β-band must be still considered as
an open problem in this respect. It is shown on the basis of
the experimental data that the product E(2+

γ )B(E2; 0+
g.s. →

2+
γ ) · Z−2A2/3 which is the analog of the Grodzins product for

the first 2+ state is nearly a constant as it was found for the
2+

1 state. However, the existing set of experimental data for
the 2+

γ state is much smaller than for the 2+
1 state. By using

modern equipment like radioactive beams and or advanced
spectrometers experiments should be feasible which would
extend our knowledge about a Grodzins product for the γ -band
from 20 to about 40 nuclei in the rare earth and from 4 to about
20 nuclei in the actinide regions.
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APPENDIX A

In order to obtain the expressions for the mass coefficients
corresponding to β, γ and rotational motion we should
transform the kinetic energy term Eq. (1) into the intrinsic
frame. In terms of β, γ and the Euler angles the collective
coordinate α2µ is expressed as

α2µ = β

((
D2

µ0

)∗
cos γ + 1√

2

((
D2

µ2

)∗ + (
D2

µ−2

)∗)
sin γ

)
.

(A1)

Using several relations from [6,14] we obtain after lengthy
but straightforward calculations the following expressions for
∂/∂α2µ in terms of the intrinsic variables:

∂

∂α2µ

=
(

D2
µ0 cos γ + 1√

2

(
D2

µ2 + D2
µ−2

)
sin γ

)
∂

∂β

+ 1

β

(
−D2

µ0 sin γ + 1√
2

(
D2

µ2 + D2
µ−2

)
cos γ

)
∂

∂γ

+ 1

2β sin
(
γ + π

3

) 1√
2

(
D2

µ1 + D2
µ−1

)
L̂1

+ ı

2β sin
(
γ − π

3

) 1√
2

(
D2

µ1 − D2
µ−1

)
L̂2

+ 1

2β sin γ

1√
2

(
D2

µ2 − D2
µ−2

)
L̂3, (A2)

where L̂i is the projection of the angular momentum on the
intrinsic axis i. Substituting Eq. (A2) into Eq. (1) and using
the following representation for the components of the mass
tensor:

(B−1)lab
LM = DL

M0(B−1)int
L0 + 1√

2

(
DL

M2 + DL
M−2

)
(B−1)int

L2

+ 1√
2

(
DL

M4 + DL
M−4

)
(B−1)int

L4, (A3)

where (B−1)int
LK in general case depends on β and γ , we

obtain an expression for the kinetic energy term which is more
complicated than the one with a constant mass coefficient and
contains in addition some terms linear in derivatives ∂/∂β and
∂/∂γ . Taking the coefficients at the second order derivative
∂2/∂γ 2 and at L̂2

1, L̂
2
2, L̂

2
3 we obtain the expressions for the

mass coefficients corresponding to γ -motion and rotations.
For the case of an axial symmetry, when we put γ = 0, they
are

1

Bβ

= (B−1)int
00 −

√
10

7
(B−1)int

20 + 3

√
2

7
(B−1)int

40, (A4)

1

Bγ

= (B−1)int
00 +

√
10

7
(B−1)int

20 + 1

2

√
2

7
(B−1)int

40, (A5)

1

Brot
= (B−1)int

00 − 1

2

√
10

7
(B−1)int

20 − 2

√
2

7
(B−1)int

40 . (A6)
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If only a scalar (B−1)int
00 is taken into account then all three

mass coefficients coincide.

APPENDIX B

The cranking model expressions for the moment of inertia
� and for the mass coefficient of the γ -motion corrected by
taking into account a finite value of ωγ are

� = 2h̄2
∑

k

|〈k|[H, jx]|gs〉|2
(Ek − Eg.s.)3

, (B1)

Bγ = 2h̄2
∑

k

|〈k|[H, ∂/∂a22]|g.s.〉|2(Ek − Eg.s.)(
(Ek − Eg.s.)2 − h̄2ω2

γ

)2 , (B2)

where |k〉 is an excited state, (Ek − Eg.s.) is the excitation
energy of this state and a22 is a collective variable describing a
deviation from axial symmetry. Approximating H by a single
quasiparticle Hamiltonian

H = Hspher − βh̄ω0r
2Y20 − a22h̄ω0r

2 1√
2

(Y22 + Y2−2)

−	(A+
00 + A00), (B3)

where Hspher is the spherically symmetric shell model Hamil-
tonian, 	 is the energy gap and A+

00(A00) is the nucleon pair

creation (annihilation) operator, we obtain

[H, jx] = βh̄ω0

√
3r2 1√

2
(Y21 + Y2−1), (B4)

[H, ∂/∂a22] = h̄ω0r
2 1√

2
(Y22 + Y2−2). (B5)

Substituting Eqs. (B4) and (B5) into Eqs. (B1) and (B2) and
using a hydrodynamic expression for the moment of inertia
� = 3Brotβ

2 we get

Brot = 2h̄2(h̄ω0)2
∑

k

|〈k| 1√
2
(q21 + q2−1)|gs〉|2

(Ek − Eg.s.)3
, (B6)

Bγ = 2h̄2(h̄ω0)2
∑

k

|〈k| 1√
2
(q22 + q2−2)|g.s.〉|2(Ek − Eg.s.)(
(Ek − Eg.s.)2 − h̄2ω2

γ

)2 .

(B7)

Let |k〉 be a two-quasiparticle state |st〉 where s and t are
quantum numbers of the single quasiparticle states. Following
the procedure outlined in [15] (p. 14) we obtain

〈st | 1√
2

(q22 + q2−2)|gs〉

= 〈s| 1√
2

(q22 + q2−2)|t〉(usvt + (−1)µvsut ), (B8)

where us, vs are coefficients of the u, v Bogoliubov transfor-
mation. Substituting Eq. (B8) and the expressions for us, vs

into Eqs. (B6) and (B7) we obtain

Brot = 2h̄2(h̄ω0)2
∑
st

∣∣∣〈s| 1√
2
(q21 + q2−1)|t〉

∣∣∣2
(EsEt − (εs − λ)(εt − λ) − 	2)

2EsEt (Es + Et )3
, (B9)

Bγ = 2h̄2(h̄ω0)2
∑
st

∣∣∣〈s| 1√
2
(q22 + q2−2)|t〉

∣∣∣2
(EsEt − (εs − λ)(εt − λ) + 	2)(Es + Et )

2EsEt

(
(Es + Et )2 − h̄2ω2

γ

)2 , (B10)

where Es is a single-quasiparticle energy and (εs − λ) is a
single–particle energy. Let us introduce into consideration the
following function [13]:

L(±)
ω (εs − λ, εt − λ)

= (Es + Et )(EsEt − (εs − λ)(εt − λ) ± 	2)

2EsEt ((Es + Et )2 − h̄2ω2)2
. (B11)

With this function we have

Brot = 2h̄2(h̄ω0)2
∑
st

∣∣∣∣〈s| 1√
2

(q21 + q2−1)|t〉
∣∣∣∣
2

×L(−)
ω=0(εs − λ, εt − λ), (B12)

Bγ = 2h̄2(h̄ω0)2
∑
st

∣∣∣∣〈s| 1√
2

(q22 + q2−2)|t〉
∣∣∣∣
2

×L(+)
ωγ

(εs − λ, εt − λ). (B13)

At fixed εs − εt = d L(±)
ω (εs − λ, εt − λ) has a maximum

when (εs − λ) + (εt − λ) = 0 of a width of an order of 	.
This restrict the values of εs and εt contributing to the sum. It
is assumed below that there is enough single-particle states
satisfying this condition. For L(−) the value d = 0 should
be excluded. The most important single-particle transitions
contributing to Brot have εs − εt = h̄(ω2 − ω3) = δh̄ω0 [7]
corresponding to a shift of the oscillator quantum number
from a direction of the third to the direction of the second axis
because 	K = 1 and

1√
2

(q21 + q2−1) ∼ ((
b+

z by + b+
y bz

) + (
b+

z b+
y + bybz

))
.

(B14)

The single-particle operator 1√
2
(q22 + q2−2) has the following

structure in terms of oscillator boson creation and annihilation
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operators:

1√
2

(q22 + q2−2) ∼ ((
b+

x bx − b+
y by

) + 1
2

(
b+

x b+
x − b+

y b+
y

+ bxbx − byby

))
. (B15)

Therefore the most important single-particle transitions con-
tributing to Bγ are related to the first term in Eq. (B15) and
have (εs − εt ) ≈ 0. As it is seen from Eq. (B14) the large
matrix elements of 1√

2
(q21 + q2−1) also connect states with

(εs − εt ) = 2h̄ω0 but in this case large energy denominators
significantly decrease a contribution of these matrix elements.
In that part of the single-particle space which is restricted by
the maxima of the functions L(±) we can fix a value of εt in
the argument of L(±).

Using these facts we can write

Brot = 2h̄2(h̄ω0)2
∑
st

∣∣∣∣〈s| 1√
2

(q21 + q2−1)|t〉
∣∣∣∣
2

×L(−)
ω=0(εs − λ, εs − λ + δh̄ω0), (B16)

Bγ = 2h̄2(h̄ω0)2
∑
st

∣∣∣∣〈s| 1√
2

(q22 + q2−2)|t〉
∣∣∣∣
2

×L(+)
ωγ

(εs − λ, εs − λ + d). (B17)
Summing over t in the limits of the width of max-
ima of the L(±) we can rewrite Eqs. (B16) and (B17)

approximately as

Brot ≈ 2h̄2(h̄ω0)2
∑

s

〈s|
∣∣∣∣ 1√

2
(q21 + q2−1)

∣∣∣∣
2

|s〉

×L(−)
ω=0(εs − λ, εs − λ + δh̄ω0), (B18)

Bγ ≈ 2h̄2(h̄ω0)2
∑

s

〈s|
∣∣∣∣ 1√

2
(q22 + q2−2)

∣∣∣∣
2

|s〉

×L(+)
ωγ

(εs − λ, εs − λ + d). (B19)

Now we can use the relations | 1√
2
(q21 + q2−1)|2 = 15

4π
z2y2 and

| 1√
2
(q22 + q2−2)|2 = 15

16π
(x2 − y2)2. For a rough estimate we

neglect the deformation of the density distribution and assume
a spherically symmetric radial density of the state s. Then〈∣∣∣∣ 1√

2
(q21 + q2−1)

∣∣∣∣
2
〉

≈
〈∣∣∣∣ 1√

2
(q22 + q2−2)

∣∣∣∣
2
〉

(B20)

and

Bγ

Brot
=

∑
s L(+)

ωγ
(εs − λ, εs − λ + d)∑

s L
(−)
ω=0(εs − λ, εs − λ + δh̄ω0)

. (B21)

Substituting in Eq. (B21) d = 0, δh̄ω0 = 2.3 MeV, h̄ωγ =
1 MeV and integrating over (εs − λ) instead of taking a sum
with a realistic single-particle level scheme we obtain as a
rough estimate Bγ /Brot ≈ 4.3.
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