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Staggering in γ -band energies and the transition between different structural symmetries in nuclei
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The experimental energy staggering in γ bands of rare earths and actinides exhibits three distinct patterns
as a function of angular momentum that are typical of well-deformed structural benchmarks: γ -soft for nuclei
situated between a vibrator and a deformed γ -soft structure, axially symmetric for those between a vibrator
and a rigid rotor, and triaxial γ -rigid for nuclei between a vibrator and a rigid triaxial rotor. The three patterns
are reproduced by appropriate special solutions of the Bohr Hamiltonian, as well as by interacting boson
approximation calculations. A particular quantity called S(4), which is proportional to the displacement of the
3+

γ level relative to the average of the 2+
γ and 4+

γ levels, can vary in magnitude and sign for different shapes and
is found to give a good indication of structure and the evolution of structure. A sudden change in the γ -band
staggering occurring between the vibrator and the axially symmetric rotor limits seems to be connected to the
known presence of a first-order phase/shape transition in this region.
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I. INTRODUCTION

When atomic nuclei deviate from spherical shapes, a
separation of body-fixed and laboratory-fixed (Euler angles)
coordinates is appropriate. The body-fixed shape has tra-
ditionally been described in terms of the variables β and
γ where the former specifies the ellipsoidal quadrupole
deformation and the latter the degree of axial asymmetry.
The importance of the γ degree of freedom in nuclei with
static quadrupole deformation has been known for decades.
It has been an essential element of geometric and algebraic
collective models and is being taken into account more and
more in microscopic theories based on the mean-field and
residual interactions. In this article, we address the former
macroscopic models and compare experimental results with
collective model predictions for observables relating to energy
levels sensitive to the γ dependence of the potential.

In terms of the geometric collective model, early work cen-
tered around three basic forms of the potential for the γ degree
of freedom. An axially symmetric potential was considered by
Bohr and Mottelson [1] using a harmonic oscillator potential
with a minimum at γ = 0◦, yielding predictions for the axially
symmetric deformed rotor. Deviations from axial symmetry
have frequently been described by two distinct approaches.
Wilets and Jean [2] incorporated a γ -independent potential
(one completely flat in the γ degree of freedom) giving the
well known γ -soft structure, whereas Davydov, Filippov, and
Chaban [3,4] considered a harmonic oscillator potential with
a minimum at finite values of γ to develop predictions for a
rigid triaxial rotor.
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To distinguish the above potentials empirically, a useful
quantity that is often known experimentally or is easy to
measure in new nuclei is the energy staggering in the quasi-γ
band. This staggering has long been considered as a key
signature [5] of the γ dependence of the potential because,
being a differential quantity, it is a very sensitive measure of
the energy spacing. For example, the energy levels of the γ

band in a γ -independent potential cluster as (2+
γ ), (3+

γ , 4+
γ ), . . .

opposite to the rigid triaxial rotor (2+
γ , 3+

γ ), (4+
γ , 5+

γ ), . . .
clustering pattern. The evolution of the γ -band staggering
between the above two limits has been investigated in the
A ∼ 100–130 mass region (see, for example, Refs. [6,7]), as
well as more globally in Ref. [5]. However, the models usually
considered in this context—either of rigid triaxial or γ -soft
type—do not exhaust the possibilities. A broader perspective
reveals a more complete understanding of staggering and its
relation to the underlying potential.

In this article, three categories of transitional regions are
considered:

(i) The γ -soft region between the vibrator and a deformed
γ -soft structure where the potential is γ independent.
This corresponds to the U(5) to O(6) transition region
in the language of the interacting boson approximation
(IBA) [8]. This is the region containing the critical point
symmetry E(5) [9], as well as where a second-order phase
transition [10] occurs in the IBA between U(5) and O(6).

(ii) The axially γ -rigid region between the vibrator and the
axially symmetric rotor, characterized by a harmonic
oscillator in γ with the minimum in γ close to zero.
This is the U(5) to SU(3) transition region of the IBA,
in which a first-order phase transition occurs [10]. This
is also the region that has been described by the critical
point symmetry X(5) [11].

(iii) The triaxial γ -rigid region between the vibrator and the
rigid triaxial rotator, characterized by fixed γ values
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between 0◦ and 30◦, which has no direct analog in the
framework of IBA-1 [8].

In this article, we will show that the experimental energy
staggering in the quasi-γ band for collective even-even nuclei
exhibits three clearly distinct patterns as a function of angular
momentum in these three regions. It is then examined to
what extent these patterns are reproduced by several special
solutions of the Bohr Hamiltonian, incorporating different
forms for the potential in the γ degree of freedom, as well
as by the IBA. Finally, we will show that the analysis of
the staggering across an isotopic chain can be a direct and
simple method for understanding the evolution of structure
and also possibly provide an indicator for phase-transitional
behavior.

The geometrical models we consider are based on the
above-mentioned E(5) [9] and X(5) [11] special solutions
of the Bohr Hamiltonian. In the E(5) case, the potential is
independent of γ with u(β, γ ) = u(β), whereas in X(5) it
has the form u(β, γ ) = u(β) + u(γ ), with u(γ ) taken as a
harmonic oscillator centered at γ = 0◦. In both cases the
simple ansatz of approximating u(β) at the critical point by
an infinite square-well potential is employed. Incorporating
this potential in the Bohr Hamiltonian yields parameter-
free (except for scale) predictions for both energies and
electromagnetic transition strengths. The realization that such
a simple approximation of the potential describes rather well
the properties of several nuclei [12–15] has sparked renewed
interest in additional simple models to describe a richer array
of structures spanning from spherical to deformed shapes.
Keeping with the spirit of X(5) and E(5), these models are
either parameter-free variants of X(5)/E(5) or incorporate a
potential with a single free parameter.

The number of these new geometrical models is quite
large and the list continues to grow. Here we discuss only
a subset. The infinite square-well potential can be replaced
by a potential involving powers of β(u(β) = β2n/2, where
n is an integer) giving the so-called X(5)-β2n models [16]
and E(5)-β2n models [17,18]. These describe structures that
span from the vibrational-like region up to the X(5) and E(5)
solutions with increasing values of n.

In the original X(5) solution, the separation of the β and
γ variables is approximate. An exact separation of variables
can be achieved by considering a potential of the form [2]

u(β, γ ) = u(β) + u(γ )

β2
. (1)

Taking the potential in the γ degree of freedom to be u(γ ) =
(3c)2γ 2/2 and u(β) to be either an infinite square well or
a harmonic oscillator in β gives the exactly separable X(5)
model [ES-X(5)] and the exactly separable X(5)-β2 model
[ES-X(5)-β2] [19], respectively. The spectra of most deformed
nuclei can be reproduced for c values ranging from 2 to 20.

Special solutions of the Bohr Hamiltonian that give predic-
tions for triaxial structures include the Z(4) [20] and Z(5) [21]
models. In both of them, an infinite square-well potential in the
β degree of freedom is used: in Z(4) the γ degree of freedom is
frozen to γ = 30◦, and in Z(5) a harmonic oscillator potential
in γ with a rigid minimum at γ = 30◦ is used.

II. γ -BAND ENERGY STAGGERING PATTERNS AS A
FUNCTION OF ANGULAR MOMENTUM

Odd-even staggering in γ bands will be studied using the
quantity [5]

S(J )

= {E(J+
γ ) − E[(J − 1)+γ ]} − {E[(J − 1)+γ ] − E[(J − 2)+γ ]}

E(2+
1 )

,

(2)

which measures the displacement of the (J − 1)+γ level relative
to the average of its neighbors, J+

γ and (J − 2)+γ , normalized
to the energy of the first excited state of the ground band, 2+

1 .
Because S(J ) is of (discrete) derivative form, it is very sensitive
to structural changes. Figure 1 shows the low-lying ground
band and γ -band levels for a vibrator, an axially symmetric
deformed rotor, a deformed γ -soft structure, and a rigid triaxial
rotor along with the corresponding values for S(4) and the
trends in S(J ). Each of these limits can be discussed in terms
of some basic overall predictions for S(J ). In both the vibrator
and γ -soft limits, a similar clustering of the γ -band levels is
predicted resulting in an oscillating behavior in S(J ) that is
negative for even spin and positive for odd spin. The overall
magnitude of S(J ) is larger in the γ -soft limit and increases
gradually with spin compared with the vibrator predictions that
are smaller in magnitude and constant. For a triaxial potential,
the level clustering is opposite, again giving oscillatory values
of S(J ) but with an opposite phase, namely positive for even
spin and negative for odd spin. As a function of increasing
spin, the S(J ) values increase rapidly. In the limit of an
axially symmetric deformed rotor (harmonic oscillator with
a minimum at γ = 0◦), the S(J ) values are positive, small,
and constant as a function of spin.

A. Experimental systematics

Analysis of the experimental staggering in different isotopic
chains reveals several different patterns. We first categorize
these based on the standard limits discussed above, then
compare the observed systematics to the predictions of more
flexible geometrical and algebraic models to describe a wider
range of structures.

The Xe, Ba, and Ce isotopes are well-known examples
[7,22,23] of the transition between vibrational and γ -soft
structures and 134Ba was the first example [12] found for E(5).
The staggering for the Xe, Ba, and Ce isotopes, traditionally
associated with a γ -independent potential, is given in Fig. 2.
All of these nuclei show strong staggering, with negative S(J )
values at even J and positive values at odd J .

The heavy rare-earth nuclei (N > 82), however, are well
established to display axially symmetric behavior. In addition,
150Nd [14], 152Sm [13], 154Gd [25], and 156Dy [26] have
been proposed as good candidates for the X(5) critical point
symmetry. The staggering for the Sm-Er isotopes is shown in
Figs. 3(a)–3(e). For the sake of clarity, we separate the chains
into a few distinct groups. Fig. 3(a) illustrates the staggering
pattern for the more vibrational-like (R4/2 < 2.8) nuclei. These
nuclei again show a staggering pattern where S(J ) is negative

024306-2



STAGGERING IN γ BAND ENERGIES AND THE . . . PHYSICAL REVIEW C 76, 024306 (2007)

FIG. 1. Comparison of the energy spacings
in the ground and γ band for a vibrator, axially
symmetric rotor, γ -soft structure, and triaxial
rotor. Included are the corresponding S(4) values
and general trends in S(J ).

at even J values and positive for odd J values, with a smaller
overall magnitude than that observed in the Xe, Ba, and Ce
isotopes.

The staggering in the Sm and Gd isotopes is given in
Fig. 3(b) and 3(c). The heavier Sm and Gd isotopes, 154Sm
and 158,160Gd, exhibit more or less constant and very small
values of S(J ), between ∼0.0 and 0.30. The nuclei 152Sm
and 154,156Gd, however, each show a much more pronounced
oscillatory pattern in S(J ). Still, comparison with the Xe, Ba,
and Ce isotopes shows that the overall magnitude is much
smaller.

Figures 3(d) and 3(e) give the staggering in the Dy and
Er isotopes, respectively. For lower J values (J � 7), the
staggering is small and more or less constant, with S(J )
ranging from ∼0.1 to 0.3. For some of these isotopes, 160,162Dy
and 162,164Er, the staggering begins to grow larger for higher
spin states (J � 8) and takes on a more pronounced oscillatory
behavior. For completeness, the staggering for a few actinides
where data are available is given in Fig. 3(f). These nuclei
display very little change in S(J ) with increasing spin, with
S(J ) values remaining constant around +0.3.

Nuclei that display staggering patterns very different from
those described above are scarce but include 112Ru, 170Er,
192Os, 192Pt, and 232Th, as shown in Fig. 4. For J > 5, these
nuclei develop a staggering pattern where S(J ) is positive for
even J and negative for odd J values. We note that the above
list does not constitute a complete survey of all experimental
data for such patterns, but merely highlights some select nuclei
where such behavior has been observed.

B. Geometrical models

We now turn to the predictions of the geometrical models
to determine if the observed staggering patterns can indeed

be associated with different forms of the potential in the
γ degree of freedom. Predictions from several geometrical
models are summarized in Fig. 5. These fall into the three
distinct categories given in the introduction. Figure 5(a) gives
the staggering for those models that utilize a γ -independent
potential. These models predict strong staggering with nega-
tive S(J ) values at even J and positive values at odd J . The
absolute values of S(J ) increase when going from the vibrator
limit to the γ -soft limit. In between one finds the critical point
symmetry E(5), as well as the E(5)-β2n models (n = 2, 4). The
E(5)-β2 model coincides with the vibrational limit.

It is clear that the staggering observed in the Xe, Ba,
and Ce nuclei closely resembles the staggering pattern for
a γ -independent potential found in Fig. 5(a). In some cases,
the overall magnitude observed in the data is similar to the
geometrical model predictions, as in the Ba isotopes, Fig. 2(b).
For the Xe and Ce isotopes, however, the absolute values of
S(J ) are slightly smaller than the model predictions.

Figure 5(b) shows those models that incorporate rigid
triaxiality in the γ degree of freedom. Strong staggering is
observed but with the opposite phasing, namely positive values
for even J and negative values for odd J . The magnitude of
the staggering is also larger, by about a factor of 2, than what
is observed for the γ -independent potential. The staggering
is largest for the Davydov model where it increases linearly
with J . It is smallest for the Z(5)-β2 and Z(4)-β2 models, in
which a harmonic oscillator β2 potential is used instead of the
infinite square-well potential. Intermediate lie the predictions
of the Z(4) and Z(5) models. The staggering pattern observed
in all the models in Fig. 5(b) is a hallmark for triaxiality [3].

Isolated cases of possible empirical triaxial behavior can
be seen in Fig. 4. For J > 5, these nuclei begin to
exhibit a staggering pattern similar to that of the triaxial
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S(J) large, minima at even J
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FIG. 2. (Color online) Experimental S(J ) [Eq. (2)] for several
(a) Xe, (b) Ba, and (c) Ce isotopes. Data were taken from Ref. [24].

model predictions, although the overall magnitudes are much
smaller.

Finally, in Fig. 5(c), several models that use a harmonic
oscillator in the γ degree of freedom with minimum at γ = 0◦
are given. These models exhibit a very different behavior: the
staggering does not show an oscillatory pattern but has only
positive values of S(J ) for all spin values. These values are
also much smaller than the previous model predictions shown
in Figs. 5(a) and 5(b). The inset to Fig. 5(c) illustrates the
staggering pattern if the same scale as Fig. 5(a) were used. The
smallest values of S(J ) are seen in the X(5)-β2 model. With
increasing powers of β, the S(J ) values increase, reaching a
value of ∼0.15 for the X(5) solution. The solutions ES-X(5)
and ES-X(5)-β2 lie in between the X(5) predictions and the
rigid rotor value of 0.33. Also, there is only a small dependence
on the parameter c, which is a measure of the stiffness of the
potential in γ . For example, in the case of ES-X(5)-β2, values
of the parameter c of 5.0 and 15.0 give S(4) values of 0.21

and 0.23, respectively. To provide some feeling for how the
magnitude of c varies the stiffness of the potential, the above
example corresponds to E(2+

γ )/E(2+
1 ) ratios of 6.8 and 19.2,

respectively.
Perhaps the best examples of the behavior seen in

Fig. 5(c) correspond to the actinide region. The staggering
patterns observed in the actinides, Fig. 3(f), most closely
resemble the predictions for an axially symmetric potential.
The deformed Dy and Er isotopes also exhibit staggering
patterns similar to what is expected for an axially symmetric
potential, particularly at lower J values (J � 7). In the case
of 160,162Dy and 162,164Er, the staggering resembles an axially
symmetric potential at low spin, then appears to change to
vibrational-like for higher spin states (J � 8).

The oscillatory pattern in S(J ) observed in 152Sm and
154,156Gd at first appears inconsistent with the axially sym-
metric model predictions given in Fig. 5(c). An oscillatory
pattern in S(J ), similar to the one seen in 152Sm and
154,156Gd, however, can be obtained in the exact numerical
diagonalization of the Bohr Hamiltonian with an infinite square
well potential in β and a harmonic oscillator potential in γ

provided by Caprio [27] for a parameter value that yields
results which resemble the predictions of X(5), of which 152Sm
and 154Gd are known to be good examples. For example, for a
parameter value of a = 200 (where a is again a measure of the
stiffness of the potential in γ and related to the parameter c by
c =

√
a

3 ), the exact numerical diagonalization yields S(4), S(5),
and S(6) values of −0.16, +0.46, and −0.31, respectively.
These are very similar to the S(J ) values observed in
152Sm.

C. Interacting boson approximation model

The idealized geometrical models discussed thus far pro-
vide a reasonable qualitative classification of the staggering
patterns in the nuclei outlined above. We now consider the
predictions of a more flexible model incorporating a few free
parameters that can span a variety of structures continuously.
Here we use the IBA model where calculations are performed
using the usual two-parameter IBA-1 Hamiltonian [28,29]

H (ζ, χ ) = C

[
(1 − ζ )n̂d − ζ

4NB

Q̂χ · Q̂χ

]
, (3)

where n̂d = d† · d̃, Q̂χ = (s†d̃ + d†s) + χ (d†d̃)(2), NB is the
number of valence bosons, and C is a scaling factor. The
above Hamiltonian contains two parameters, ζ and χ , with
the parameter ζ ranging from 0 to 1, and the parameter χ

ranging from 0 to −√
7/2 = −1.32. The three benchmarks

of structure, harmonic vibrator, deformed axially symmetric
rotor and γ -soft shapes correspond to the IBA dynamical
symmetries U(5), SU(3), and O(6), respectively. In this
parametrization, the IBA dynamical symmetries are given by
ζ = 0, any χ for U(5), ζ = 1, χ = −√

7/2 for SU(3) and
ζ = 1, χ = 0 for O(6). With this form of the IBA Hamiltonian,
the minimum in the potential is always at γ = 0◦. The depth
and sharpness of the potential is largest for χ = −√

7/2,
gradually decreasing as |χ | decreases until χ = 0, where the
potential becomes totally independent of γ .
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S(J) small: weak minima mostly at even J
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FIG. 3. (Color online) Experimental S(J ) [Eq. (2)] for (a) some vibrational rare-earth nuclei, (b) Sm, (c) Gd, (d) Dy, (e) Er, and (f) U and
Fm isotopes. Data were taken from Ref. [24].

minima at odd J
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FIG. 4. (Color online) Experimental S(J ) [Eq. (2)] for 112Ru,
170Er, 192Os, 192Pt, and 232Th that shows the staggering associated
with triaxial shapes. Data were taken from Ref. [24].

We comment briefly on how the 2+
γ state is assigned in the

IBA calculations. Determining the state that corresponds to
the γ band along two legs of the symmetry triangle [30] of
the IBA, U(5) to O(6) and SU(3) to O(6), is straightforward
because in both cases the γ band lies below the 2+ member
of the excited 0+ sequence [except in SU(3) where the
two are degenerate]. Identification of the 2+

γ state along the
U(5)-SU(3) transition is somewhat more challenging because
the excited 2+ states switch character along the transition.
In the present analysis, we assign the 2+

γ state based on the
quadrupole moment. For example, for NB = 10 and a ζ value
of 0.40, the quadrupole moments of the first three 2+ states
are Q(2+

1 ) = −4.1,Q(2+
2 ) = +1.5, and Q(2+

3 ) = −3.2. For a
deformed nucleus, the spectroscopic quadrupole moment of
the γ band has the opposite sign as those for K = 0 bands,
suggesting that the 2+

2 level corresponds to the 2+
γ level.

This is confirmed by the band structure that is clear from
a conventional assignment according to the B(E2) values.
The situation is also clear for large ζ values where 2+

3 is
assigned as 2+

γ because the corresponding quadrupole moment
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FIG. 5. (Color online) (a) Staggering S(J ) [Eq. (2)] for the
vibrator and γ -soft limits, the E(5) critical point symmetry [9], and
the E(5)-β2n (n = 2, 4) models [17,18]. (b) Same for the Davydov
model [3], the Z(5) [21] and Z(4) [20] models, as well as for their
analogs Z(5)-β2 and Z(4)-β2. (c) Same for the axially symmetric rotor
limit, the X(5) critical point symmetry [11], the X(5)-β2n (n = 1, 2)
models [16], and the exactly separable models ES-X(5)-β2 (c = 15)
and ES-X(5) (c = 10) [19], where the parameter c is related to the
stiffness of the γ potential [V (γ ) = (3c)2γ 2/2].

is positive. For example, for ζ = 0.60 the quadrupole moments
are Q(2+

1 ) = −7.2,Q(2+
2 ) = −4.4, and Q(2+

3 ) = +4.1 There
is only a small range of ζ values (ζ ∼ 0.5) where the excited
2+ states are significantly mixed and their assignment based
on B(E2) values is difficult. In this case, we again assign 2+

γ

based on the sign of the quadrupole moment.
Results of IBA calculations using the Hamiltonian of

Eq. (3) are seen in Fig. 6. For the transition from U(5) to
O(6), corresponding to χ = 0 and ζ varying from 0 to 1, an
identical staggering pattern to the one observed in Fig. 5(a) is
seen, consistent with a γ independent potential. Moving from
U(5) to O(6), the magnitude of S(J ) increases, in agreement
with the geometrical model predictions in Fig. 5(a). Along
the transition from SU(3) to O(6), achieved for ζ = 1 and χ
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FIG. 6. Staggering S(J ) [Eq. (2)] from IBA [8] calculations with
the Hamiltonian of Eq. (3). Included are calculations for (a) the U(5)–
O(6) transition, (b) the SU(3)–O(6) transition, and (c) the U(5)–SU(3)
transition. Calculations are for 10 bosons.

varying between −1.32 and 0, a transition from the SU(3)
behavior of Fig. 5(c) to the O(6) behavior of Fig. 5(a) is seen.
For large |χ |, the staggering is small and more or less positive.
As χ → 0, the oscillatory pattern becomes more and more
pronounced.

Along the transition from U(5) to SU(3), obtained with
χ = −1.32 and ζ varying from 0 to 1, a U(5) like behavior,
similar to Fig. 5(a), is seen up to ζ ∼ 0.4, surprisingly jumping
over to a triaxial-like behavior similar to Fig. 5(b) for ζ ∼ 0.6.
For ζ > 0.8, the behavior predicted by the IBA starts to again
resemble the predictions of the axially symmetric geometrical
models given in Fig. 5(c). The tendency of developing minima
at odd J can potentially be detected in some of the rotational
nuclei given in Fig. 3, as, for example, in 156,158,164Dy and
166Er, albeit with much smaller oscillations in S(J ) than given
by the IBA, in addition to the already mentioned pronounced
cases of 170Er and 232Th.
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III. γ -BAND ENERGY STAGGERING, S(4), AS A
FUNCTION OF COLLECTIVE EVOLUTION

Having discussed how S(J ) varies as a function spin for
different structures, it is now useful to look at how a particular
signature, S(4), varies as a function of structure. We shall now
focus our attention on S(4) [Eq. (2)], the displacement of the
3+

γ state relative to the average of its neighbors, 2+
γ and 4+

γ ,

normalized to the energy of the 2+
1 state. We investigate how

S(4) changes for different structures using the energy ratio
R4/2 ≡ E(4+

1 )/E(2+
1 ) as a structural indicator where R4/2 =

2.0, 2.5, 3.33 for a vibrator, deformed γ -soft structure, and
axially symmetric rotor, respectively. In the standard symmetry
limits of the IBA, S(4) acquires the values −1 for U(5), −2
for O(6), +0.333 for SU(3). The corresponding values for the
geometrical models outlined in Sec. II B are essentially the
same for the corresponding geometrical potentials. A survey
of the experimental staggering, S(4), in the Z = 28–82 nuclei
and the comparison with E(5) symmetry is performed in
Ref. [31].

Results of IBA calculations with the Hamiltonian of Eq. (3)
for S(4) are shown as a function of the R4/2 ratio in Fig. 7.
A smooth evolution from U(5) to O(6), as well as from O(6)
to SU(3), is seen. In the U(5) to SU(3) case, a sudden jump
from large negative values in the vibrational limit to values
close to zero occurs around R4/2 ∼ 2.5. This sharp change is
associated with a changing structure of the excited 2+ states
in the IBA. As discussed previously, for small R4/2 values,
2+

2 can be associated with the quasi-γ band, whereas 2+
3 is a

member of the excited 0+
2 sequence. Beyond an R4/2 value of

2.5, the assignment of these two states reverses.
A more systematic IBA study of S(4) vs. R4/2 for different

values of χ is seen in Fig. 8. S(4) evolves smoothly for values
of χ down to −1, whereas a sudden jump to positive values
is obtained for χ = −1.15 and χ = −1.32 [close to the U(5)-
SU(3) leg of the symmetry triangle]. This rapid change in
S(4) occurs roughly in the region of R4/2 values between 2.4
and 2.6, which are the values corresponding to the X(3) [32]
and X(5)-β2 [16] models, found [33] to correspond to the left
and right border of the phase/shape transition region near the
U(5)-SU(3) leg of the IBA symmetry triangle. This suggests
that the sudden change in S(4) may be related to the first-order
phase/shape transition occurring between U(5) and SU(3): that
is, for intermediate R4/2 values between ∼2.2 and 3.1 the only
region where S(4) is predicted to be near zero is very close to
the phase/shape transition region in the IBA.

We return now to the predictions for S(4) in the different
geometrical models, looking at the results as a function of R4/2,
as shown in Fig. 9. The geometrical models that incorporate
a γ -independent potential, given in Fig. 9(a), show the same
linearly decreasing behavior as the IBA calculations moving
along the U(5)-O(6) leg of the symmetry triangle of the IBA
[Fig. 7(a)].

The triaxial models, given in Fig. 9(b), do not resemble any
of the results from the IBA calculations, evolving to larger and
larger positive S(4) values with increasing R4/2.

The models plotted in Fig. 9(c), involving a harmonic
oscillator potential in γ with a minimum at γ = 0◦, show some
similarities with the U(5)-SU(3) transition. Note that these
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(c)

U(5)-SU(3)

S(
4)

R4/2

2.0 2.1 2.2 2.3 2.4 2.5
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5
(a) U(5)-O(6)

S
(4

)

R
4/2

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5
(b)

O(6)-SU(3)
S(

4)

R4/2

FIG. 7. Staggering S(4) [Eq. (2)] vs. R4/2 = E(4+
1 )/E(2+

1 ) from
IBA [8] calculations with the Hamiltonian of Eq. (3) for (a) the U(5)–
O(6) transition, (b) the O(6)–SU(3) transition, and (c) the U(5)–SU(3)
transition. Calculations are for 10 bosons.

models start with predictions for a rather deformed structure
(R4/2 = 2.6). The trend here is a growing S(4) value with
increasing deformation, starting close to zero for R4/2 ∼ 2.6
and increasing to the rigid rotor limit. However, all these S(4)
values are very small.

We have seen that these models mirror, in general, the exper-
imentally observed classes of nuclei. However, further insight
can be obtained by considering to what extent the evolutionary
patterns in S(4) versus R4/2 given by the geometrical models
and the IBA are realized in actual nuclei. The smooth evolution
from U(5) (vibrator) to O(6) (γ -soft) seen in Figs. 7(a) and
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2.0 2.2 2.4 2.6 2.8 3.0 3.2
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

χ = -0.5
χ = -0.75
χ = -1.0
χ = -1.15
χ = -1.32

S(
4)

R
4/2

FIG. 8. (Color online) Staggering S(4) [Eq. (2)] for different
values of the IBA parameter χ vs. R4/2 = E(4+

1 )/E(2+
1 ) from IBA [8]

calculations with the Hamiltonian of Eq. (3). For each value of χ , the
curve corresponds to varying the parameter ζ from 0 to 1. Calculations
are for 10 bosons.

9(a), is manifested in the Xe and Ba isotopic chains shown in
Fig. 10(a). Although the linear decreasing trend is similar, the
overall magnitude of S(4) is observed to be less in the data
compared with the predictions of both the geometrical models
and the IBA.

The evolution from U(5) (vibrator) to SU(3) (axially
symmetric rotor) seen in Figs. 7(c) and 9(c) corresponds
to the Nd, Sm, Gd, Dy, and Er isotopic chains shown in
Fig. 10(b). For each of these isotopic chains, S(4) always is
small, consistent with the theory, and evolves from negative
values for the more vibrational nuclei, passing close to zero
for a single isotope along the chain and then increasing to
the rigid rotor limit of 0.33. For example, the sudden jump in
R4/2 from 2.19 to 3.02 in 152,154Gd and from 2.23 to 2.93 in
154,156Dy occurs together with a sudden jump of S(4) from low
negative to slightly positive values. It is clear that on the way
from U(5) [S(4)= −1] to SU(3) [S(4) = +0.333], S(4) has
to change sign. The data shown in Table I indicates that this

TABLE I. Experimental [24] energy ra-
tios R4/2 = E(4+

1 )/E(2+
1 ) and staggering S(4)

[Eq. (2)] for N = 90 isotones that are good
examples [13,14,25,26] of the critical point
symmetry X(5) [11] and their relevant neighbors,
exhibiting a change of the sign of S(4) at the
critical nucleus.

R4/2 S(4)

148Nd 2.493 −0.301
150Nd 2.929 +0.108
152Sm 3.009 −0.081
154Sm 3.254 +0.322
152Gd 2.194 −0.605
154Gd 3.015 +0.036
154Dy 2.233 −0.594
156Dy 2.934 +0.107
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S
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X(5)

X(5)-β2

(c)

S(
4)

R
4/2

FIG. 9. (a) Staggering S(4) [Eq. (2)] vs. R4/2 = E(4+
1 )/E(2+

1 )
for the vibrator, the E(5) critical point symmetry [9], the E(5)-β2n

(n = 2, 3, 4) models [17,18], as well as for the O(5)-CBS model [34]
with parameter values rβ = 0.15, 0.20, 0.25, and 0.30 and a γ -soft
structure. (b) Same for the Davydov model [3], the Z(5) [21] and
Z(4) [20] models, as well as for their analogs Z(5)-β2 and Z(4)-
β2. (c) Same for the axially symmetric rotor, the X(5) critical point
symmetry [11], the X(5)-β2n (n = 1, 2, 3, 4) models [16], and the
exactly separable models ES-X(5) and ES-X(5)-β2 [19] for different
values of the parameter c (5.0 and 15.0, 5.0, and 10.0, respectively),
related to the stiffness of the γ potential (V (γ ) = (3c)2γ 2/2).

change occurs in the neighborhood of the N = 90 isotones
150Nd, 152Sm, 154Gd, and 156Dy, which are known to be good
examples [13,14,25,26] of the X(5) critical point symmetry.
Thus, along the transition from vibrator to deformed axially
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FIG. 10. (Color online) Experimental staggering S(4) [Eq. (2)] vs.
R4/2 = E(4+

1 )/E(2+
1 ) for (a) Xe and Ba isotopes, including 120−134Xe

and 130−134Ba and (b) for Nd, Sm, Gd, Dy, and Er isotopes, including
148,150Nd, 152,154Sm, 152−160Gd, 154−166Dy, and 156−168Er. Data have
been taken from Ref. [24].

symmetric rotor, S(4) passing through or close to zero could
be an indicator of a phase-transition region.

IV. CONCLUSION

In the present work, the experimental energy staggering in
γ bands of several isotopic chains is investigated as a signature
for the γ dependence of the geometric potential. Three distinct
classes of energy staggering are found and discussed in
terms of structure. Staggering patterns are first considered
as a function of angular momentum. Strong staggering with
minima at even spin is observed in the Ba, Ce, and Xe
isotopes. The opposite behavior, strong staggering but with
minima at odd spin is observed in a handful of select nuclei.
Finally, the Sm-Er isotopes as well as the actinides are found
to have staggering patterns much smaller in magnitude and
for the most part rather constant in magnitude. Comparison
with both geometrical model predictions and IBA calculations
shows that the observed staggering patterns can be linked back
to the underlying form of the potential in the γ degree of
freedom.

The staggering quantity, S(4), is also investigated as a
function of collectivity (using the R4/2 ratio) along different
isotopic chains. The Xe and Ba isotopes exhibit decreasing
S(4) values as collectivity increases, similar in trend to both the
geometrical model and IBA predictions with a γ -independent
potential, but smaller in magnitude. In the Nd-Er isotopic
chains, S(4) increases with increasing collectivity. This is
consistent both in the trend and magnitude with the predictions
of both the geometrical models and the IBA. Furthermore,
the observed evolution of S(4) in the Nd-Er isotopic chains
suggests that phase transitional behavior may occur close to
where S(4) crosses zero.

ACKNOWLEDGMENTS

Work supported by U.S. DOE grant DE-FG02-91ER40609
and contract CEEX 05-D11-50 with the Romanian Authority
for Scientific Research.

[1] A. Bohr and B. R. Mottelson, Nuclear Structure: Nuclear
Deformations (World Scientific, Singapore, 1998), Vol. 2.

[2] L. Wilets and M. Jean, Phys. Rev. 102, 788 (1956).
[3] A. S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 (1958).
[4] A. S. Davydov and A. A. Chaban, Nucl. Phys. 20, 499 (1960).
[5] N. V. Zamfir and R. F. Casten, Phys. Lett. B260, 265 (1991).
[6] J. Stachel, N. Kaffrell, E. Grosse, H. Elming, H. Folger,

R. Kulessa, and D. Schwalm, Nucl. Phys. A383, 429 (1982).
[7] R. F Casten, P. von Brentano, K. Heyde, P. Van Isacker, and

J. Jolie, Nucl. Phys. A439, 289 (1985).
[8] F. Iachello and A. Arima, The Interacting Boson Model

(Cambridge University Press, Cambridge, 1987).
[9] F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).

[10] D. H. Feng, R. Gilmore, and S. R. Deans, Phys. Rev. C 23, 1254
(1981).

[11] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[12] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 85, 3584

(2000).
[13] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 87, 052503

(2001).

[14] R. Krücken et al., Phys. Rev. Lett. 88, 232501 (2002).
[15] A. Frank, C. E. Alonso, and J. M. Arias, Phys. Rev. C 65, 014301

(2001).
[16] D. Bonatsos, D. Lenis, N. Minkov, P. P. Raychev, and P. A.

Terziev, Phys. Rev. C 69, 014302 (2004).
[17] J. M. Arias, C. E. Alonso, A. Vitturi, J. E. Garcia-Ramos,

J. Dukelsky, and A. Frank, Phys. Rev. C 68, 041302(R)
(2003).

[18] D. Bonatsos, D. Lenis, N. Minkov, P. P. Raychev, and P. A.
Terziev, Phys. Rev. C 69, 044316 (2004).

[19] D. Bonatsos, D. Lenis, E. A. McCutchan, D. Petrellis, and
I. Yigitoglu, Phys. Lett. B649, 394 (2007).

[20] D. Bonatsos, D. Lenis, D. Petrellis, P. A. Terziev, and
I. Yigitoglu, Phys. Lett. B621, 102 (2005).

[21] D. Bonatsos, D. Lenis, D. Petrellis, and P. A. Terziev, Phys. Lett.
B588, 172 (2004).

[22] G. Puddu, O. Scholten, and T. Otsuka, Nucl. Phys. A348, 109
(1980).

[23] R. F. Casten and P. von Brentano, Phys. Lett. B152, 22 (1985).
[24] Nucl. Data Sheets, through Vol. 106 (2005).

024306-9



McCUTCHAN, BONATSOS, ZAMFIR, AND CASTEN PHYSICAL REVIEW C 76, 024306 (2007)

[25] D. Tonev, A. Dewald, T. Klug, P. Petkov, J. Jolie, A. Fitzler,
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