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Roles of tensor and pairing correlations on halo formation in 11Li
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We studied the roles of the tensor and pairing correlations on the halo formation in 11Li with an extended
9Li+n+n model. We first solved the ground state of 9Li in the shell-model basis by taking 2p-2h states using
the Gaussian functions with variational size parameters to take into account the tensor correlation fully. In 11Li,
the tensor and pairing correlations in 9Li are Pauli blocked by additional two neutrons, which work coherently to
make the configurations containing the 0p1/2-state pushed up and close to those containing the 1s1/2-state. Hence,
the pairing interaction works efficiently to mix the two configurations by equal amount and develop the halo
structure in 11Li. For 10Li, the inversion phenomenon of s- and p-states is reproduced in the same framework.
Our model furthermore explains the recently observed Coulomb breakup strength and charge radius for 11Li.
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I. INTRODUCTION

A pioneering secondary-beam experiment found that the
size of 11Li was surprisingly large, which was outside the
common sense of nuclear physics [1]. This large size was later
interpreted as due to the halo structure of two neutrons around
the 9Li core nucleus [2]. This finding, together with those
of others, motivated the nuclear physics community to start
a new research field for the study of unstable nuclei and to
build new facilities of radioactive ion beams (RIB) in several
laboratories, such as RIKEN, MSU, GSI, GANIL, and others.
Many experimental findings were shown later for 11Li: (a)
The halo neutrons have an almost equal amount of the s-wave
component with respect to the p-wave component [3]. (b)
The dipole strength distribution has a large enhancement near
the threshold [4]. (c) The charge radius is larger than that of
9Li [5,6].

The biggest puzzle from the theory side is the large s-wave
component for the halo neutrons. If we interpret this fact in
the shell model, the shell gap at N = 8 has to disappear.
However, the mean-field treatment of a central force is not
able to provide the disappearance of the N = 8 shell gap.
So far, there were many theoretical studies for 11Li [7–18]
and essentially all the theoretical works of 11Li had to accept
that the 1s1/2 single-particle state is brought down to the
degenerated energy position with the 0p1/2-state without
knowing its reason [9]. Therefore the real challenge for the
theoretician is to understand this disappearance of the N = 8
shell gap, called the s-p shell-gap problem, which is worked
out in this article by developing a framework to treat the
tensor force explicitly in the nucleon-nucleon interaction. The
halo structure of 11Li is also related with the 1s-state and the
0p-state in 10Li. Several experiments suggest that the dual
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states of the s1/2-state coupled to the 3/2− proton state appear
close to the threshold energy of 9Li+n together with the dual
states of the p1/2-state [19–21]. This property is known as
the inversion problem of s- and p-states seen in the N = 7
isotone [20].

The pairing correlation was considered important for the
s-p shell-gap problem [8,13]. The additional neutrons would
act to block the pairing correlation of the core when one
neutron in 10Li or two neutrons in 11Li are added in the
p-orbit [13,22,23]. Our calculations with this pairing-blocking
effect improve somewhat the descriptions of 10Li and 11Li, but
were not sufficient to explain the large s-wave component
in 11Li [13]. We also pointed out the different roles of the
pairing-blocking between 10Li and 11Li. We need a further
mechanism to explain the increase of the s-wave component
in 11Li.

The tensor force, however, plays an important role in the
nuclear structure. For example, the contribution of the tensor
force in the binding of 4He is comparable to that of the central
force [24,25]. The tensor correlation induced by the tensor
force was demonstrated to be important for the 4He+n system
[26–28]. In our recent study [29], we developed a theoretical
framework of the tensor-optimized shell model to treat the
tensor force in the shell-model basis explicitly, including 2p-2h
excitations. We found that the (0s1/2)−2(0p1/2)2 excitation of
proton-neutron pair has a special importance in describing
the tensor correlation in 4He [28–30]. In the 4He+n system,
because this 2p-2h excitation receives strong Pauli blocking
from the last neutron occupying the p1/2-orbit, a considerable
amount of the p1/2-p3/2 splitting energy in 5He is reproduced
[28]. This Pauli-blocking effect from the p1/2-orbit caused by
the tensor force should be present also for 11Li.

Hence, it is very interesting to study the effect of the
tensor correlation together with the pairing correlation for the
s-p shell-gap problem in 11Li. This is the purpose of this
article. To this end, we shall perform the configuration mixing
based on the shell-model framework for 9Li to describe the
tensor and pairing correlations explicitly. In particular, we pay
attention to the special features of the tensor correlation. For
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11Li, we shall solve the configuration mixing of the 9Li+n+n

problem that treats both correlations and investigate further
the Coulomb breakup strength of 11Li and other observables
to see the effect of these correlations. We also investigate the
inversion phenomena of 10Li considering the tensor and pairing
correlations.

II. MODEL

A. Coupled 9Li+n+n model of 11Li

We shall begin with the introduction of the model for 9Li,
whose Hamiltonian is given as

H (9Li) =
9∑

i=1

ti − tG +
∑
i<j

vij . (1)

Here, ti , tG, and vij are the kinetic energy of each nucleon,
the center-of-mass term, and the two-body NN interaction
consisting of central, spin-orbit, tensor, and Coulomb terms,
respectively. The wave function of 9Li(3/2−) is described in
the tensor-optimized shell model [28,29]. We express 9Li by a
multiconfiguration,

�(9Li) =
N∑
i

ai�
3/2−
i , (2)

where we consider up to the 2p-2h excitations within the
0p shell for �

3/2−
i in a shell-model-type wave function,

and N is the configuration number. Based on the previous
study of the tensor-optimized shell model [28,29], we adopt
the spatially modified harmonic oscillator wave function
(Gaussian function) as a single-particle orbit and treat the
length parameters bα of every orbit α of 0s, 0p1/2, and 0p3/2 as
variational parameters. This variation is shown to be important
to optimize the tensor correlation [28–31].

Following the procedure of the tensor-optimized shell
model, we solve the variational equation for the Hamiltonian
of 9Li and determine {ai} in Eq. (2) and the length parameters
{bα} of three orbits. The variation of the energy expectation
value with respect to the total wave function �(9Li) is given
by

δ
〈�|H (9Li)|�〉

〈�|�〉 = 0, (3)

which leads to the following equations:

∂〈�|H (9Li) − E|�〉
∂bα

= 0,
∂〈�|H (9Li) − E|�〉

∂ai

= 0. (4)

Here, E is the total energy of 9Li. The parameters {bα} for the
Gaussian bases appear in nonlinear forms in the total energy
E. We solve two kinds of variational equations in the following
steps. First, fixing all the length parameters bα , we solve the
linear equation for {ai} as an eigenvalue problem for H (9Li).
We thereby obtain the eigenvalue E, which is a function of
{bα}. Next, we try various sets of the length parameters {bα} to
find the solution that minimizes the energy of 9Li. In this wave
function, we can optimize the radial form of single-particle
orbit appropriately so as to describe the spatial shrinkage of

the particle state, which is important for the tensor correlation
[28–31].

For 11Li and 10Li, their Hamiltonians are written in terms
of 9Li+n+n and 9Li+n, respectively, and are given as

H (11Li) = H (9Li) +
2∑

k=0

Tk − T
(3)
G +

2∑
k=1

Vcn,k + Vnn, (5)

H (10Li) = H (9Li) +
1∑

k=0

Tk − T
(2)
G + Vcn, (6)

where H (9Li), Tk, T
(3)
G , and T

(2)
G are the internal Hamiltonian

of 9Li given by Eq. (1), the kinetic energies of each cluster (k =
0 for 9Li), and the center-of-mass terms of three- or two-cluster
systems, respectively. Vcn,k are the 9Li core-n interaction (k =
1, 2) and Vnn is the interaction between last two neutrons.
The wave functions of 11Li and 10Li with the spin J and J ′,
respectively, are given as

�J (11Li) =
N∑
i

A
{[

�
3/2−
i , χ

J0
i (nn)

]J }
, (7)

�J ′
(10Li) =

N∑
i

A
{[

�
3/2−
i , χ

J ′
0

i (n)
]J ′}

. (8)

We obtain the coupled differential equations for the neutron
wave functions χJ0 (nn) and χJ ′

0 (n), where J0 and J ′
0 are

the spins of the additional neutron part of 11Li and 10Li,
respectively. To obtain the total wave function �J (11Li) and
�J ′

(10Li), we actually use the orthogonality condition model
(OCM) [7,13,32] to treat the antisymmetrization between last
neutrons and neutrons in 9Li. In OCM, the neutron wave
functions χ are imposed to be orthogonal to the occupied
orbits by neutrons in 9Li, which depend on the configuration
�

3/2−
i in Eq. (2). We obtain the following coupled Schrödinger

equations with OCM for the set of the wave functions

{χJ0
i (nn)} for 11Li and {χJ ′

0
i (n)} for 10Li, where i = 1, . . . , N :

N∑
j=1

[(
T

(3)
rel +

2∑
k=1

Vcn,k + Vnn + �i

)
δij + hij (9Li)

]

×χ
J0
j (nn) = Eχ

J0
i (nn), (9)

N∑
j=1

[(
T

(2)
rel + Vcn + �i

)
δij + hij (9Li)

]

×χ
J ′

0
j (n) = Eχ

J ′
0

i (n), (10)

�i = λ
∑

α∈�i (9Li)

|ψα〉〈ψα|, (11)

where hij (9Li) = 〈�3/2−
i |H (9Li)|�3/2−

j 〉. T
(3)

rel and T
(2)

rel are the
total kinetic energies consisting of the relative motions for
11Li and 10Li, respectively. �i is the projection operator to
remove the Pauli forbidden states ψα from the relative wave
functions [23,33], where ψα is the occupied single-particle
wave function of the orbit α in 9Li. This �i depends on
the neutron occupied orbits in the configuration �

3/2−
i of 9Li

and plays an essential role to produce Pauli blocking in 11Li
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and 10Li, which is explained later. The value of λ is taken
large as 106 MeV in the present calculation to project out the
components of the Pauli forbidden states into an unphysical
energy region. Here, we keep the length parameters {bα} of
the single-particle wave functions as those obtained for 9Li.

We explain the method of treating the orthogonality
condition, including the particle-hole excitations of 9Li, in
more detail [13,28]. When the neutron orbit in 9Li is fully
occupied, the orthogonality condition for the last neutrons to
this orbit is given by �i in Eqs. (9) and (10). When neutron
orbits in 9Li are partially occupied, such as in the 2p-2h
states, the last neutrons can occupy these orbits with particular
probabilities, which are determined by the fractional parentage
coefficients of the total wave functions of 10,11Li consisting of
9Li and the last neutrons.

We describe the two neutron wave functions χ in Eq. (9)
for 11Li precisely in a few-body approach of the hybrid-TV
model [7,13,34];

χ
J0
i (nn) = χ

J0
i (nn, ξV ) + χ

J0
i (nn, ξT ), (12)

where ξV and ξT are V-type and T-type coordinate sets of
the three-body system, respectively. The radial part of the
relative wave function is expanded with a finite number of
Gaussian basis functions centered at the origin. We use at
most 15 Gaussian basis functions with the maximum range
parameter 30 fm to describe the loosely bound wave function
of neutron halo [32].

Here, we discuss the coupling between 9Li and the last
neutrons, whose details were already explained in the pairing-
blocking case [13,23,35]. We consider the case of 11Li. In
the present three-body model, the Pauli forbidden states for
the relative motion provide the Pauli-blocking effect caused
by the last two neutrons [13,23]. This blocking depends on
the relative distance between 9Li and the two neutrons and
changes the structure of 9Li inside 11Li, which is determined
variationally to minimize the energy of the 11Li ground
state. Asymptotically, when the last two neutrons are far
away from 9Li (ξV,T → ∞), the effects of antisymmetrization
and the interaction between 9Li and two neutrons vanish in
Eq. (9). Therefore, any coupling between 9Li and two neutrons
disappears and 9Li becomes its ground state. Namely the
mixing coefficients {ai} are the same as those obtained in
Eq. (2):

�J (11Li)−−−−−−→
ξV,T →∞

[�(9Li), χJ0 (nn)]J , (13)

�(9Li) =
N∑
i

ai�
3/2−
i . (14)

Therefore, it is easy to obtain the following asymptotic forms
of {χJ0

i (nn)} from the above two relations:

χ
J0
i (nn) −−−−−−→

ξV,T →∞
ai · χJ0 (nn), (15)

where i = 1, . . . , N . Equation (15) implies that the asymptotic
wave function of two neutrons χ

J0
i (nn) is decomposed into the

internal amplitude ai of 9Li and the relative wave function
χJ0 (nn). Equations (13)–(15) give the boundary condition of
the present coupled three-body model of 11Li. Contrastingly,

when the two neutrons are close to 9Li, the two neutrons dy-
namically couple to the configuration �

3/2−
i of 9Li, satisfying

the Pauli principle. This coupling changes {ai} of 9Li from
those of the 9Li ground state and makes the tensor and pairing
correlations differ from those in the isolated case. For 10Li, the
similar coupling scheme is considered. The dynamical effect
of the coupling arising from the Pauli blocking is explained in
detail under Results.

B. Effective interactions

We explain here the interactions employed in Hamiltonians
in Eqs. (1), (5), and (6). Before explaining the present
interactions, we give a brief review of the situation of the
treatment of the effective interactions for the study of 9,10,11Li.
As mentioned, most theoretical studies based on the three-body
model of 11Li employ the state-dependent 9Li-n potential
where only the s-wave potential is made deeper than other
partial waves [9], whereas the 9Li core is described as inert.
This state dependence in the 9Li-n potential is phenomenolog-
ically determined to satisfy the experimental observations of
a large s2 component and a two-neutron-separation energy of
11Li and a virtual s-state in 10Li, simultaneously. However,
for the nn part, the interaction having a mild short-range
repulsion [11,18] or the density-dependent one are often used
[8]. However, even in the microscopic cluster models using
a unique effective NN interaction consisting of the central
and LS forces [10,14], the s-p shell-gap problem in 11Li
and 10Li cannot be solved simultaneously. From these results,
we consider that the usual approach based on the effective
central and LS interactions may be insufficient to explain the
exotic structures of 10,11Li. For this problem, even the so-called
ab initio calculations using the realistic NN interactions, such
as Green’s function Monte Calro [36], do not provide good
results for 11Li.

In this study, we focus on the tensor correlation, which is
newly considered to figure out the s-p shell-gap problem. To
do this, we extend the three-body model of 11Li to incorporate
the tensor correlation fully, in particular, for the 9Li part. In
the present study, our policy for the study of 11Li is to use the
experimental information and the corresponding theoretical
knowledge for 9Li and 10Li as much as possible. Following this
policy, we explain our interactions in three terms; vij of H (9Li)
in Eq. (1) and core-n Vcn and n-n Vnn of the Hamiltonians in
Eqs. (5) and (6).

For the potential Vnn between the last two neutrons, we take
a realistic interaction AV8′ in Eq. (5). Our interest is to see the
n-n correlation in the two-neutron halo structure, and therefore
it is necessary to solve two-neutron relative motion without any
assumption. For this purpose, our model space of two neutrons
using the hybrid-TV model shown in Eq. (12) has no restriction
and is wide enough to describe the short-range correlation
under the realistic nuclear interaction AV8′. Therefore, there
is no parameter in the potential Vnn.

The 9Li-n potential, Vcn, in Eqs. (5) and (6) is given by
folding an effective interaction, the MHN interaction [37,38],
which is obtained by the G-matrix calculation and frequently
used in the cluster study of light nuclei [7,23,32,38,39]. In
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the 9Li+n system, the folding potential for the 9Li density
calculated by using the harmonic-oscillator wave function has
been discussed to reproduce the proper energies of the 10Li
spectra [7,13,23]. Furthermore, considering the small one-
neutron-separation energy of 9Li and a long-range exponential
tail of the density, we improve the tail behavior of the folding
potential to have a Yukawa-type form [13,35]. Any state
dependence is not used in the present 9Li-n potential, such
as a deeper potential for the s-wave. This is possible because
the Pauli blocking effect of the single-particle state is in action
and the state with the p1/2 orbit is pushed up in energy and
becomes close to the state with the s1/2 state [13,23]. We
will discuss the results on 10Li after the discussion on 11Li. We
introduce one parameter, δ, which is the second-range strength
of the MHN potential in the calculation of the 9Li-n potential
to describe the starting energy dependence dominantly coming
from the tensor force in the G-matrix calculation [32,38]. In
the present calculation, we chose this δ parameter to reproduce
the two-neutron-separation energy of 11Li as 0.31 MeV after
working out the tensor and the pairing correlation effects, as
explained later. It is found that this folding potential also
reproduces the positions of the p-wave resonances in 10Li,
just above the 9Li+n threshold energy [19], as shown under
Results.

Now we discuss the choice of the interaction between
nucleons in the 9Li core; vij in H (9Li), where we use the
shell-model wave functions for the 9Li core in Eq. (2). Because
our main interest in this work is to investigate the role
of the tensor force on the two-neutron halo formation, we
describe the tensor correlation in addition to the pairing cor-
relation in the 9Li core based on the policy mentioned above.
Along this line, recently we have many interesting works
[30,31,40–42]. We have also studied the role of the tensor
force in the shell-model framework and proposed the tensor-
optimized shell model [28,29]. As a reliable effective interac-
tion considered from those studies, in this calculation, we use
the GA interaction proposed by Akaishi [28,41,42] for vij in
Eqs. (1), (5), and (6). This effective interaction GA has a term
of the tensor force obtained from the G-matrix calculation
using the AV8′ realistic potential keeping the large momentum
space [41,42]. In GA, the obtained 9Li wave function in
Eq. (2) shows smaller matter radius than the observed one
due to the high-momentum component produced by the tensor
correlation [28,30,31]. Hence, we have to adjust the central
force, which is done by changing the second range of the
central force by reducing the strength by 21.5% and increasing
the range by 0.185 fm to reproduce the observed binding
energy and the matter radius of 9Li in the same manner as
done for 4He [28,29].

C. Tensor correlation in the Gaussian expansion method

In the description of the tensor correlation, in principle, we
can work out a large space to include the full effect of the tensor
force by taking 2p-2h states with very high angular momenta
[29]. To avoid large computational efforts without loss of the
physical importance in the result, we restrict the 2p-2h shell
model states within the p-wave states for the description of

9Li with a single Gaussian basis. We have studied that the
superposition of the Gaussian bases improves the description
of the spatial shrinkage for the particle states caused by the
tensor correlation [28,29]. In this case, the wave function of
the particle state ψα in 9Li is expanded with a finite number of
Gaussian basis functions in a jj coupling scheme as

ψα =
Nα∑
n=1

Cα,nφ
n
α(r, bα,n), (16)

φn
α(r, bα,n) = Nα,nr

lα e−(r/bα,n)2/2
[
Ylα (r̂), χσ

1/2

]
jα

. (17)

Here n is an index for the Gaussian basis with the length
parameter bα,n. A basis number and the normalization factor
for the basis are given by Nα and Nα,n, respectively. The
coefficients {Cα,n} are determined variationally for the total
wave function of 9Li in Eq. (2). Using this method, so-called
the Gaussian expansion method (GEM) [43], the wave func-
tions of the particle states are improved with an appropriate
radial form, where the set of {bα,n} is suitably chosen [29,43].
In particular, it was shown that the particle-hole excitations
induced by the tensor force increase [29]. We have confirmed
the GEM effect on the (0s1/2)−2(0p1/2)2 component for 4He in
Fig. 1, because the similar GEM effect is expected for 9Li. As
the number of Gaussian basis increases for the particle states,
the (0s1/2)−2(0p1/2)2 component increases and converges with
three Gaussians. This converged value could be reproduced by
increasing the matrix elements of the tensor force with a single
Gaussian basis by 50% as shown in Fig. 1.

Similarly, the GEM effect also affects the Pauli blocking
caused by adding a neutron into the occupied neutron orbit
in the core. In the scattering problem of the 4He+n system,
we checked that the GEM effect on the Pauli blocking is
reproduced using the enhanced tensor matrix elements with a
single Gaussian basis [28,44,45]. The Pauli blocking could be
considered to be almost proportional to the overlap between
the wave functions of neutrons inside and outside the core.
In this sense, the single-particle properties of the particle
states of the core can be described using the enhanced tensor
matrix elements. Therefore, in the present study, we adopt this
enhanced tensor matrix elements with a single Gaussian basis
to simulate the GEM effect.

0

2

4

6

8

1 2 3 4 5

P
ro

ba
bi

lit
ie

s 
[%

]

Number of Gaussian basis functions

1 Gaussian with 
(M.E. of VT)×1.5

(0s1/2)
-2
10(0p1/2)

2
10 in 4He

FIG. 1. Probabilities of the (0s1/2)−2
10 (0p1/2)2

10 component in 4He
in the Gaussian expansion method are shown as a function of the
number of Gaussian basis. Two subscripts 10 represents spin and
isospin for the two-nucleon pair, respectively. The converged value
is reproduced by enhancing the tensor matrix elements with one
Gaussian basis by 50%.
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TABLE I. Properties of 9Li with configuration mixing.

Present Expt.

(a) (b) (c)

E (MeV) −43.8 −37.3 −45.3 −45.3
〈VT 〉 (MeV) −22.6 −1.8 −20.7 –
Rm (fm 2.30 2.32 2.31 2.32±0.02 [46]
0p-0h 91.2 60.1 82.9 –
(0p3/2)−2

01 (0p1/2)2
01 0.03 37.1 9.0 –

(0s1/2)−2
10 (0p1/2)2

10 8.2 1.8 7.2 –

III. RESULTS

A. 9Li

We first show the results of the 9Li properties, which give
a dynamical influence on the motion of last neutrons above
the 9Li core in 11,10Li. In Fig. 2, we display the energy
surface of 9Li as functions of the length parameters of two
0p orbits, where b0s is already optimized as 1.45 fm. There
are two energy minima, (a) and (b), which have almost a
common b0p3/2 value of 1.7–1.8 fm and a small (0.85 fm) and
a large (1.8 fm) b0p1/2 value, respectively. The properties of
two minima are listed in Table I with the dominant 2p-2h
configurations and their probabilities. It is found that the
minimum (a) shows a large tensor contribution, whereas the
minimum (b) does not. Among the 2p-2h configurations,
the largest probabilities are given by (0s)−2

10 (0p1/2)2
10 for (a),

similar to the results in Refs. [28,29], and (0p3/2)−2
01 (0p1/2)2

01,
namely the 0p shell-pairing correlation for (b). These results
indicate that the minima (a) and (b) represent the different
correlations of the tensor and pairing characters, respectively.
The spatial properties also differ from each other; the tensor
correlation is optimized with spatially shrunk excited nucleons
for (a) and the pairing correlation is optimized when two 0p

orbits make a large spatial overlap for (b). In Table I, we show
the results of the superposition of minima (a) and (b), named
as (c), to obtain a 9Li wave function, including the tensor and
pairing correlations, simultaneously. For (c), the favored two
configurations in each minimum (a) and (b) are still mixed
with the 0p-0h one, and the property of the tensor correlation

 0.5
1

 1.5
2

 2.5
b0p1/2 [fm] 1.5 2  2.5 3b0p3/2 [fm]

-45
-40
-35
-30
-25
-20

E
(9 Li

) 
[M

eV
]

(a)
(b)

FIG. 2. (Color online) Energy surface of 9Li with respect to the
length parameters bα of 0p orbits. The two minima indicated by (a)
and (b) in the contour map correspond to the states due to the tensor
correlation and the paring correlation, respectively.
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FIG. 3. Schematic illustration for the Pauli blocking in 11Li.
Details are described in the text.

is kept in (c). The superposed 9Li wave function possesses
both the tensor and pairing correlations.

B. Pauli-blocking effect in 11Li

We discuss here the Pauli-blocking effect in 11Li and 10Li.
We mainly consider the case of 11Li, as shown in Fig. 3. For
the 9Li ground state (GS, upper panel), in addition to the 0p-0h
state, 2p-2h states caused by the tensor and pairing correlations
are strongly mixed. Let us add two neutrons more to 9Li.
When two neutrons occupy the 0p1/2-orbit (middle panel),
the 2p-2h excitations of the tensor and pairing correlations
in 9Li are Pauli blocked simultaneously [13]. Accordingly,
the correlation energy of 9Li is partially lost inside 11Li.
For the (1s)2 case of two neutrons (lower panel), Pauli
blocking does not occur and 9Li gains its correlation energy
fully by the configuration mixing with the 2p-2h excitations.
Hence, the relative energy distance between (0p)2 and (1s)2

configurations of 11Li is expected to become small to break the
magicity in 11Li. The same effect is also expected to explain
the inversion phenomena of 1s- and p-states in 10Li.

To confirm the above expectation of the blocking effect
on the (1s)2 configuration of 11Li, we discuss here the
configuration mixing, including the sd-shell, for 9Li. The
(0p3/2)−2

01 (1s)2
01 neutron pairing excitation in 9Li is negligible

[23], and the probability of the (0s)−2
10 [(1s)(0d3/2)]10 excitation

induced by the tensor force is around 2% [29]. The latter
excitation is a proton-neutron pair, in which the 1s-state is
spatially shrunk about a half size of b0s due to the tensor
correlation [29]. When the 1s-state is occupied by a neutron
in 9Li, this 1s-state brings a small overlap with the spatially
extended 1s-orbit of the last neutrons in 11Li. Then we have
estimated that the blocking effect on the (1s)2 component
of 11Li for this proton-neutron excitation is very small. We
consider that the characteristics of the blocking effect for 11Li
would not change, even if we include the sd-shell for 9Li and
11Li.

024305-5
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TABLE II. δ and the energy differences �E in MeV.

Inert core Pairing Tensor Present

δ 0.066 0.143 0.1502 0.1745
�E 2.1 1.4 0.5 −0.1

C. 11Li

We perform the coupled three-body calculation of 11Li
considering the tensor and pairing correlations fully, labeled
Present. To see the individual effects of the tensor and paring
correlations, we also compare the results with other three kinds
of calculations for 11Li with different descriptions of 9Li. The
column labeled Inert core is only the 0p-0h configuration
of 9Li. The columns Tensor and Pairing are the ones in
which the minimum (a) and (b) in Table I are adopted for
9Li, respectively. For each calculation, we determine the
parameter δ in the 9Li-n potential, shown in Table II.

In Fig. 4, Present is found to give a large amount of
the (1s)2 probability P (s2), 46.9% for the last two neutrons
and a large matter radius Rm, 3.41 fm for 11Li, which are
enough to explain the observations. The probabilities of
(p1/2)2, (p3/2)2, (d5/2)2, and (d3/2)2 for the last two neutrons
are obtained as 42.7%, 2.5%, 4.1%, and 1.9%, respectively. In
Fig. 4, when we individually consider the tensor and pairing
correlations for 9Li, P (s2) is larger for the tensor case than
for the pairing case. This means that the blocking effect from
the tensor correlation is stronger than that from the pairing
case. Finally, both blocking effects enhance P (s2) and provide
almost equal amount of (1s)2 and (0p)2 configurations. Hence,
two correlations play important roles to break the magicity and
make the halo structure for 11Li.

In Table II, we also estimate the relative energy difference
�E between (1s)2 and (0p)2 configurations for 11Li using the
mixing probabilities of these configurations and the coupling
matrix element between them as 0.5 MeV obtained in Ref. [13].
The present model is found to give the degenerated energies
enough to cause a large coupling between the (0p)2 and
(1s)2 configurations by the pairing interaction between the
last neutrons.

In addition to the matter radius, the halo structure also
affects the proton radius of 11Li, because of the recoil effect
of the center-of-mass motion. In the three-body model of 11Li,
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FIG. 4. (Color online) (1s)2 probability P (s2) and matter radius
Rm of 11Li with four models in comparison with the experiments ((a)
Ref. [3], (b) Ref. [46], and (c) Ref. [47]). The scale of P (s2)(Rm) is
on the right- (left-) hand side.

its proton radius (Rp) consisting of the proton radius of 9Li
and the relative distance between 9Li and the center-of-mass
of two neutrons (Rc−2n) with the following relation:

〈
R2

p(11Li)
〉 = 〈R2

p(9Li)〉 +
(

2

11

)2 〈
R2

c−2n

〉
, (18)

where the second term represents the recoil effect. When the
halo structure develops, 〈R2

c−2n〉 is expected to be large. Exper-
imentally, considering the nucleon radius, the charge radius of
11Li was measured recently and its value is 2.467±0.037 fm,
which is enhanced from the one of 9Li, 2.217±0.035 fm [5].
The improved calculation for the isotope shift determination
[6] shows 2.423±0.037 and 2.185±0.033 fm for 11Li and
9Li, respectively. The present wave functions provide 2.44
and 2.23 fm for 11Li and 9Li, respectively, which are in good
agreement with the experimental values. This enhancement is

mainly caused by the large value of
√

〈R2
c−2n〉 obtained as

5.69 fm. For comparison, the distance between last two
neutrons is 7.33 fm, which is larger than the core-2n case.

We further calculate the three-body Coulomb breakup
strength of 11Li into the 9Li+n+n system to investigate the
properties of the dipole excited states and compare the strength
with the new data from the RIKEN group [4]. We use the
Green function method combined with the complex scaling
method [32] to calculate the three-body breakup strength
[35] using the dipole strength and the equivalent photon
method, where the experimental energy resolution is taken
into account [4]. We found no resonances with a sharp-enough
decay width to make a resonance structure. In Fig. 5, the
present model well reproduced the experiment, in particular,
for low-energy enhancement and its magnitude. On further
investigation, however, our results seem to underestimate the
cross section at E > 1 MeV and slightly overestimate at the
low-energy-peak region. As a result, the integrated dipole
strength for E � 3 MeV gives 1.35 e2fm2, which agrees with
the experimental value of 1.42 ± 0.18e2fm2 [4].

For reference, we calculate the strength with a potential
model denoted as DR, in which the 9Li core is inert and the
9Li-n s-wave potential is deepened to reproduce 50% of P (s2)
in the 11Li ground state. In this case, we obtain three dipole
resonances of 1/2+, 3/2+, and 5/2+ states with 3/2− ⊗ 1−,
less than 0.5 MeV above the three-body threshold energy,
similar to the results of Ref. [16]. In our results, the 3/2+ state
is located slightly lower than other two states, because of the
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FIG. 5. (Color online) Calculated Coulomb breakup cross section
measured from the 9Li+n+n threshold energy.
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J0 = 0− = (L = 1) ⊗ (S = 1) component for two neutrons in
Eq. (7), where L and S are the coupled angular momenta and
spins of the last two neutrons, respectively. This component
does not appear in the 1/2+ and 5/2+ states. This difference for
the dipole states makes a visible splitting in the cross section
before folding with experimental resolution as shown in
Fig. 5. If we fold the spectrum by the experimental resolution,
two peaks are washed out but the strength distribution differs
from both the present result and the experiment. The detailed
analysis of the dipole states would be shown in a forthcoming
article.

For 10Li, the present model successfully produces −17.4 fm
for the scattering length of the 2− state in the 9Li+n system
as a signature of a virtual s-state [19–21]. The 1− state gives
−5.6 fm, not a large negative value. Above the 9Li+n threshold
energy, two p-state resonances are obtained at 0.22 and
0.64 MeV for the 1+ and 2+ states with the decay widths
of 0.09 and 0.45 MeV, respectively. From these results, Pauli
blocking naturally describes the inversion phenomenon of
s- and p-states in 10Li, in addition to the 11Li properties.

IV. SUMMARY

In summary, we have considered newly the tensor cor-
relation in 11Li based on the extended three-body model.
We have found that the tensor and pairing correlations play
important roles in 9Li with different spatial characteristics,
where the tensor correlation prefers a shrunk spatial extension.

The tensor and pairing correlations in 9Li inside 11Li are then
Pauli blocked by additional two neutrons, which makes the
(1s)2 and (0p)2 configurations close to each other and hence
activates the pairing interaction to mix about equal amount
of two configurations. As a result we naturally explain the
breaking of magicity and the halo formation for 11Li. We
also reproduce the recent results of the Coulomb breakup
strength and the charge radius of 11Li. For 10Li, the inversion
phenomenon is explained from the Pauli-blocking effect.

In this study, we focused on the tensor correlation, which
is newly considered to figure out the s-p shell gap problem.
However, the unified treatment of the effective interactions
was not accomplished and is beyond the scope of this article.
This would require a consistent treatment of the short-range
correlation in the realistic interaction while retaining the tensor
force explicitly to describe the tensor correlation [48].
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