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In this work we analyze the validity of recently proposed extensions of the Quasiparticle Random Phase
Approximation (QRPA). Particularly, we focus our attention on the Fully Renormalized QRPA (FRQRPA). We
found that the results of this approximation do not differ from the results of the QRPA. This finding is supported
by a detailed comparison between both formalisms, their assumptions and approximations, in the context of
realistic calculations.
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I. INTRODUCTION

The validity of the Quasiparticle Random Phase Approxi-
mation (QRPA) has been tested exhaustively since it was first
proposed by Baranger [1]. Various extensions of the method
and its drawbacks can be found in textbooks [2,3]. For the sake
of concreteness we shall focus on the proton-neutron version
of the QRPA (pn-QRPA), where the elementary building
blocks are two quasiparticle configurations of one quasiproton
and one quasineutron [4–6]. The literature on the subject is
extensive, and for reasons of brevity we shall refer the reader
to the articles quoted in Ref. [7], where the essentials of the
method are described. During the last decades the interest in
the use of the QRPA and pn-QRPA was prompted by the need
to calculate energy spectra and transitions relevant for the study
of exotic nuclear electroweak processes [7]. Particularly, the
question about the comparison between weak-coupling shell
model results [8] and pn-QRPA [5,6] has attracted considerable
attention. The answer to this question, that is the need to treat
in the pn-QRPA not only the dominant particle-hole channel
of the residual interactions but also the particle-particle and
hole-hole channels, was the starting point for a blooming
theoretical activity. It was shown that a renormalization of
the coupling constant of the particle-particle channel of the
residual proton-neutron interaction, gpp, was needed to explain
the strong suppression of the observed matrix elements of the
two-neutrino double-β-decay [5,6]. However, this renormal-
ization also gives rise to instabilities of the pn-QRPA approach.
This was coined the gpp problem. In the years elapsed since
the first articles on the subject appeared, the theory has been
advanced in a sort of chaotic way. The use of renormalizations
of the pn-QRPA, the renormalized pn-QRPA (RQRPA) of
Ref. [9], revisited and questioned in Ref. [10], was followed
by higher order corrections, perturbative approaches, second
renormalizations, self-consistent attempts, etc., to name some
of the more representative articles on the subject [11–14]. The
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uncertainties introduced by the use of renormalized couplings
may be summarized as follows: the pn-QRPA is a theory
of small amplitude vibrations around a given minimum, the
chosen mean field [15]. The effect of the particle-particle
interactions, when renormalized beyond certain values, is to
produce the breakdown of the approximation; that is, the
vibrations may acquire infinite amplitudes as a consequence of
the deformation added to the mean field [16]. In other words,
if the strength of the attractive channels of the interactions,
i.e., the coupling constant gpp, is unrealistically renormalized,
the ground state and the first excited state of the pn-QRPA
approximation will invert their roles. The mechanism is similar
to the renormalization of attractive particle-hole interactions
between like-particles, if one is trying to force the spherical
QRPA to produce large BE(2) values. In that case the first
excited 2+ state will become the ground state and the system
will be permanently deformed. If one insists on (a) keeping the
values of gpp needed to produce a strong suppression of the
double Gamow-Teller matrix element and (b) including extra
terms of the pn-QRPA expansion, the equation of motion will
be altered to the point of losing stability. The violation of the
sum rule is thus a result of this kind of added nonconsistency,
which is alien to the pn-QRPA approach. In terms of a
perturbative expansion, to which the pn-QRPA is naturally
amenable as a theory of small vibrations around the mean field
point [15], one is mixing orders in a nonconsistent manner.

The effects of particle-particle correlations upon the pn-
QRPA have been discussed in the context of a phase transition
and modeled in the framework of exactly solvable models.
The reader is kindly referred to Ref. [17] for details about this
point.

As a general view, the use of schematic, solvable models
greatly helps at the time of evaluating the validity of a certain
approximation. If the proposed approximation, like any of the
various extensions of the pn-QRPA, works satisfactory in the
framework of a solvable model, then one has definite room for
improvement in realistic cases. However, if the approximations
do not work in the simple cases, one may doubt about the use
of them in realistic cases.

In this article we address the question of the validity of an
approach, named the fully renormalized QRPA (FRQRPA),
proposed in Refs. [18,19]. The authors of Refs. [18,19] argue
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that they have found a remedy to the instabilities produced by
the renormalization of the strength gpp by replacing the two
quasiparticle operators by their expression as proton-neutron
(particle-hole) operators and by adjusting the BCS parameters
accordingly. If true, it would be a great improvement but,
unfortunately, for reasons that we discuss in this article, it
seems that the proposed method suffers from inconsistencies
that invalidate the claims about its rightness.

In a previous effort [20] we showed that the approximations
of Refs. [18,19] do indeed suffer from some inconsisten-
cies. The proof was based on the results of calculations
performed in a schematic model. In this article we discuss
in details the derivation of all the equations, since not all
of the needed elements have been presented before. To test
the approximations of Refs. [18,19], we apply the formalism
to the case of a multilevel single particle basis and we
use a realistic interaction that is the same as that used in
Refs. [18,19]. The theory is presented in Sec. II. In Sec. III we
present and discuss the results of a realistic calculation for the
case of 76Ge. Conclusions are drawn in Sec. IV.

II. FORMALISM

In the following, we briefly review the currently available
procedure for dealing with the quasiparticle random phase
approximation treatment of a Hamiltonian that includes single
particle, pairing, and proton-neutron two-body interactions.
Although the procedure is rather well known, we review again
here the main results of the formalism to guide the discussion.

A. The BCS sector

The quasiparticle transformation is defined by

α†
q = uqa

†
q − vqaq̄ , (1)

where the subindex q stands for the complete set of quan-
tum numbers needed to specify a single particle state. The
transformation of the single particle plus pairing sector of
the Hamiltonian to the quasiparticle basis yields the single
quasiparticle Hamiltonian

Hs.p. + Hpairing = H0 +
∑

q

2�qεqN̂q, (2)

where H0 is the correlated ground state energy, εq is the
quasiparticle energy, and N̂q is the quasiparticle number

operator N̂p,n = [α†
qαq ]

0

√
2�q

for protons (p) and neutrons (n), with

2�q = 2jq + 1. Additional two and four quasiparticle terms,
which appear in the transformation of the single particle plus
pairing Hamiltonian to the quasiparticle basis, are neglected
because their vacuum expectation values vanish when taken
with respect to the BCS vacuum.

For a general (nonseparable) two-body interaction, the use
of the BCS formalism leads to the expressions

εq = eqAq + �qBq,
(3)

0 = −�qAq + eqBq,

where

eq = eq − λp(n) +
∑
q ′

√
�q ′

�q

v2
q ′F (qq, q ′q ′, 0), (4)

is the single particle energy corrected by self-energy terms,
λp(n) is the chemical potential for protons (neutrons). The
quantity

�q = −1

2

∑
q ′

√
�′

q

�q

uq ′vq ′G(qq, q ′q ′, 0). (5)

is the state dependent gap equation. In these equations
F (qq, q ′q ′, 0) and G(qq, q ′q ′, 0) are the matrix elements of
the monopole interaction in the particle-particle and particle-
hole channels, respectively. The factors Aq and Bq are defined
as

Aq = (
u2

q − v2
q

)
(6)

Bq = 2uqvq.

The occupation numbers uq and vq are constrained by the
conditions

Z ≡ 〈0|Ẑ|0〉
=

∑
p

2�pv2
p +

∑
p

(
u2

p − v2
p

)〈0|N̂p|0〉, (7)

N ≡ 〈0|N̂ |0〉
=

∑
n

2�nv
2
n +

∑
n

(
u2

n − v2
n

)〈0|N̂n|0〉. (8)

In the above equations, N̂ and Ẑ are the neutron and proton
particle-number operators while N̂n and N̂p are the neutron
and proton quasiparticle number operators, respectively. The
second term, in both equations, vanishes when |0〉 is the BCS
correlated ground state. If |0〉 includes correlations that go
beyond the BCS level, the contribution of the second term is
smaller than the first one by a factor 1/�q .

In the standard BCS approximation, the second term of
these equations is neglected. In the standard approach, the
self-energy terms of the quasiparticle energy are neglected
and the equations for the occupation factors vq and uq and
the quasiparticle energies are solved, variationally, obeying
average conservation of particle number, for neutrons and
protons, separately. Because the equations are ordered in
powers of the factor 2�q , the BCS solution is said to be valid
at order 1 in this expansion parameter, in a manner that is
fully analogous to classification of the terms of the pairing
interaction in the one shell case [21]. This is a crucial aspect
of the calculations, because corrections to the QRPA should
not be larger than the terms that are neglected in the BCS
treatment. This is just the case of the approximations claimed
in Refs. [18,19], as we show later on.

B. The QRPA sector

Once the single particle and the pairing sector of the
Hamiltonian are approximately diagonalized in the quasipar-
ticle basis, the residual interaction may be transformed to the
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harmonic one-phonon basis defined by the states

|kJM〉 ≡ �†(kJM)|0〉, (9)

for each angular momentum J , projection M , and eigenvalue
index k. The one-phonon creation operator is constructed as
a linear combination of creation and annihilation of proton-
neutron quasiparticle pairs,

�†(kJM) =
∑
pn

(Xpn(kJ )A†
pn(JM) − Ypn(kJ )Apn(JM)),

(10)

with

A†
pn(JM) = [α†

pα†
n]

JM
. (11)

In the quasiboson picture, the pair operators do obey boson
commutation rules

〈0|[Apn(JM), A†
p′n′ (J ′M ′)]|0〉 = δpp′δnn′δJJ ′δMM ′ , (12)

and the ground state correlations are described, at the QRPA
order of approximation, by the condition

�(kJM)|0〉 = 0. (13)

In matrix form, the QRPA equations have the form(
A(J ) B(J )

B∗(J ) A∗(J )

)(
X(kJ )

Y (kJ )

)
= ωkJ

(
X(kJ )

−Y (kJ )

)
, (14)

with

Apn,p′n′ = 〈0|[Apn, [H,A
†
p′n′]]|0〉

(15)
Bpn,p′n′ = −〈0|[Apn, [H,Ap′n′ ]]|0〉.

This eigenvalue problem yields the QRPA amplitudes X and
Y and the eigenfrequency ω. It is fully consistent with the BCS
treatment of pairing correlations and the one phonon energies
belong to the same order of approximation concerning the
classification in powers of �.1 The QRPA matrix does not
have exchange terms and the phonons do not include self-
energy corrections coming from the quasiparticle mean field.
Both corrections are of lower order and the couplings with the
quasiparticles are also of lower order and they can be treated
perturbatively (for the classification of terms see, for instance,
Refs. [16,21]).

C. The fully renormalized QRPA

The FRQRPA [18,19] advocates the use of the pair operator

A
†
pn =

(
A†

pn + unvnB
†
pn − upvpBpn

v2
n − v2

p

)
(Dpn)

−1/2
, (16)

with

Dpn ≡ 1 − 〈0|N̂p + N̂n|0〉 − (
1 − v2

p − v2
n

)
Rnp (17)

1For the case of a multilevel single particle basis, we refer to the
effective shell degeneracy as �, instead of talking about each’s level
factor �q . This is customarily done in the framework of nuclear field
theory (for details see Refs. [16,21] and or in effective single shell
models [3].

and

Rnp = 〈0|N̂p − N̂n|0〉
v2

n − v2
p

(18)

in the definition of the one-phonon operator

�
†
(kJM) =

∑
pn

(Xpn(kJ )A
†
pn(JM) − Ypn(kJ )Apn(JM)).

(19)

Note that the second term of Dpn is just the density-dependent
term of the first renormalized QRPA, Dpn, of Ref. [9]. The

operator B
†
pn(JM) = [α†

pαn]
JM

is a one quasiparticle operator
and it appears naturally in the quasiparticle transformation of
the proton-neutron pair operator to the quasiparticle basis.
However, because it annihilates a quasineutron and creates
a quasiproton, its expectation value on the QRPA vacuum
vanishes identically. Terms of the form αqαq , which is the
commutator of [B†

pn, Apn], vanish. At this point it is worth
mentioning that these terms do vanish already in the BCS
approach, unless the constraints imposed on the BCS variation
are removed. In other words, to admit the replacement of
the operators A by A one should also admit that the BCS
occupation factors uq and vq are not constrained either by
the unitary nature of the BCS transformation or by the single
quasiparticle structure of the BCS mean field. For example,
v2

q would not be determined by the spectroscopy, the average
number of particles would not coincide with the actual number
of particles, and the vacuum would include quasiparticle
excitations.

D. Separable interactions

In the following we analyze the structure of the equations
of the previous subsection for the interaction [22,23]

Hpn = 1

2J + 1

∑
pn,M

〈p||O(J )||n〉〈p′||O(J )||n′〉∗

× {χ ([a†
pan]JM [a†

p′an′ ]†JM + [a†
pan]†JM [a†

p′an′ ]JM )

− κ([a†
pa

†
n]JM [a†

p′a
†
n′ ]

†JM + [a†
pa

†
n]†JM [a†

p′a
†
n′ ]

JM )}.
(20)

In the standard pn-QRPA the pair operators that appear in the
definition of the Hamiltonian are replaced by their expressions
in terms of quasiparticles, namely,

[a†
pan]JM = upvnA

†
pn(JM) + vpunApn(JM)

+upunB
†
pn(JM) − vpvnBpn(JM),

(21)
[a†

pa†
n]JM = upunA

†
pn(JM) − vpvnApn(JM)

−upvnB
†
pn(JM) − vpunBpn(JM).

The matrix elements of the pn-QRPA equations are calculated
by keeping only the contributions coming from the commuta-
tors of the operators A

†
pn(JM) and Apn(JM). In the FRQRPA,

instead, one works with the operators A
†
pn(JM) and Apn(JM),
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keeping all terms of the commutators, regardless of the order
of the contributions, namely,

[a†
pan]JM = (upvnA

†
pn(JM) + vpunApn(JM))D

1/2
pn ,

[a†
pa†

n]JM = (upunA
†
pn(JM) − vpvnApn(JM))D

1/2
pn (22)

− upvn

v2
n − v2

p

B†
pn(JM) + vpun

v2
n − v2

p

Bpn(JM).

The bar over the operators A and A† follows from the
definitions of the FRQRPA, and the commutators with the
one quasiparticle operators B are given by

[
D

1/2
p′n′Ap′n′ , Bpn

] = [Ap′n′ , Bpn] + δpp′δnn′upvp

N̂p − N̂n

v2
n − v2

p[
D

1/2
p′n′Ap′n′ , B†

pn

] = [Ap′n′ , B†
pn] + δpp′δnn′unvn

N̂p − N̂n

v2
n − v2

p

.

(23)

In consequence, the matrix elements of the FRQRPA matrix,
for a given multipolarity J , are written

Apn,p′n′(J )

=
[

(εp + εn) − 2
(
εpu2

pv2
p − εnu

2
nv

2
n

) Rnp(
v2

n − v2
p

)
Dpn

]

× δpp′δnn′ + 2χ
〈p||O(J )||n〉〈p′||O(J )||n′〉∗

2J + 1

× (upvnup′vn′ + vpunvp′un′ )D
1/2
pn D

1/2
p′n′

− 2κ
〈p||O(J )||n〉〈p′||O(J )||n′〉∗

2J + 1

×
upunup′un′

˜̃Dpn
˜̃Dp′n′

D
1/2
pn D

1/2
p′n′

+ vpvnvp′vn′D̃pnD̃p′n′

D
1/2
pn D

1/2
p′n′

 ,

Bpn,p′n′(J )

= −2(εp − εn)upvpunvn

Rnp(
v2

n − v2
p

)δpp′δnn′

+ 2χ
〈p||O(J )||n〉〈p′||O(J )||n′〉∗

2J + 1

× (vpunup′vn′ + upvnvp′un′ )D
1/2
pn D

1/2
p′n′

+ 2κ
〈p||O(J )||n〉〈p′||O(J )||n′〉∗

2J + 1

×
upunvp′vn′

˜̃DpnD̃p′n′

D
1/2
pn D

1/2
p′n′

+ vpvnup′un′D̃pn
˜̃Dp′n′

D
1/2
pn D

1/2
p′n′

 ,

(24)

where the following notation has been introduced

D̃pn = 1 − 〈0|N̂p + N̂n|0〉 − (
u2

p + u2
n

)
Rnp,

(25)˜̃Dpn = 1 − 〈0|N̂p + N̂n|0〉 + (
v2

p + v2
n

)
Rnp.

In deriving the above equations we have requested, for
consistency, that the expectation value of the commutators

of the bare operators on the BCS vacuum vanishes identically,
that is, 〈[Ap′n′ , Bpn]〉0 = 〈[Ap′n′ , B

†
pn]〉0 = 0.2

To conclude, the above FRQRPA expressions do indeed
coincide trivially with the pn-QRPA ones if Rnp = 0 and
〈0|N̂p + N̂n|0〉 = 0, while the pn-RQRPA is retrieved if
Rnp = 0, as it can be verified straightforwardly.

E. Quasiparticle occupations

If one thinks of the FRQRPA as an extension of the
QRPA, based on a sort of variation around a correlated
vacuum different from the BCS or QRPA ones, it should obey
self-consistency. Therefore, one may define the correlated
vacuum,

|0〉 = N0e
Ŝc |BCS〉, (26)

in analogy with the definition of the QRPA vacuum, where the
correlation operator Ŝc is

Ŝc = 1

2

∑
pnp′n′J

√
(2J + 1)C(J )pnp′n′[A

†
pn(J )A

†
p′n′ (J )]0, (27)

with the coefficient

C(J )pnp′n′ =
∑

k

Y ∗(J )pn,kX
∗(J )−1

p′n′,k.

Thus, the quasiparticle occupations 〈N̂q〉 would be given
by the explicit form

〈N̂p〉 =
∑
kJn′

(2J + 1)

2�p

Dpn′ |Y (J )pn′,k|2,
(28)

〈N̂n〉 =
∑
kJp′

(2J + 1)

2�n

Dp′n|Y (J )p′n,k|2,

and the actual values should be consistent with the values
given by the original BCS condition, otherwise the consistency
of the model would not be fulfilled. In other words, to find
out a vacuum with correlations that go beyond the pn-QRPA
correlations means that one should be able to find out new
quasiparticle occupancies that should also obey the BCS
conditions. If this is not achieved, then the starting BCS mean
field values should be changed and the pn-QRPA procedure
should be repeated until consistency is achieved. This is not
the case of the FRQRPA of Refs. [18,19]. In fact, finite
nontrivial values of Rnp, that is, Rnp �= .0, of Eq. (17), cannot
be determined in the numerical calculations, as we have shown
already for the case of a single shell case [20] (see also
Ref. [24]).

2Some of the terms that appear in the expressions for the matrix
elements of the FRQRPA matrix, Eq. (23), differ in sign, as compared
with the expressions reported in Refs. [18,19]. This may be due to
typos in Refs. [18,19]. In our case, these expressions are consistent
with the definitions given in Eq. (21).
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III. RESULTS AND DISCUSSION

In this section we present the results of the calculations
that we have performed using the formalisms described in the
previous section. We have taken 0+ and 1+ excitations of 76As,
by performing BCS and pn-QRPA, RQRPA, and FRQRPA
calculations on 76Ge. The single particle basis that we have
used in our calculations includes the states with principal
oscillator quantum numbers N = 3 and 4 for protons and
neutrons. The single particle energies are the solutions of the
Wood-Saxon potential, with Coulomb corrections added for
the proton states. The matrix elements of a δ-force interaction
were used to solve the state-dependent gap equations and
single quasiparticle occupancies. The residual proton-neutron
interaction is the interaction introduced in Refs. [22,23], which
is the same as that used in Refs. [18,19]. We have taken
the same single particle space, interactions, and couplings of
Refs. [18,19] to avoid further uncertainties in the comparison
of results.

With all these elements we have solved the eigenvalue
equations in the different approximations described in the
previous section. Figure 1(a) shows the results corresponding

0.05 0.10 0.15 0.20
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ω
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]

FIG. 1. (a) Energy of the first excited state J π = 1+ of 76As,
ω, and (b) the total strength (S− − S+)/3 of the Ikeda sum rule. The
energy is given in units of MeV. The solid line is the pn-QRPA values,
the dashed line represents the RQRPA values, and dotted line is the
FRQRPA results. The values are shown as functions of the particle-
particle proton-neutron coupling κ . The particle-hole proton-neutron
interaction is fixed at the value χ = 0.21 MeV.

to the first excited 1+ state of 76As. The energies are measured
with respect to the ground state of 76Ge. The coupling constant
of the particle-particle proton-neutron interactions is taken as
a variable. The correlation between these results and those
of the Ikeda sum rule is also evident. Contrary to the claim
of Refs. [18,19], the FRQRPA follows closely the results of
the pn-QRPA in the region of the coupling where it is still
possible to find out the solutions of both approximations. We
have included the results of the RQRPA approximation to show
that in this framework the collapse is shifted at the expense of
violating the Ikeda sum rule [10], something that is again in
contradiction with the results of Refs. [18,19].

Figure 2 shows the results of 0+ excitations and those
corresponding to the sum rule for Fermi transitions. Again
for this case the features found for 1+ excitations are repeated,
signaling the contradiction between the claims of Refs. [18,19]
and the actual results of the calculations. The results of Figs. 1
and 2 closely resemble the results already obtained for the
schematic model situation that we have presented in our
previous publication [20].
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FIG. 2. (a) Energy of the first excited state J π = 0+ of 76As,
ω, and (b) the total strength (S− − S+) of the Ikeda sum rule. The
energy is given in units of MeV. The solid line is the pn-QRPA
values, the dashed line represents the RQRPA values, and the dotted
line is the FRQRPA results. The values are shown as functions of
the particle-particle proton-neutron coupling κ ′ = 4κ/Vpair [18,19].
The particle-hole proton-neutron interaction is fixed at the value χ =
0.025 MeV.
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FIG. 3. Double Gamow-Teller matrix element, MGT, for two-
neutrino double-β-decay ground-state to ground-state transitions [7],
as a function of the strength κ . The results obtained with pn-QRPA
(solid line), RQRPA (dashed line), and FRQRPA (dotted line) are
given in units of MeV−1.

Finally, we discuss the results corresponding to the matrix
element for two-neutrino double-β-decay transitions, of the
ground-state to ground-state type, as direct application of the
approximations described in the previous section. Figure 3
shows the results of the calculations corresponding to the
double Gamow-Teller matrix element [7] MGT. We have taken
the strength κ as a variable and performed, for each value
of the particle-particle coupling constant, the calculation of
the spectrum of 1+ excitations, and the corresponding wave
functions, and used them to calculate MGT [7]. As can be
seen from the results shown in Fig. 3, both the pn-QRPA
and FRQRPA approximations yield similar values and the
matrix element, within both approximations, vanishes at the
same value of κ ≈ 0.15 MeV. The RQRPA gives values that
go further, to larger values of κ , and they do vanish at
κ ≈ 0.2 MeV. This trend, too, is similar to the one found
in the schematic model space of Ref. [20]. The differences
between the pn-QRPA and the RQRPA have been pointed out
in details elsewhere [21], as well as the physical meaning of
both approximations. For the sake of the present discussion,
we continue with the comparison between the pn-QRPA
and the FRQRPA. So far we have not found a significant

difference between them and the explanation of this similarity
is rather obvious, because we did not get solutions of the
FRQRPA equations with Rnp �= 0 that are, at the same time,
consistent with the constraints fixed by the particle number
and phonon-vacuum conditions.

IV. CONCLUSIONS

In this work we report comparative results for excited states
and sum rules for charge-dependent Fermi transitions and
Gamow-Teller transitions, obtained by applying the proton-
neutron QRPA approximation and some recently proposed
modified version of it, the fully renormalized pn-QRPA
of Refs. [18,19]. The calculations were performed using a
multilevel single particle basis and a realistic interaction. It
was found that the results show the same trend of the results
that we obtained previously for the case of a single shell
model space and a separable, exactly solvable, interaction. For
all purposes the results of the approximation [18,19], when
carried out correctly, follow closely those of the pn-QRPA
method. This trend is to be expected from the order of
magnitude of the correction introduced in the approach of
Refs. [18,19] to the occupation numbers and the vacuum,
which coincide with those neglected in the standard pn-QRPA
approach. Therefore, we are forced to conclude that, contrary
to the claims of Refs. [18,19], the results of FRQRPA do
not represent an improvement with respect to the pn-QRPA
approach. From a more theoretical, inspired point of view,
FRQRPA omits the consistency required of theories where
the different terms of a given Hamiltonian should be ordered
in a consistent manner before assessing the correctness of a
given approximation [21]. The results discussed in the present
work, for the case of a realistic model space and a realistic
interaction, do indeed confirm our previous conclusions [20]
extracted from a schematic, single shell situation.
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