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Resonant relativistic corrections and the Ay problem
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We study relativistic corrections to nuclear interactions caused by boosting the two-nucleon interaction to a
frame in which their total momentum does not vanish. These corrections induce a change in the computed value
of the neutron-deuteron analyzing power Ay that is estimated using the plane-wave impulse approximation. This
allows a transparent analytical calculation that demonstrates the significance of relativistic corrections. Faddeev
calculations are, however, needed to conclude on the Ay puzzle.
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I. INTRODUCTION

One of the major unsolved problems in nuclear physics is
the so-called Ay puzzle in nucleon-deuteron (Nd) scattering.
The nucleon analyzing power Ay is the difference in differen-
tial cross sections for scattering of polarized nucleons [1]:

Ay =
dσ
d�

|↑ − dσ
d�

|↓
dσ
d�

|↑ + dσ
d�

|↓
, (1)

where ↑ denotes the polarization normal to the reaction plane
(spanned by the center-of-mass momentum of the incident
and scattered nucleon). All modern nucleon-nucleon (NN)
interactions lead to practically the same results: They under
predict Ay by 30% for laboratory energies EN <∼ 30 MeV (for
a review, see Ref. [2]), whereas the predicted Ay is in very
good agreement for higher energies. The contributions of the
existing three-nucleon (3N) interactions to Ay are small at low
energies [2–4]. A similar discrepancy is found for the deuteron
vector analyzing power iT11 [2].

The NN contribution to Ay is directly related to the
3Pj phase shifts [5], but it is very unlikely that uncertainties
in these phases can resolve the puzzle [6]. For few MeV
energies, Ay is maximal around a center-of-mass scattering
angle θ ≈ 100◦. This is the location of the minimum of the
differential cross section so that small effects are amplified in
Ay . As a result, a number of small contributions to Ay have
been investigated. For instance, magnetic moment interactions
lead to a very small contribution to Ay near the maximum in
pd scattering, but are only sizable at forward angles for
nd [7,8]. Moreover, ad hoc solutions have been proposed
that range from introducing a phenomenological 3N spin-orbit
force [9] to including the effects of exchanging one pion in the
presence of a two-nucleon correlation [10].

Recently, Fisher et al. [11] have shown that the Ay problem
increases from a 30% discrepancy in Nd to a 100% puzzle
in p3He. Therefore, one can expect that the problem becomes
even more pronounced for understanding heavier systems. In
addition, the Ay discrepancy increases with the inclusion of
the Coulomb interaction in the pd system [12–14].
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In the three-body (or higher-body) system, not all pairs of
particles are simultaneously in the two-body center-of-mass
(c.m.) system, and therefore relativistic corrections [15–17]
have to be taken into account:

δV ∼ Q2

m2
VNN, (2)

where Q2 includes at least one power of the two-body c.m.
momentum P = p1 + p2,m is the nucleon mass, and VNN

denotes the NN interaction in the c.m. frame (for P = 0).
The modern understanding is to consider these corrections as
3N interactions, but using the formalism developed in Refs.
[15–17] it is straightforward to include these effects to order
(Q/m)2 without any new parameters. The naive expectation
is that relativistic corrections are small at low energies. This
was confirmed for selected nd observables and for energies
En � 28 MeV [18] (where there is no Ay problem).

In this work, we show that, in contrast to the naive
expectation, relativistic boost effects may be important at low
energies. This is due to spin-violating relativistic corrections,
which couple relative NN S waves with the 3Pj waves
(combined with a change of the two-body c.m. angular
momentum). We find that the interference with the large S-
wave scattering lengths can lead to resonant enhancements of
Ay at low energies. This effect would explain why predictions
for Ay at En >∼ 30 MeV agree well with experiment. We
present a transparent analytical calculation, based on using the
plane-wave impulse approximation, that explores the effect
of relativistic corrections on spin observables. The effects are
small but significant and should be combined with a complete
solution of the Faddeev equations.

This article is organized as follows. We begin in Sec. II
with a brief discussion of the relevant notation and scattering
formalism. In Sec. III, we classify all relativistic corrections
to order (Q/m)2 and their impact on the differential cross
section and Ay . We calculate analytically their effect on Ay

neglecting distortions. The central findings of this article are
given in Eq. (30) and in Fig. 2. Our results and Eq. (30) are
general and in a form that should be implemented in future
Faddeev calculations. The reader familiar with the standard
notation and 3N scattering can skip Sec. II. In Sec. IV, the
contribution to Ay is estimated using benchmarked nd [3,19]
phase shifts and pionless effective field theory (EFT) contact
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interactions for the relativistic corrections δV . We conclude
in Sec. V that relativistic boost effects may be important for a
precise understanding of three-body spin observables.

II. NOTATION AND SCATTERING FORMALISM

We follow the notation and conventions of Glöckle et al. [2]
and define the nd scattering amplitude M by

Mm′
j ,m

′
n;mj ,mn

(q ′, q)

= −2m

3
(2π )2〈φd,m

′
j ; q ′,m′

n|U |φd,mj ; q,mn〉, (3)

where mj,mn are the deuteron total angular momentum and
nucleon spin magnetic quantum numbers, respectively, q, q ′
are initial and final relative momenta of the nucleon in the
nd c.m. system, and U denotes the transition amplitude. The
relative momenta are on-shell related to the neutron laboratory

energy En by q = |q| = |q ′| =
√

8
9mEn, and the c.m. scatter-

ing angle is cos θ ≡ q̂ · q̂ ′. Finally, the plane-wave states are
normalized as 〈 p′|plm〉 ≡ i−lYlm( p̂′)δ(p′ − p)/(p′p) with
spherical harmonics Ylm( p̂), and thus 〈 p| p′〉 = δ(3)( p − p′)
and 〈 p|r〉 = e−i p·r/(2π )3/2.

In terms of the scattering amplitude, the spin-averaged
differential cross section dσ/d� is given by

dσ

d�
= 1

(2j + 1)(2sN + 1)
Tr(MM†)

= 1

6

∑
m′

j ,m
′
n,mj ,mn

∣∣Mm′
j ,m

′
n;mj ,mn

(q ′, q)
∣∣2

, (4)

where j = 1 and sN = 1/2 are the spin of the deuteron
and nucleon, respectively. The nucleon analyzing power is
defined by

Ai = Tr(Mσ iM†)

Tr(MM†)
, (5)

with Pauli matrices σ i and standard conventions for the
coordinate system: ẑ = q̂, ŷ = q̂ × q̂ ′/|̂q × q̂ ′|, and x̂ = ŷ ×
ẑ. This directly leads to Eq. (1), if one chooses ŷ as the
spin quantization axis. Finally, due to parity conservation,
Ax = Az = 0 [1]. Using the Fourier transform of an operator
representation for the deuteron wave function [20] ,

φ̂d ( p) ≡ φ̃0
d (p) + φ̃2

d (p)
S12( p̂)√

8
, (6)

〈 p,m′
j |φd,mj 〉 = 〈m′

j |φ̂d ( p)|mj 〉, (7)

with tensor operator S12( p̂), the scattering amplitude can be
expressed in a convenient operator form

Mm′
j ,m

′
n;mj ,mn

(q ′, q) = −2m

3
(2π )2

∫
dp′

∫
dp〈 p′,m′

j ; q ′,m′
n|φ̂d ( p′)Uφ̂d ( p)| p,mj ; q,mn〉. (8)

Finally, computing the analyzing power is simplified by
coupling the deuteron total angular momentum j with the
nucleon spin sN to a total spin � = j + sN. In this basis, the
spin matrix elements of the scattering amplitude are given by

M�′,m′
� ;�,m�

(q ′, q)

=
∑

m′
j ,mj

(1 m′
j 1/2 m′

� − m′
j |�′m′

�)(1 mj 1/2 m� − mj |�m�)

×Mm′
j ,m

′
�−m′

j ;mj ,m�−mj
(q ′, q). (9)

We use benchmarked nd partial waves for the scattering
amplitude without relativistic corrections, so we briefly discuss
the partial wave expansion. The states with good total spin �

read |p(ls)j ; q(j1/2)�m�〉, where s = 1 is the spin of the
deuteron and the nucleon motion can also be expanded in
angular momenta |qλmλ〉. In these states the nd scattering
amplitude is given by

M�′,m′
� ;�,m�

(q ′, q) = −2m

3
(2π )2

∑
λ′,m′

λ,λ,mλ

iλ−λ′
Yλ′,m′

λ
(q̂ ′)Y ∗

λ,mλ
(̂q)

×
∑
l,l′

∫
p′2dp′φ̃l′

d (p′)
∫

p2dpφ̃l
d (p)〈p′(l′1)1; q ′λ′m′

λ(1, 1/2)�′m′
�|U |p(l1)1; qλmλ(1, 1/2)�m�〉. (10)

Next one couples the nucleon angular momentum with the
total spin to the total angular momentum J = λ + �,
for which U is diagonal in J and independent of

mJ , thus m′
λ + m′

� = mλ + m� . With q̂ = ẑ, we have
Y ∗

λ,mλ
(̂q) = δmλ,0

√
2λ+1

4π
, and consequently mJ = m� and

m′
λ = m� − m′

� . The second line in Eq. (10) in the coupled
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(λ�′)JmJ basis is independent of mJ and can be
decomposed as (δλ′,λδ�′,� − SJ

λ′,�′;λ,�)/(4πimq/3).
With this at hand, the partial wave decomposition
reads

M�′,m′
� ;�,m�

(q ′, q) = i
√

π

q

∑
λ′,λ,J

iλ−λ′√
2λ + 1Yλ′,m�−m′

�
(q̂ ′)

× (λ′m� − m′
��′m′

�|Jm�)(λ0�m�|Jm�)(δλ′,λδ�′,� − SJ
λ′,�′;λ,�), (11)

where SJ
λ′,�′;λ,� is given in terms of the nd phase shifts

and mixing parameters [1] (see also Eqs. (209)–(214) in
Ref. [2]).

III. RELATIVISTIC CORRECTIONS

Boost corrections to the two-nucleon interaction depend
on the total momentum P of the pair and are obtained
by satisfying the commutation relations of the Poincaré
group [15]. To leading order in (Q/m)2, the relativistic
boost corrections are given in momentum space by (for the
corresponding coordinate space expression, see Eq. (1.7) in
Ref. [17])

δvσ 1,σ 2 (k′, k, P)

= − P 2

4m2
vσ 1,σ 2 (k′, k) + i

8m2
[(σ 1 − σ 2), vσ 1,σ 2 (k′, k)]

× P · k − i

8m2
(σ 1 − σ 2) × P · (k − k′)vσ 1,σ 2 (k′, k)

− 1

8m2
(P · (k − k′))P · ∇k−k′vσ 1,σ 2 (k′, k), (12)

where vσ 1,σ 2 (k′, k, P) is the direct NN interaction in the
c.m. system, with initial and final relative momenta k =
( p1 − p2)/2 and k′ = ( p′

1 − p′
2)/2, and Eq. (12) accounts

only for the direct term of the boost correction. As explained
in Ref. [17] the Poincaré group commutation relations do not
have a unique solution. The operator δv can have an additional
term of the form

δv′ = −i[χ,H0 + v], (13)

where χ is a translationally invariant function and H0 is the
noninteracting Hamiltonian. One must pay attention to this
term when studying scattering processes.

Some of the operators in Eq. (12) can be obtained from
purely classical considerations [17]. The first term arises from
treating the potential as a contribution to the nucleon mass and
then expanding the relativistic energy operator. The final term
of Eq. (12) is due to the effects of Lorentz contraction. The

third term results from Thomas precession in which objects
with spin precess when they accelerate, because rotations do
not commute with boosts. The commutator term of Eq. (12)
does not have an analog in classical mechanics.

Our procedure is to calculate the leading relativistic
corrections δM in the basis | p,mj ; q,mn〉 of Eq. (8) by
accounting for the change in U, δU caused by δv of Eq. (12).
In this exploratory study we use the plane-wave impulse
approximation, which treats one of the nucleons as a spectator.
Taking the matrix element of δU within plane-wave neutron-
deuteron states yields δM . The use of the plane-wave impulse
approximation enables us to analytically study the effect of
relativistic boost corrections and make a first assessment of
their importance. A full Faddeev calculation including distor-
tions will eventually be needed to make a complete assessment.
Our present use of the plane-wave impulse approximation has
an additional advantage: The matrix element of the term δv′
of Eq. (13), taken between on-shell elastic scattering states,
vanishes.

There are three contributions to δU arising from the three
pairs in the nd system:

δU = δV12 + δV13 + δV23. (14)

Since relativistic corrections are of order (Q/m)2, we keep
only the central parts in vσ 1,σ 2 (k′, k). Noncentral interactions
start at O((Q/mπ )2) in pionless effective field theory, which
is relevant for the energies of interest. Therefore, the spin
structure is limited to

vσ 1,σ 2 = v11 + vspinσ 1 · σ 2. (15)

Furthermore we can neglect the last term in Eq. (12) of
O((Q/m)2(Q/mπ )2).

The next step is to include the exchange term. We need to
compute

δVσ 1,σ 2 (k′, k, P) = δvσ 1,σ 2 (k′, k, P)

−Pσ Pτ δvσ 1,σ 2 (−k′, k, P), (16)

where the spin (isospin) exchange operator is Pσ (Pτ )
and Vσ 1,σ 2 (k′, k) = vσ 1,σ 2 (k′, k) − PσPτvσ 1,σ 2 (−k′, k) de-
notes the antisymmetrized interaction. Writing the commutator
term of Eq. (12) explicitly and using the property that
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{(σ 1 − σ 2), Pσ } = 0 leads directly to the result

δVσ 1,σ 2 (k′, k, P) = − P 2

4m2
Vσ 1,σ 2 (k′, k) − i

8m2
Vσ 1,σ 2 (k′, k)(σ 1 − σ 2)P · k + i

8m2
(σ 1 − σ 2) × P · k′Vσ 1,σ 2 (k′, k). (17)

In antisymmetrized states, relativistic corrections thus have the
form of V (boost corrections in)−(boost corrections out) V .

It is evident that the first (P 2) term in Eq. (17) will lead to
a relativistic correction to the nd scattering amplitude that is a
scalar in spin and of general structure

δMP 2 ∼ 11
Q2

m2
and S · σ 3

Q2

m2
, (18)

where S = (σ 1 + σ 2)/2 is the deuteron spin and the nucleon
spin operator is given by sN = σ 3/2. In the following we will
show that the spin-violating (sv) relativistic corrections [the
last two terms in Eq. (17)] lead to terms of the form

δMsv ∼ Sy Q2

m2
and σ

y

3

Q2

m2
. (19)

The leading contributions to the differential cross section and
to Ay are from the interference of δM of O((Q/m)2) with
the leading nd scattering amplitude at low energies. Similar to
the above considerations for the two-nucleon interaction, the
leading operators in M are given by the central part

MS,σ 3 = M11 + Mspin S · σ 3 + O((Q/mπ )2). (20)

We can now evaluate the relativistic corrections to the nucleon
analyzing power δAy and to the differential cross section
δ(dσ/d�):

δAy = Tr(δMσ yM† + Mσ yδM†)

Tr(MM†)

−Ay

Tr(δMM† + MδM†)

Tr(MM†)
, (21)

δ
dσ

d�
= 1

6
Tr(δMM† + MδM†). (22)

Since Ay is small, we can neglect the second term in Eq. (21).
For the leading contributions, it then follows that only δMsv

contributes to δAy ,

δAy = Tr(δMsvσ
yM† + Mσ yδM

†
sv)

Tr(MM†)
+ O

(
Q4

m2m2
π

)
, (23)

and only δMP 2 contributes to δ(dσ/d�). A straight-
forward calculation of the spin-violating relativistic
corrections arising from V11(k′, k) + Vspin(k′, k)σ 1 · σ 2 ≡
(1 − PσPτPk)(v11 + vspinσ 1 · σ 2) yields

δV sv
σ 1,σ 2

(k′, k, P) = − i

8m2
(σ 1 − σ 2) × P · (k − k′)(V11(k′, k) − Vspin(k′, k)) + 1

4m2
(σ 1 × σ 2) × P · (k + k′)Vspin(k′, k). (24)

The resulting spin-violating interactions connect the two-body
3Pj waves (which are crucial for Ay) with the two-body S

waves. The S waves are resonant at low energies with large
scattering lengths, a0 ≡ a1S0 = −23.768 ± 0.006 fm and a1 ≡
a3S1 = 5.420 ± 0.001 fm [21], and therefore the interference
with the 3Pj waves can lead to a resonant enhancement of these
relativistic corrections at low energies. For higher energies, the
S-wave phase shifts decrease, so the effect of the spin-violating
interactions decreases.

Including isospin and restricting two-nucleon interactions
to S waves, the central part of the antisymmetrized two-body
interaction can be written as

Vi,3 = 1
8 [V0(1 − σ i · σ 3)(3 + τ i · τ 3)

+V1(3 + σ i · σ 3)(1 − τ i · τ 3)], (25)

where i = 1, 2 and τ i,3 denote Pauli matrices that operate in
isospin space and V0,1 are projections on s = 0, 1 states. The

operator τ i · τ 3 vanishes in nd states, and thus we have

V11 = 3
8 (V0 + V1) and Vspin = 1

8 (V1 − 3V0). (26)

We use leading-order (Q/mπ )0 pionless EFT contact
interactions [22] where the operators V0 and V1 are momentum
independent:

Vi = Ci

2π2m
with Ci = 1

1
ai

− µ
, (27)

for i = 0, 1. Here, µ is the renormalization scale in di-
mensional regularization with a power-divergence subtrac-
tion scheme [22]. A similar expression is obtained for a
momentum-cutoff regularization. The operator of Eq. (24)
therefore has the form of a spin-violating operator (σ 1 − σ 2)
dotted into a momentum vector that induces transitions
between spin triplet (singlet)/relative S-wave and spin singlet
(triplet)/relative P-wave states. The momentum vector k
(k′) in Eq. (24) explicitly projects on incoming (outgoing)
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P-wave states. The change in the orbital angular momentum
is compensated with a corresponding change of the two-body
c.m. angular momentum, so that the total angular momentum
is preserved.

At low energies we can take the P-wave states to be plane
waves, but we include iterated S-wave interactions Vi in the
initial state (for k′) and final state (for k). This leads to
replacing Ci by

Ci → Ci

1 + Ci(µ + i
√

mErel)
= 1

1
ai

+ i
√

mErel
, (28)

where Erel is the relative energy (in the two-body c.m. of
system). As a result of these initial and final state interactions,
we find that the operators Vi that enter in Eq. (24) are
independent of the renormalization scale µ.

Next we calculate the contributions of the spin-violating
relativistic corrections to δAy for the nd system (where the
Coulomb interaction does not operate). We neglect distortions
that would involve the nucleon treated as a spectator. We
work in the three-body c.m. system p1 + p2 + p3 = 0, where
nucleons 1, 2 constitute the deuteron and nucleon 3 is the
free neutron. Because the matrix element of δV sv

12 vanishes
when evaluated in the deuteron eigenstate, we need only
to evaluate two contributions to the spin-violating collision
operator δUsv = δV sv

13 + δV sv
23 , shown diagrammatically in

Fig. 1. We employ Jacobi momenta and the incoming nucleon
momenta are expressed as p1 = p − q/2, p2 = − p − q/2,
and p3 = q (with primed momentum labels for the outgoing
nucleons). The second contribution δV sv

23 can be obtained
from δV sv

13 by replacing σ 1 → σ 2, p → − p, and p′ → − p′.
Because the deuteron is even in momentum (l = 0, 2), we can
change variables in Eq. (8) back to − p → p and − p′ → p′.
Consequently, the contribution of δV sv

23 to δMsv is identical to
the contribution of δV sv

13 after replacing σ 1 → σ 2 in the latter.
Inserting this into Eq. (24) (with 1, 2 → 1, 3 and 1, 2 →

2, 3), we obtain for the total leading (Q/m)2 relativistic
corrections relevant for δAy

δU sv
S,σ 3

( p, q ′, q) = δ(3)( p′ − ( p + 
))δŨ sv
S,σ 3

( p, q ′, q), (29)

p1 = p− q
2

p2 = −p− q
2

p3 = q

δV13 δV23

FIG. 1. Contributions of the spin-violating interactions to the
relativistic corrections δUsv and our conventions for the Jacobi
momenta. In Born approximation, the low-energy coefficients are
given by the Ci of Eq. (27), and in the plane-wave impulse
approximation we use the Ci of Eq. (28).

where the δ function accounts for the conservation of the two-
body c.m. momentum, the momentum transfer is 
 ≡ (q −
q ′)/2, and we have

δŨ sv
S,σ 3

( p, q ′, q)

=
[
− i

4m2
(S − σ 3) ×

(
p + q

2

)
· (q ′ − q)

3V0 + V1

4

− 1

2m2
(S × σ 3) ×

(
p + q

2

)
· (q + q ′)

V1 − 3V0

8

]
.

(30)

Here the relative momentum arguments of V0,1 are k = p
2 − 3q

4
and k′ = p

2 + q
4 − q ′. The result of Eq. (30) is general and

useful as input to Faddeev calculations, in which the term
is dressed by the effects of initial and final state strong
interactions.

Using Eq. (30) in Eq. (8), we obtain our final
expression for the relevant change in the scattering
amplitude:

δMsv
m′

j ,m
′
n;mj ,mn

(q ′, q) = −2m

3
(2π )2

∫
dp〈m′

j , m
′
n|φ̂d ( p + 
)δŨ sv

S,σ 3
( p, q ′, q)φ̂d ( p)|mj,mn〉. (31)

Next, we estimate the impact of these spin-violating boost
corrections on Ay based on pionless EFT contact interactions
for V0,1 and using benchmarked nd phase shifts from Kievsky
et al. [3,19] for M . This has the advantage that δAy can be
evaluated analytically and the physics is transparent.

IV. RESULTS

We can transform variables in Eq. (31) from p →
p − 
/2. For momentum-independent interactions V0,1,
terms linear in p in Ũ sv integrate to zero after this

variable transformation. Therefore, we can replace p +
q/2 by −
/2 + q/2 = (q + q ′)/4 in Eq. (30), and as a
result the S × σ 3 term vanishes. Note that a relatively
small quantity (q + q ′)/4 determines the change in the
computed Ay . Furthermore, we simplify the integral by
approximating Erel of Eq. (28) by zero. The relative en-
ergy is very low, Erel = Ed + 2En/3 − 3( p + q

2 )2/(4m) (with
deuteron binding energy Ed = −2.22 MeV), and we have
Erel < 0 for the energy of interest (En = 3 MeV). So
the imaginary part vanishes. Because we do not include
effective range corrections, we further neglect the energy
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dependence of the real part of Eq. (28). It is neces-
sary to reexamine this treatment within the framework of

a Faddeev calculation that we advocate below. We thus
find

δMsv
m′

j ,m
′
n;mj ,mn

(q ′, q) = i

24m2
(3C0 + C1)

∫
dp〈m′

j , m
′
n|φ̂d ( p + 
/2)[(S − σ 3) · q × q ′]φ̂d ( p − 
/2)|mj,mn〉. (32)

Because S commutes with the tensor operator S12( p̂), we can
move the operator [(S − σ 3) · q × q ′] to the right of φ̂d ( p −

/2) and insert a one operator in deuteron spin space 11 =∑

m′′
j
|m′′

j 〉〈m′′
j |. Using∫
dp〈m′

j |φ̂d ( p + 
/2)φ̂d ( p − 
/2)|m′′
j 〉

= δm′
j ,m

′′
j
+ O(
2), (33)

we can neglect the momentum dependence of the charge form
factor, as well as the magnetic and quadrupole form factors of
the deuteron. With q × q ′ = q2 sin θ ŷ, we have for the spin-
violating boost corrections in operator form

δMsv = iR(S − σ 3)y = i
q2 sin θ

24m2
(3C0 + C1)(S − σ 3)y. (34)

Here we have for convenience combined all factors into the
coefficient R. Combining our results with Eq. (21) leads to

δAy = iR
Tr

(
Syσ

y

3M
† − M Syσ

y

3 + M − M†)
Tr(MM†)

. (35)

The necessary spin matrix element follows from the Wigner-
Eckert theorem:

〈m′
j |Sy |mj 〉 = i[(1m′

j 11|1mj ) + (1m′
j 1 − 1|1mj )]. (36)

We are now in the position to study the impact on Ay .
For the nd scattering amplitude M in Eq. (35) we use the
phase shifts from Kievsky et al. [3,19]. These are based on the
Argonne v18 NN and the Urbana 3N interaction for JP up to
7/2+ (from Table 2 in Ref. [3]) and on the Argonne v14 NN
interaction for 7/2− and 9/2 � J � 13/2 (from Tables I and
II in Ref. [19]). No parameters are adjusted. As a check, we
reproduce the differential cross section of Ref. [3], which is in
very good agreement with experiment.

The effect of the spin-violating boost corrections on Ay is
shown in Fig. 2 for En = 3 MeV and in comparison to the
data from McAninch et al. [23]. We see that the influence
of the spin-violating relativistic corrections is to increase the
computed value of Ay(θ ) by about 10% at the peak. This
contribution is significant. It shows that relativistic effects
may be relevant even at very low energies because of resonant
enhancements. However, this effect alone is too small to solve
the Ay puzzle. We therefore explore the effects of initial
and final state interactions with the nucleon that has been
treated as a spectator so far, and, finally, we discuss the energy
dependence of these boost effects.

We have considered the effects of boosting the interaction
between nucleons 13 and 23, while treating the nucleon 2
and nucleon 1 as a spectator. The total momentum of the
boosted pair is effectively (q + q ′)/4. When for instance the
projectile neutron interacts with nucleon 2 before interacting
with nucleon 1, the total momentum of the 13 nucleon-pair will
be increased due to the attractive interaction between nucleons
2 and 3, and we expect our boost effect to be enhanced.
We explore the size of a 23 interaction with a schematic
square-well 1S0 potential of Ref. [20], which has a depth
V0 = 13.4 MeV and range R = 2.65 fm. Using conventional
NN interactions, we estimate the probability to find two
nucleons in a deuteron closer than R to be about 50%, so
that a 23 interaction can be followed by a 13 interaction about
half of the time. If this occurs, the relative momentum inside
the well κ is given by

κ2 = 3q2

4
+ mV0 = m

(
2En

3
+ V0

)
, (37)

so that κ ≈ 0.6 fm−1. These prescattering contributions oc-
cur about half of the time, and thus the relevant average
momentum is ≈ 0.3 fm−1. This value is about three times
larger than |q + q ′|/4 ≈ 0.1 fm−1. Therefore, we expect that

0 50 100 150

θ [deg]

0

0.02

0.04

0.06

0.08

A
y(θ

)

Kievsky et al. NN+3N
+ boost corrections
McAninch et al. (1994)

E
n
=3.0 MeV

FIG. 2. (Color online) The nd analyzing power Ay for En =
3 MeV as a function of center-of-mass scattering angle θ . The
dashed curve is based on nd phase shifts obtained from NN and
3N interactions [3,19] (see text for details). The solid curve includes
our results for the boost corrections without distortion. The data are
taken from McAninch et al. [23].
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distortion effects will increase Ay further. This simple estimate
should be taken only as an assessment that initial state
interactions can make a large contribution to the boost
effects.

With increasing energy, the resonant enhancement of the
spin-violating relativistic corrections decreases. This is due to
both the effective range ri (and the decrease of the S-wave
phase shifts with increasing energy),

1

ai

→ 1

ai

− rimErel

2
, (38)

and the impact of the imaginary part i
√

mErel. A detailed study
of the energy dependence of these boost effects is beyond the
scope of this article and will be left to a future investigation
[24].

V. SUMMARY AND FUTURE STEPS

In this article, we have presented the first estimate of the
effects of relativistic boost corrections on the nd analyzing
power Ay . We have focused on spin-violating relativistic
corrections at order (Q/m)2, which can be important at low
energies because of a resonant enhancement from the large
S-wave scattering lengths. Because boost corrections depend
on the two-body c.m. momentum, the modern viewpoint is
to consider their effects as 3N interactions. We have used
the formalism of Refs. [15–17], where it is straightforward to
include relativistic corrections to order (Q/m)2 without any
new parameters. The relevant spin-violating contribution to
the nd transition amplitude is given in Eq. (30).

These corrections induce a 10% change in the computed
value of the nd analyzing power Ay for laboratory energy
En = 3 MeV. This is a small, but significant contribution of

the sign necessary to resolve the Ay puzzle. Our result was
estimated using the plane-wave impulse approximation, which
leads to a transparent analytical calculation. The present study
is clearly not complete. The effects of initial and final state
interactions allow for additional contributions. For instance,
the effects of δV12 would not vanish (as in the present
calculation) if initial or final state interactions excited the
deuteron. Faddeev calculations that include distortions are
therefore needed to conclude on the Ay puzzle. The results
presented here are mainly intended to stimulate the interest of
the few-body community to include relativistic corrections in
their complete solutions of the 3N problem.

For energies En >∼ 30 MeV, the predicted Ay based on
microscopic NN and 3N interactions (without relativistic
corrections) is in very good agreement with experiment. Our
present results are not in contradiction to these findings,
because the resonant enhancement of our spin-violating boost
corrections decreases with energy. A detailed study of the
energy dependence will be presented in a future article [24].
In addition, future work will estimate the scaling to larger
systems and the impact on the Ay puzzle in n3H scattering
[24].
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[5] H. Witala and W. Glöckle, Nucl. Phys. A528, 48 (1991).
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