
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 76, 021901(R) (2007)

How much entropy is produced in strongly coupled quark-gluon
plasma (sQGP) by dissipative effects?
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We argue that estimates of dissipative effects based on first-order hydrodynamics with shear viscosity are
potentially misleading because higher order terms in the gradient expansion of the dissipative part of the stress
tensor tend to reduce them. Using recently obtained sound dispersion relations in thermal N = 4 supersymmetric
plasma, we calculate the resummed effect of these high-order terms for Bjorken expansion appropriate to heavy
ion collisions such as those performed at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large
Hadron Collider (LHC). A reduction of entropy production is found to be substantial, up to an order of magnitude.
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The hydrodynamic description of matter created in high-
energy collisions was proposed by Landau [1] more than
50 years ago, motivated by large coupling at small distance,
as followed from the β functions of QED and scalar theories
known at the time. Hadronic matter is of course described
by QCD, in which the coupling runs in the opposite way.
And yet, recent experiments performed at the BNL Relativistic
Heavy Ion Collider (RHIC) have shown spectacular collective
flows, well described by relativistic hydrodynamics. More
specifically, one observed three types of flow: (i) outward
expansion in the transverse plane or radial flow, (ii) azimuthal
asymmetry or elliptic flow [2,3], and (iii) the recently proposed
conical flow from quenched jets [4]. These observations lead
to the conclusion that the quark-gluon plasma (QGP) in RHIC
collisions is a near-perfect liquid in a strongly coupled regime
[5]. The issue we discuss below is the following: At what
initial time τ0 is one able to start the hydrodynamic (hydro)
description of heavy ion collisions without phenomenological
or theoretical contradictions?

Phenomenologically, it was argued in Refs. [2,3] that ellip-
tic flow is especially sensitive to τ0. Indeed, ballistic motion
of partons may quickly erase the initial spatial anisotropy on
which this effect is based. In practice, hydrodynamics at RHIC
is usually used starting from time τ0 ∼ 1/2 fm, otherwise the
observed ellipticity is not reproduced.

Can one actually use hydrodynamics reliably at such
a short time? In gaslike systems (small Knudsen number,
Kn = (mean free path)/(size) �1), one can compare viscous
hydro predictions to Boltzmann kinetics. For low-energy
heavy ion collisions, that issue was addressed in the past (see,
e.g, Kapusta’s paper [6], which focused on the amount of
entropy produced during the hydrodynamic stage). A long
history of systematic expansion beyond Navier-Stokes, such
as various versions of Burnett second-order theory accurate
to O(Kn2), and some applications can be found, e.g., in
Ref. [7].

Early stages of the collisions or conical flows from
quenched jets do correspond to Kn = O(1). Yet the strongly
coupled QGP (sQGP) is believed to be very different from
a Boltzmann gas, so a kinetic approach is inadequate. At
the classical level, one should rely instead on the molecular
dynamics developed in Ref. [8]. In this paper, however, we will

use the anti-de-Sitter space/conformal field theory (AdS/CFT)
correspondence as our main guide.

Specifically, we will ask the question: How small should the
initial hydro time τ0 be compared to a relevant “microscopic
scale”? As a relevant observable, we will monitor dissipation
via entropy production. We will vary τ0 and see how much
entropy is produced after it, comparing it to the “primordial”
entropy at τ0,�S/S0.

To set up the problem, let us start with a very crude
dimensional estimate. If we think that the QCD effective
coupling is large, i.e., αs ∼ 1, and the only reasonable
microscopic length is given by temperature,1 then the relevant
micro-to-macro ratio of scales is simply T0τ0. With T0 ∼
400 MeV at RHIC, one finds this ratio to be close to unity.
We are then led to a pessimistic conclusion: at such time,
the application of any macroscopic theory, thermodynamic
or hydrodynamic, seems to be impossible, since order one
corrections are expected.

Let us then perform the first approximation, including the
explicit viscosity term to the first order. The zero-order (in the
mean free path) stress tensor used in the ideal hydrodynamics
has the form

T (0)
µν = (ε + p) uµuν + p gµν, (1)

while dissipative corrections are induced by gradients of the
velocity field. The well-known first-order corrections are due
to shear (η) and bulk (ξ ) viscosities, that is,

δT (1)
µν = η

(∇µuν + ∇νuµ − 2
3�µν∇ρuρ

) + ξ (�µν∇ρuρ).

(2)

In this equation, we used the following projection operator
onto the matter rest frame:

∇µ ≡ �µν∂ν, �µν ≡ gµν − uµuν. (3)

The energy-momentum conservation ∂µ Tµν at this order
corresponds to the Navier-Stokes equation.

Because colliding nuclei are Lorentz-compressed, the
largest gradients at early time are longitudinal, along the beam
direction. The expansion at this time can be approximated

1Note we have ignored, e.g., �QCD.
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by the well-known Bjorken rapidity-independent setup [9], in
which hydrodynamic equations depend on only one coordi-
nate: proper time τ = √

t2 − x2.

1

ε + p

dε

dτ
= 1

s

ds

dτ
= − 1

τ

(
1 − (4/3)η + ξ

(ε + p)τ

)
, (4)

where we have introduced the entropy density s = (ε + p)/T .
Note that for traceless Tµν (conformally invariant plasma), the
bulk viscosity ξ = 0.

For reasons which will soon become clear, let us compare
this equation to another problem in which large longitudinal
gradients appear as well, namely, a sound wave in the medium.
The dispersion relation (the pole position) for a sound wave
with frequency ω and wave vector q is, at small q,

ω = csq − i

2
q2�s, �s ≡ 4

3

η

ε + p
. (5)

Notice that the right hand side of Eq. (4) contains precisely the
same combination of viscosity and thermodynamic parameters
as appears in the sound attenuation problem: the length �s ,
which measures directly the magnitude of the dissipative
corrections. At proper times τ ∼ �s , one has to abandon
the hydrodynamics altogether, as the dissipative corrections
cannot be ignored.

For the entropy production in Eq. (4), the first correction
to the ideal case is (1 − �s/τ ). Since the correction to one is
negative, it reduces the rate of the entropy decrease with time.
An equivalent statement is that the total positive sign shows
that some amount of entropy is generated by the dissipative
term. Danielewicz and Gyulassy [10] have analyzed Eq. (4)
in great detail considering various values of η. Their results
indicate that the entropy production can be substantial.

Our present study is motivated by the following argument.
If the hydrodynamic description is forced to begin at early time
τ0 which is not large compared to the intrinsic microscale 1/T ,
then limiting dissipative effects to the first gradient only (δT (1)

µν )
is parametrically not justified and higher order terms have to
be accounted for. Ideally, those effects need to be resummed.
As a first step, however, we may attempt to guess their sign
and estimate the magnitude.

Formally, one can think of the dissipative part of the
stress tensor δTµν as expended in a series containing all
derivatives of the velocity field u, δT 1

µν being the first term
in the expansion. In the general 3 + 1 dimensional case, there
are many structures, each entering with a new and independent
viscosity coefficient. We call them higher order viscosities, and
the expansion is somewhat similar to a twist expansion. For
the 1 + 1 Bjorken problem, the appearance of the extra terms
modifies Eq. (4), which can be written as a series in inverse
proper time

∂τ (sτ )

s (τ T )
= 4

η

s

[
1

3

1

(τ T )2
+

∞∑
n=2

cn

(T τ )2n

]
. (6)

We have put T here simply for dimensional reasons: clearly T τ

is a micro-to-macro scale ratio which determines convergence
of these series and the total amount of produced entropy. Sim-
ilarly, the sound wave dispersion relation becomes nonlinear

as we go beyond the lowest order:

ω = �[ω(q)] + i �[ω(q)],

�[ω]

2 π T
= cs

q

2 π T
+

∞∑
n=1

rn

( q

2 π T

)2 n+1
, (7)

�[ω]

2πT
= −4πη

s

[
1

3

( q

2πT

)2
+

∞∑
n=2

ηn

( q

2πT

)2 n

]
.

Based on T -parity arguments, we keep only odd (even) powers
of q for the real (imaginary) parts of ω. The coefficients
cn, rn, and ηn are related since they originate from the very
same gradient expansion of Tµν . Although both the entropy
production series above and sound absorption should converge
to a sign-definite answer, the coefficients of the series may well
be of alternating sign (as we will see shortly).

Clearly, keeping these next-order terms can be useful only
provided there is some microscopic theory which would make
it possible to determine the values of the high-order viscosities.
For strongly coupled QCD plasma, this information is at the
moment beyond current theoretical reach, and we have to rely
on models. A particularly useful and widely studied model
of QCD plasma is the N = 4 supersymmetric plasma, which
is also conformal (CFT). The AdS/CFT correspondence [11]
(see Ref. [12] for review) relates the strongly coupled gauge
theory description to the weakly coupled gravity problem in
the background of the AdS5 black hole metric. Remarkably,
certain information on higher order viscosities in the CFT
plasma can be found in the literature, and we exploit this
possibility below.

The viscosity-to-entropy ratio (η/s = 1/4π ) deduced from
AdS [13] turns out to be quite a reasonable approximation to
the values appropriate for the RHIC data description. Thus
one may hope that the information on the higher viscosities
gained from the very same model can be trusted as a model
for QCD. Admittedly having no convincing argument in favor,
we simply assume that the viscosity expansion of the QCD
plasma displays very similar behavior, both qualitative and
quantitative, as its CFT sister.

Our estimates are based on the analysis of the quasinormal
modes in the AdS black hole background by Kovtun and
Starinets [14]. The dispersion relation for the sound mode,
calculated in Ref. [14], is shown in Fig. 1. The real and
imaginary parts of ω correspond to the expressions given
in Eq. (7). At q → 0, they agree with the leading-order
hydrodynamic dispersion relation for sound [Eq. (5)] in which
damping is quadratic in momentum.

The first important observation is that the next-order
coefficient η2 is negative, reducing the effect of the first
(Navier-Stokes) term when gradients are large. The second
is that |�[ω]| has a maximum at q/2πT ∼ 1, and at large
q the imaginary part starts to decrease. This means that the
expansion (7) has a radius of convergence q/2πT ∼ 1.

This behavior of sound is not common; usually the dissi-
pation grows until the inverse momenta reach the interparticle
distance and sound modes lose their meaning. But the CFT
liquid is also not usual, that is, the scale T and inverse
interparticle distance are infinitely separated; the latter goes
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FIG. 1. Sound dispersion (real and imaginary parts) obtained
from the analysis of quasinormal modes in the AdS black hole
background. Both ω and q are plotted in units of 2 π T . The result
and figure are taken from Ref. [14].

to infinity with the number of colors N
2/3
c → ∞, and thus

sound modes may exist at all momenta.
Why does the AdS/CFT construction predict a reduced

damping at large momenta? Unfortunately, there are no an-
alytic results for the AdS black hole quasinormal frequencies.
We have reproduced the numerical results of Kovtun and
Starinets [14]. While doing so, we reached a qualitative
understanding of the phenomenon as it emerges from the
gravity side: the momentum q entering the Schrodinger-type
equation for the quasinormal modes in AdS plays a role of
angular momentum, and the O(q2) term in this equation is
essentially the centrifugal term. The centrifugal potential, as
usual, acts toward reducing the wave functions near the AdS
origin (or rather the black hole horizon where absorption
takes place). Thus quasinormal frequencies generically emerge
with the damping term decreasing with q. This observation is
consistent with the results known for the quasinormal modes
of the usual four-dimensional Schwartschield black hole, the
problem set up 50 years ago by Regge and Wheeler [15].
Thanks to significant progress made in recent years, the
modes are now known analytically [16,17]. Despite significant
differences between this case and the AdS black hole in five
dimensions, one indeed finds the orbital term reducing the
damping, as argued above.

The lowest frequency in the sound channel is a special
case. Its imaginary part cannot decrease with q since it starts
from zero at q = 0; so it must grow first, before decreasing.
Analytic results for the AdS modes would certainly help clarify
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FIG. 2. (Color online) Entropy production as a function of proper
time for initial time τ0 = 0.2 fm (left) and τ0 = 0.5 fm (right).
The initial temperature T0 = 300 MeV. The dashed (blue) curves
correspond to the first-order (shear) viscosity approximation Eq. (4).
The solid curve (red) is the all-order dissipative resummation Eq. (6).

the nature of the phenomenon, but the real challenge is to
understand it from the gauge theory side.

To estimate the effect of higher viscosities on entropy
production in the Bjorken setup, we first identify τ in Eq. (6)
with 2π/q in Eq. (7). [This identification is naturally suggested
by comparing the first term in the bracket in Eq. (6) with its
partner in Eq. (7).] Indeed, while in proper time and spatial
rapidity τ, η coordinates, the factors of 1/τ come from its
curved geometry, in the original coordinates t, x one may still
think of those factors as coming from expansion in longitudinal
space derivatives, with τ being simply an instantaneous
longitudinal size. Thus we will identify the coefficients cn

with ηn. Both sound attenuation and entropy production in
question are one-dimensional problems associated with similar
longitudinal gradients and presumably similar physics. In
practice, we use the curve for the imaginary part of ω (Fig. 1)
as an input for the right hand side of Eq. (6).

The numerical results are shown in Figs. 2 and 3, in
which we compare our estimates with the “conventional”
shear viscosity results from Eq. (4). To be fully consistent
with the model, we set η/s = 1/4π . We also set the initial
temperature T0 = 300 MeV, while the standard equation of
state s = 4 kSBT 3. For the coefficient kSB we use the “QCD”
value

kSB = π2

90

(
2(Nc − 1)2 + 7

2
Ncnf

)
, nf = 3, Nc = 3.

Figure 2 presents the results for entropy production as a
function of proper time for two initial times τ0 = 0.2 and
τ0 = 0.5 fm. The dashed lines correspond to the first-order
result in Eq. (4), while the solid curves include the higher order
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FIG. 3. (Color online) Fraction of entropy produced during
the hydro phase as a function of initial proper time. The initial
temperature T0 = 300 MeV. The left (blue) points correspond to the
first-order (shear) viscosity approximation. The right (red) points are
for the all-order resummation.
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viscosity corrections. Noticeably, there is a dramatic effect
toward reduction of the entropy production as we start the
hydro evolution at earlier times (the effect is almost invisible
on the temperature profile). This is the central message of the
present paper.

Figure 3 illustrates the relative amount of entropy produced
during the hydro phase as a function of initial time. If the
first-order hydrodynamics is launched at very early times,
the hydro phase produces an excessive amount of entropy
by up to 250%. (Such a large discrepancy is not seen in the
RHIC data.) In sharp contrast, the result from the resummed
viscous hydrodynamics is very stable and does not produce
more than some 25% of initial entropy, even if pushed to start
from extremely early times. The right-hand figure displays the
absence of any pathological explosion at small τ0.

It is worth commenting that we carried the analysis using
the minimal value for the ratio η/s = 1/4π . We expect that if
this ratio is taken larger, the discrepancy between the first-order
dissipative hydro and all orders will be even stronger.

Before concluding this paper, we note that a practical
implementation of relativistic viscous hydrodynamics has
followed the Israel-Stewart second-order formalism (for recent
publications see Ref. [18]) in which one introduces an
additional parameter, the relaxation time for the system. Then
the dissipative part of the stress tensor is found as a solution
of an evolution equation, with the relaxation time being
its parameter. For the Bjorken setup, the dissipative tensor
thus obtained has all powers in 1/τ and might resemble the
expansion in Eqs. (6) and (7). The use of AdS/CFT may shed
light on the interrelation between the two approaches: the first
step in this direction has been made recently [19], resulting in
a numerically very small relaxation time.

Finally, why can macroscopic approaches such as hydrody-
namics be rather accurate at such a short time scale? In trying

to answer this central question, one should keep in mind that
1/T is not the shortest microscopic scale. The interparton
distance is much smaller, ∼ 1/(T N

1/3
dof ), where the number

of effective degrees of freedom Ndof ∼ 40 in QCD; while
Ndof ∼ N2

c → ∞ in the AdS/CFT approach.
In summary, we have argued that the higher order dissi-

pative terms strongly reduce the effect of the usual viscosity.
Therefore an “effective” viscosity-to-entropy ratio, found from
a comparison of Navier-Stokes results and experimental data,
can even be below the (proposed) lower bound of 1/4π . We
conclude that it is not impossible to use a hydrodynamic
description of a RHIC collision starting from very early times.
In particular, our study suggests that the final entropy observed
and its “primordial” value obtained right after collision should
indeed match, with an accuracy of 10–20%.

Note added: After this paper was submitted for archiving
and publication, we learned of the results of three independent
works [20] addressing viscous corrections to the elliptic flow.
It emerges from Ref. [20] that only very small η/s, close or
even smaller than its lower bound 1/4π , is needed to fit the
data. However, at early times, when the elliptic flow is formed,
the next-order viscous effects pointed out in our paper are
important. They may partially cancel the first-order viscous
effect and thus explain this puzzling discrepancy.

We are thankful to Adrian Dumitru whose results (presented
in his talk at Stony Brook, see also Ref. [21]) inspired us
to think about the issue of entropy production during the
hydrodynamic phase. He emphasized to us the important
problem of matching the final entropy measured after the
late hydro stage with the early-time partonic predictions,
based on approaches such as the color glass condensate.
This work is supported by the U.S. DOE through Grant Nos.
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[1] L. D. Landau, Izv. Akad Nauk SSSR Ser. Fiz. 17, 51 (1953).
Reprinted in Edmund Landau: Collected Works, edited by
L. Mirsky et al. (Thales Verlag, Essen, Germany,
1985).

[2] D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86,
4783 (2001); arXiv:nucl-th/0110037.

[3] P. F. Kolb and U. W. Heinz, in Quark-Gluon Plasma 3, edited
by R. C. Hwa and X.-N. Wang (World Scientific, Singapore,
2004).

[4] J. Casalderrey-Solana, E. V. Shuryak, and D. Teaney, J. Phys.
Conf. Ser. 27, 22 (2005); Nucl. Phys. A774, 577 (2006).

[5] E. V. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004).
[6] J. Kapusta, Phys. Rev. C 24, 2545 (1981).
[7] R. K. Agarwal et al., Phys. Fluids 13, 3061 (2001).
[8] B. A. Gelman, E. V. Shuryak, and I. Zahed, Phys. Rev. C 74,

044908 (2006).
[9] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).

[10] P. Danielewicz and M. Gyulassy, Phys. Rev. D 31 53
(1985).

[11] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); Int. J.
Theor. Phys. 38, 1113 (1999).

[12] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Phys. Rep. 323, 183 (2000).

[13] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.
94, 111601 (2005).

[14] P. K. Kovtun and A. O. Starinets, Phys. Rev. D 72, 086009
(2005).

[15] T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).
[16] L. Motl and A. Neitzke, Adv. Theor. Math. Phys. 7, 307 (2003).
[17] A. M. van den Brink, J. Math. Phys. 45, 327 (2004).
[18] U. W. Heinz, in Proceedings of the International Workshop

“Xtreme QCD,” August 2–5, 2005, University of Wales,
Swansea, edited by G. Aarts and S. Hands; R. Baier
and P. Romatschke, arXiv:nucl-th/0610108; R. Baier,
P. Romatschke, and U. A. Wiedemann, Nucl. Phys. A782, 313
(2007); P. Romatschke, arXiv:nucl-th/0701032.

[19] M. P. Heller and R. A. Janik, arXiv:hep-th/0703243.
[20] P. Romatschke and U. Romatschke, arXiv:nucl-th/0706.1522;

U. Heinz et al., talk presented at “Exotic Phase of Matter,”
Perimeter Institute for Theoretical Physics, Waterloo, Ont., May
2007; K. Dusling and D. Teaney (in preparation).

[21] A. Dumitru, E. Molnar, and Y. Nara, arXiv:nucl-th/0706.2203.

021901-4


