PHYSICAL REVIEW C 76, 021302(R) (2007)

$2_1^+ \rightarrow 0_1^+$ transition strengths in Sn nuclei

J. N. Orce,^{1,*} S. N. Choudry,¹ B. Crider,¹ E. Elhami,¹ S. Mukhopadhyay,¹ M. Scheck,¹ M. T. McEllistrem,¹ and S. W. Yates^{1,2}

¹Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA

²Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA

(Received 10 May 2007; published 20 August 2007)

The lifetime of the 2_1^+ state at 1256.7 keV in ¹¹²Sn has been determined using the $(n,n'\gamma)$ reaction. Angular distribution measurements were carried out at a neutron energy of 1.7 MeV, above the 2_1^+ energy threshold and below that of the second excited level. Through the Doppler-shift attenuation method, the lifetime of the 2_1^+ state is determined as 750_{-90}^{+125} fs, which gives a $B(E2; 2_1^+ \rightarrow 0_1^+)$ value of $10.9_{-1.6}^{+1.5}$ W.u. This *E*2 strength in ¹¹²Sn also allows a redetermination of the $B(E2; 2_1^+ \rightarrow 0_1^+)$ in ¹⁰⁸Sn as 10.8(3.0) W.u. These values result in a symmetric trend around the neutron midshell in the systematics of *E*2 strengths in the even-mass tin isotopes and do not support N = 64 or N = 66 subshell gaps. The symmetric trend is in agreement with recent shell model predictions, where proton-core excitations were allowed in the calculations.

DOI: 10.1103/PhysRevC.76.021302

PACS number(s): 21.10.Re, 21.10.Tg, 21.60.Cs, 23.20.-g

With a large number of stable isotopes and the Z =50 shell closure, the tin nuclei provide an ideal testing ground for systematic studies of both individual-particle and collective nature. From the increased excitation energies of the 2^+_1 states in ¹¹⁴Sn and ¹¹⁶Sn as compared with other Sn isotopes (see Fig. 1), Pauling concluded that either N = 64 or N = 66 could be considered semimagic [1]. Reduced transition probabilities test nuclear structure in still greater detail than excitation energies, because the former involve the wave functions of the initial and final states. From the experimental $B(E2; 2_1^+ \rightarrow$ 0_1^+) values in the even-mass Sn isotopes (shown in Fig. 2 with data taken from Refs. [2,3]), evidence for subshell effects is not obvious. The light tin isotopes, up to N = 64, present an asymmetry in E2 strengths with respect to the heavier isotopes. The ambiguous trend in the light tin isotopes could be attributed partially to the large uncertainties of the $B(E2; 2_1^+ \rightarrow 0_1^+)$ values in ¹⁰⁸Sn and ¹¹⁴Sn, and the recently determined E2 strength in ¹¹⁰Sn [4]. In ¹¹²Sn, nonetheless, a $B(E2; 2^+_1 \rightarrow 0^+_1)$ value of 15.2(9) W.u., with only a 6% uncertainty, clearly deviates from the trend observed in the heavier Sn isotopes. The $B(E2; 2^+_1 \rightarrow 0^+_1)$ value of 15.1(3.7) W.u. in ¹⁰⁸Sn [3] has recently been obtained from intermediate-energy Coulomb excitation in inverse kinematics by normalizing to the accepted $B(E2; 2_1^+ \to 0_1^+)$ of 15.2(9) W.u. in ¹¹²Sn. The latter strength was obtained from previous Coulomb-excitation [5,6] and (α, α') inelastic scattering [7] measurements, which yield an accepted lifetime of $\tau = 535(30)$ fs for the 2⁺₁ state [8].

In the Coulomb-excitation study of ¹⁰⁸Sn by Banu and collaborators [3], unexpected shell effects have been suggested in the even-mass Sn isotopes. The $B(E2; 2_1^+ \rightarrow 0_1^+)$ value of 15.1(3.7) W.u. in ¹⁰⁸Sn was compared with experimental data and shell-model predictions in the other even-mass Sn isotopes. Consequently, the break-up of the Z = 50 closed shell and the presence of strong proton-core excitations were proposed [3]. Large-scale shell-model calculations were

CD-Bonn nucleon-nucleon potential [9] and the G-matrix prescription [10]. Predictions using ¹⁰⁰Sn and ⁹⁰Zr as closed-shell cores poorly reproduced the experimental $B(E2; 2_1^+ \rightarrow 0_1^+)$ values if only neutron valence excitations were considered [3]. Despite the ambiguity of experimental single-particle energies from odd-mass Sn isotopes and, hence, uncertainty of the monopole strength in the effective interaction, some agreement was reached when both proton- and neutron-core excitations were included in an untruncated gds shell-model space [3]. Nevertheless, the experimental $B(E2; 2_1^+ \rightarrow 0_1^+)$ values in ¹⁰⁸Sn and ¹¹²Sn clearly exceed predictions, even when a maximum number of four proton particle-hole excitations were allowed in the calculations. Further encouraging relativistic mean-field calculations by Ansari and Ring [11] predict the enhancement of B(E2) values in the Sn isotopes with the decrease of mass number, A, with a maximum around A = 106. Such an enhancement is related to the increasing contribution of protons to the total wave function normalization. Here, the authors claim the need for a new fix of the force parameters used in the calculations since different sets of force parameters give quite different results.

performed using a new effective interaction obtained from the

Although the $B(E2; 2_1^+ \rightarrow 0_1^+)$ value in ¹¹²Sn seems accurately determined, the lifetime of the 2^+_1 state has not been directly measured through Doppler-shift methods. In addition, the asymmetric trend in the systematics of E2 strengths in the even-mass tin isotopes, as well as the disagreement with shell-model predictions, demands a further examination of the $B(E2; 2_1^+ \rightarrow 0_1^+)$ value in ¹¹²Sn by other experimental probes. Recently, ¹¹²Sn has been studied through the $(n,n'\gamma)$ reaction by Kumar and collaborators [12]; however, the high neutron energies (2.9 and 3.8 MeV) used in the angular-distribution measurements lead to feeding from higher-lying levels and hinder a direct lifetime determination of the 2^+_1 state at 1256.7 keV. In this work, we present a similar angulardistribution study of ¹¹²Sn, but at a lower neutron energy. The lifetime of the 2^+_1 state, determined with the Doppler-shift attenuation method, yields a new value for the $2^+_1 \rightarrow 0^+_1$ transition strength, which is used to examine the trend of $B(E2; 2_1^+ \rightarrow 0_1^+)$ values in the even-mass tin isotopes.

^{*}URL: http://www.pa.uky.edu/ jnorce

FIG. 1. (Color online) Excitation energies of the 2_1^+ states in evenmass Sn isotopes.

The first excited state of ¹¹²Sn was populated through the inelastic neutron scattering reaction. A 3.91-g metallic sample enriched to 99.5% in ¹¹²Sn was bombarded with nearly monoenergetic neutrons ($\Delta E \sim 60$ keV). Pulsed proton beams with a 1.875-MHz repetition rate and with a pulse width of ~1 ns were obtained from the electrostatic accelerator at the University of Kentucky, and neutrons were produced by the ³H(p,n)³He reaction. The γ rays from the ($n,n'\gamma$) reaction were observed using a BGO Compton-suppressed high-purity germanium (HPGe) detector with a relative efficiency of 55% and an energy resolution of 1.8 keV (FWHM) at 1332 keV. The detector was located 1.19 m from the scattering sample, and time-of-flight techniques were used for prompt γ -ray gating to suppress background radiation and improve the quality of the data.

Angular distribution measurements were carried out at a neutron energy of 1.7 MeV and at 10 different angles ranging from 40° to 150°. The 1.7-MeV neutron energy was chosen to populate the 2_1^+ state at 1256.7 keV yet to avoid feeding from higher-lying levels. The energy spectrum was monitored with a ⁶⁰Co radioactive source, which decays to ⁶⁰Ni with the emission of 1173.237 and 1332.501 keV γ rays and served as an energy reference. A detailed description of the experimental

FIG. 2. (Color online) $B(E2; 2_1^+ \rightarrow 0_1^+)$ values in even-mass tin isotopes. Data are taken from previous work [2–4].

PHYSICAL REVIEW C 76, 021302(R) (2007)

FIG. 3. (Color online) γ -ray spectra from the ${}^{112}\text{Sn}(n,n'\gamma)$ reaction obtained at 40° with an incident neutron energy of 1.7 MeV for the ${}^{112}\text{Sn}$ sample (top panel) and the composite sample (${}^{112}\text{Sn}$ and natural tin; bottom panel).

setup may be found elsewhere [13,14]. In addition, similar angular distribution measurements were performed at 1.7 MeV using the same ¹¹²Sn sample integrated with natural tin for comparison with well-known lifetimes in ¹¹⁶Sn and ¹¹⁸Sn. The composite sample was a 12.43-g cylinder (3.91 g from ¹¹²Sn and 8.52 g from natural tin) with a height of 2.0 cm and a diameter of 1.2 cm. Figure 3 shows energy spectra at 40° from the two angular-distribution measurements performed in this work.

Lifetimes were determined through the Doppler-shift attenuation method following the $(n,n'\gamma)$ reaction [15]. Here, the shifted γ -ray energy is given by

$$E_{\gamma}(\theta_{\gamma}) = E_{\gamma_0} \left[1 + \frac{v_0}{c} F(\tau) \cos \theta_{\gamma} \right], \tag{1}$$

with E_{γ_0} being the unshifted γ -ray energy, v_0 the initial recoil velocity in the center of mass frame, θ the angle of observation, and $F(\tau)$ the attenuation factor, which is related to electronic and nuclear stopping processes described by Blaugrund [16]. Finally, the lifetimes of the states can be determined by comparison with the $F(\tau)$ values calculated using the Winterbon formalism [17].

For comparison purposes, we have redetermined the lifetimes of the 2^+_1 states in ¹¹⁶Sn and ¹¹⁸Sn as 730^{+295}_{-200} and 850^{+250}_{-180} fs, respectively. The lifetime of the 2^+_1 state in ¹¹⁶Sn is in general agreement with nuclear resonance scattering [18–21] and Coulomb-excitation [22] measurements. However, from indium contained in our HPGe spectrometer, the 1293.6-keV transition de-exciting the 2^+_1 level in ¹¹⁶Sn has an ~8% ¹¹⁵In(n,γ) component that has no Doppler shift. Allowance for that uncertainty has been included. The current lifetime measurement in ¹¹⁸Sn, shown in Fig. 4, is also in general agreement with Coulomb-excitation [23] and (γ, γ') [20,24] measurements, which led to lifetimes of 700(30) and 665(45) fs, respectively.

The fits to the Doppler-shift attenuation data for the 1256.7-keV γ -ray de-exciting the 2^+_1 state in ¹¹²Sn are plotted in Fig. 5 and give lifetimes of $\tau = 745^{+170}_{-120}$ and $\tau = 760^{+175}_{-130}$ fs,

FIG. 4. (Color online) Doppler-shift attenuation data for the γ -ray transition de-exciting the 2⁺₁ state at 1229.7 keV in ¹¹⁸Sn.

in measurements taken with the ¹¹²Sn sample only and ¹¹²Sn together with natural tin, respectively. The weighted average gives $\tau = 750^{+125}_{-90}$ fs and an E2 strength to the ground state of $10.9^{+1.5}_{-1.6}$ W.u. This $B(E2; 2^+_1 \rightarrow 0^+_1)$ value is in disagreement with the value of 15.2(9) W.u. given in the Nuclear Data Sheets [25]. In particular, this disagreement arises because shorter lifetimes were determined in Coulomb-excitation studies [5,6], whereas the lifetime of 707(160) fs determined through (α, α') inelastic scattering measurements is in good agreement with our data [7]. As the $B(E2; 2^+_1 \to 0^+_1)$ value of 15.1(3.7) W.u. in ¹⁰⁸Sn was obtained by normalizing to the former $B(E2; 2_1^+ \rightarrow$ 0_1^+) value in ¹¹²Sn [3], we can also redetermine the E2 strength in ¹⁰⁸Sn using the same prescription given by Banu and co-workers [3]. The result is a smaller $B(E2; 2_1^+ \rightarrow 0_1^+)$ value of 10.8(3.0) W.u. The revised $B(E2; 2_1^+ \rightarrow 0_1^+)$ values determined in this work for ¹⁰⁸Sn and ¹¹²Sn are plotted as circles in Fig. 6.

When we include our new data in Fig. 2, and despite the large uncertainty of the $B(E2; 2_1^+ \rightarrow 0_1^+)$ value in ¹¹⁴Sn, a characteristic symmetric trend emerges in the systematics of

FIG. 5. (Color online) Doppler-shift attenuation data for the γ -ray de-exciting the 2_1^+ state at 1256.7 keV in ¹¹²Sn from angular distribution measurements using ¹¹²Sn only (top panel) and ¹¹²Sn with natural tin (bottom panel). The weighted average gives $\tau = 750_{-90}^{+125}$ fs.

PHYSICAL REVIEW C 76, 021302(R) (2007)

FIG. 6. (Color online) $B(E2; 2_1^+ \rightarrow 0_1^+)$ values in even-mass tin isotopes. Data from Refs. [2–4] are shown as diamonds, and the new $B(E2; 2_1^+ \rightarrow 0_1^+)$ values for ¹⁰⁸Sn and ¹¹²Sn are given in open circles.

the E2 strengths around midshell N = 66. In a recent Coulomb excitation measurement of ¹¹⁰Sn [26], a $B(E2; 2^+_1 \rightarrow 0^+_1)$ value of 14.05(1.41) W.u. has been determined, in agreement with the enhancement of B(E2) values proposed by Banu and co-workers [4] (as shown in Figs. 2 and 6), and in disagreement with the parabolic trend predicted by shell model calculations. The value obtained for ¹¹⁰Sn was normalized to the previously accepted $B(E2; 2_1^+ \rightarrow 0_1^+)$ in ⁵⁸Ni of 10.42(30) W.u. (or $B(E2; 0_1^+ \to 2_1^+) = 0.0695(20) e^2 b^2$ [26]). A recent update of the nuclear data base (ENSDF) in September 2006 establishes a strikingly different $B(E2; 2^+_1 \rightarrow 0^+_1)$ value of 7.4(1) W.u., in agreement with the only direct lifetime measurement of the 2^+_1 state in ⁵⁸Ni [27]. This decrease in the collectivity of the 2_1^+ state in ⁵⁸Ni would lead to a similar shift in the data point for ¹¹⁰Sn. When compared with previous shell-model calculations [3], the reduction in $B(E2; 2^+_1 \rightarrow 0^+_1)$ values in ¹⁰⁸Sn and ¹¹²Sn implies that even while proton-core polarization effects are still important contributions to the E2 strengths, the inclusion of four proton particle-hole excitations in the untruncated gds shell-model space seems excessive. Just two-proton (particle-hole) core excitations or even four proton (particle-hole) excitations truncated to the $0g_{9/2}$, $0g_{7/2}$, $1d_{5/2}$ orbitals seems to reproduce the data well, given the strong assumptions of an N = 50 shell closure and the ambiguity of the monopole strengths of single-particle states. Finally, although our results do not support the existence of an N = 64 subshell, the large uncertainty of the $B(E2; 2^+_1 \rightarrow$ 0_1^+) value in ¹¹⁴Sn clearly needs to be addressed in future experiments.

In conclusion, we have determined a lifetime of $\tau = 750^{+125}_{-90}$ fs for the 2^+_1 state in ¹¹²Sn. This lifetime is somewhat longer than that determined in previous measurements and gives a $B(E2; 2^+_1 \rightarrow 0^+_1)$ value of $10.9^{+1.5}_{-1.6}$ W.u. By renormalizing to this value, we obtain a $2^+_1 \rightarrow 0^+_1 E2$ strength of 10.8(3.0) W.u. in ¹⁰⁸Sn. When compared with the systematics of E2 strengths in the even-mass Sn isotopes, a symmetric trend emerges around N = 66, in agreement with recent shell-model calculations where proton-core excitations were allowed. This lower collectivity in the light Sn isotopes does not necessarily support N = 64 or N = 66 as semimagic closed shells. Moreover, an untruncated *gds* major shell-model space is not needed to explain the lower $B(E2; 2_1^+ \rightarrow 0_1^+)$ values determined in this work.

In the near future, we plan to study ¹¹⁴Sn through the $(n,n'\gamma)$ reaction, where we expect to determine the lifetime of the 2_1^+ state and the $2_1^+ \rightarrow 0_1^+$ transition strength. If successful, this result will shed light on core-polarization effects from the

- [1] L. Pauling, Proc. Nat. Acad. Sci. USA 78, 5296 (1981).
- [2] S. Raman, C. W. Nestor, and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).
- [3] A. Banu et al., Phys. Rev. C 72, 061305(R) (2005).
- [4] J. Cederkäll et al., Phys. Rev. Lett. 98, 172501 (2007).
- [5] R. Graetzer, S. M. Cohick, and J. X. Saladin, Phys. Rev. C 12, 1462 (1975).
- [6] P. H. Stelson, F. K. McGowan, R. L. Robinson, and W. T. Milner, Phys. Rev. C 2, 2015 (1970).
- [7] G. Bruge, J. C. Faivre, H. Faraggi, and A. Bussiere, Nucl. Phys. A146, 597 (1970).
- [8] S. Raman, C. H. Malarkey, W. T. Milner, C. W. Nestor, Jr., and P. H. Stelson, At. Data Nucl. Data Tables 36, 1 (1987).
- [9] R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53, R1483 (1996).
- [10] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep. 261, 125 (1995).
- [11] A. Ansari and P. Ring, Phys. Rev. C 74, 054313 (2006).
- [12] A. Kumar, J. N. Orce, S. R. Lesher, C. J. McKay, M. T. McEllistrem, and S. W. Yates, Phys. Rev. C 72, 034313 (2005).
- [13] P. E. Garrett, N. Warr, and S. W. Yates, J. Res. Natl. Inst. Stand. Technol. **105**, 141 (2000).
- [14] S. W. Yates, T. B. Brown, C. D. Hannant, J. R. Vanhoy, and N. Warr, Heavy Ion Phys. **12**, 295 (2000).

PHYSICAL REVIEW C 76, 021302(R) (2007)

Z = 50 shell closure as well as on the possibility of an N = 64 semimagic closed shell.

The authors gratefully acknowledge fruitful discussions with F. Nowacki and the assistance of H. E. Baber. We thank J. A. Becker, E. B. Norman, and L. A. Bernstein for their assistance with the isotopically enriched material used in these measurements. This work was partially supported by the U.S. National Science Foundation under Grant No. PHY-0354656.

- [15] T. Belgya, G. Molnár, and S. W. Yates, Nucl. Phys. A607, 43 (1996).
- [16] A. E. Blaugrund, Nucl. Phys. 88, 501 (1966).
- [17] K. B. Winterbon, Nucl. Phys. A246, 293 (1975).
- [18] N. Lingappa, E. Kondaiah, C. Badrinathan, M. D. Deshpande, and M. Balakrishnan, Nucl. Phys. 38, 146 (1962).
- [19] D. K. Kaipov, Y. K. Shubnyi, R. B. Begzhanov, and A. A. Islamov, Zh. Eksp. Teor. Fiz. 43, 808 (1962); Sov. Phys. JETP 16, 572 (1963).
- [20] Y. Cauchois, H. Ben Abdelaziz, R. Kherouf, and C. Schloesing-Moller, J. Phys. G 7, 1539 (1981).
- [21] G. B. Beard and W. H. Kelly, Nucl. Phys. 43, 523 (1963).
- [22] R. Graetzer, S. M. Cohick, and J. X. Saladin, Phys. Rev. C 12, 1462 (1975).
- [23] N.-G. Jonsson, A. Bäcklin, J. Kantele, R. Julin, M. Luontama, and A. Passoja, Nucl. Phys. A371, 333 (1981).
- [24] B. Hrastnik, V. Knapp, and M. Vlatkovic, Nucl. Phys. **89**, 412 (1966).
- [25] D. De Frenne and E. Jacobs, Nucl. Data Sheets **79**, 639 (1996).
- [26] J. Cederkäll, A. Ekström, and I. Stefanescu (private communication).
- [27] O. Kenn, K.-H. Speidel, R. Ernst, J. Gerber, P. Maier-Komor, and F. Nowacki, Phys. Rev. C 63, 064306 (2001).