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Extraction of the longitudinal and transverse response functions in (e, e′ p) reactions
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In this Brief Report we extract the longitudinal and transverse response functions from exclusive (e, e′p) cross
sections at fixed squared four-momentum transfer Q2 in the quasielastic region. They are extracted in parallel
kinematics by applying the Rosenbluth separation to the (e, e′p) reactions. The distorted Coulomb effects are
also taken into account on each extracted response functions. The Coulomb effects in the response functions are
different from those of the corresponding cross sections.
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Medium and high energy electron scattering has been
long acknowledged as a useful tool to investigate nuclear
structure and properties in the quasielastic region. In particular,
the exclusive (e, e′p) reactions have given many fruitful
results for the interference response functions from the target
nuclei, which could not be obtained from the inclusive (e, e′)
reactions in the quasielastic region. In the plane wave Born
approximation (PWBA), where the electrons are described
by Dirac plane waves, the cross section for the exclusive
(�e, e′p) reactions with incoming polarized electron beam is
given by

d3σ

dEf d�f d�p

= K[vLRL + vT RT + vT T cos 2φpRT T

+ vLT cos φpRLT + hvLT ′ sin φpRLT ′], (1)

where RL,RT ,RT T , RLT , and RLT ′ represent the longitudinal,
transverse, transverse-transverse, longitudinal-transverse, and
polarized longitudinal-transverse response functions, respec-
tively. If the incident electron beam is unpolarized the fifth
term (polarized longitudinal-transverse response function)
disappears. In particular, the fifth term is known to vanish
in the absence of the final state interaction of the knocked-out
proton [1]. The incoming and outgoing electrons define the
scattering plane (x-z plane) with p

µ

i = (Ei, pi) and p
µ

f =
(Ef , pf ), respectively. The three-momentum transfer q is
along ẑ direction, φp is the azimuthal angle of the knocked-out
proton measured with the electron plane, and h is the helicity
of the polarized incident electron. K denotes the electron
kinematics factor given by pEpσM/(2π )3 with the Mott cross
section σM and the knocked-out proton momentum p and
energy Ep. The functions vL, vT , etc., depend only on the
electron kinematics given by

vL = Q4

q4
, vT = tan2 θ
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where θ represents the electron scattering angle. The four-
momentum transfer is defined by Q2 = q2 − ω2 with the
energy transfer ω.

By expanding the partial waves for the electron wave func-
tion, Ohio group [5] exactly treated the Coulomb distortion
from the static Coulomb field of the target nucleus, referred
to the full distorted wave Born approximation (DWBA). The
full DWBA calculation can compare various nuclear models
and furnish an invaluable check for several approximations of
the Coulomb distortion. But it is numerically challenging and
computational time increases rapidly with the higher incident
electron energies. Moreover, it is not possible to express the
cross section as a sum of bilinear products of the response
functions such as Eq. (1), so that there is no way to investigate
each response functions separately.

There are two approaches to treat the electron Coulomb
distortion approximately. One is an analytic form for the
electron wave functions with the Coulomb distortion based
on the work of Lenz and Rosenfelder [6]. The approximation
is that the electron momentum is replaced by a value shifted by
the Coulomb potential at the origin [7,8], called the effective
momentum approximation (EMA). While this approximation
is well described for light nuclei and high incident electron
energies it is not good for heavy nuclei and for intermediate
electron energies [9]. Recently, Kim and Wright [10] improved
the EMA using the Coulomb potential at 2

3R (R is a radius of
target nuclei) instead of the value at the origin for the inclusive
(e, e′) reaction at high electron energies greater than 1 GeV.

As an other approach, since the middle of 1990’s, Kim and
Wright [9,11,12] developed the approximation of the Coulomb
distorted electron wave functions to solve the above difficult
problems related to the full DWBA calculation. The essence of
the approximation is that the electron wave functions contain
r-dependent momentum and the parametrization of the elastic
scattering phase shifts in terms of the angular momentum.
This electron wave function has a “plane-wave-like” form
which directly allows the extraction of the various response
functions such as the PWBA calculation. This approximation
showed a good agreement of about 1–2% with the full DWBA
calculations near the peaks of the cross sections for heavy
target nucleus [11]. At the high incident electron energies
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FIG. 1. The cross sections in terms of the missing momentum at q = 900 MeV/c and ω = 100 MeV. The incident energies and the scattering
angles are 1778.5 MeV and 30◦, 945.8 MeV and 60◦, and 598.2 MeV and 110◦, respectively. The solid curves denote the results of the PWBA
and the dotted lines are for the approximate DWBA. The outgoing proton is knocked-out from the p1/2 shell of 16O.

such as JLab type [13], the approximation described the
experimental data very well [12]. This approximation of the
electron wave function in the presence of the static Coulomb
potential is called the approximate DWBA.

There have appeared some theoretical works for investigat-
ing the response functions. For example, Picklesimer and Van
Orden [2] developed theoretical descriptions of the response
functions for the (�e, e′ �N ) reactions, which coincidentally
polarize the incident electron beam and the knocked-out
nucleons from nuclei in a relativistic frame. References [3,4]
studied the electron scattering for both polarized incident
electron and polarized targets, �A(�e, e′N )B, in the framework
of an impulse approximation. Especially, the Pavia group [4]
directly calculated the longitudinal and transverse response
functions from the hadron current in parallel kinematics in
terms of three-momentum transfer.

In this Brief Report, we extract the longitudinal and
transverse response functions from the approximate DWBA
calculations for the exclusive (e, e′p) reactions by using the
Rosenbluth separation. We also investigate the effects of the
Coulomb distortion from extracted response functions. In all
calculations, we use a relativistic single particle model based
on σ -ω model [14] for the bound state nucleon and a relativistic
optical model [15] for an outgoing proton combined with the

free relativistic nucleon current operator. This model contains
the final state interaction of the outgoing proton.

There are two kinematics commonly used in the analysis
of the exclusive (e, e′p) experiments. One is the perpendicular
kinematics where the magnitude of the knocked-out proton
p is equal to the magnitude of the momentum transfer
q (|p| = |q|) and the polar angle of the p is detected in terms of
the q, so-called ω-q constant kinematics. In this kinematics,
all terms in Eq. (1) do not disappear and it is possible to
extract the transverse, longitudinal-transverse, and polarized
longitudinal-transverse response functions by subtracting the
cross section with the left and right sides [16] from the
experimental data and/or the full DWBA calculation. But
there is no way to extract the longitudinal and transverse-
transverse response functions because the relevant electron
kinematics factors have a function of the four-momentum
transfer Q2 only, i.e., no dependence of the scattering angle θ .

Hence we have to choose the other kinematics, namely, the
parallel kinematics to extract the longitudinal and transverse
response functions. In the parallel kinematics, where the
knocked-out proton momentum p is along the momentum
transfer q, the interference response functions in Eq. (1)
disappear, so that the longitudinal and transverse terms only
remain. In this Brief Report, we separate the longitudinal and
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FIG. 2. The Rosenbluth plots for a constant three-momentum transfer 600 MeV/c and 900 MeV/c, and the energy transfer 100 MeV at the
missing momentum pm = −90 MeV/c.
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FIG. 3. The same as Fig. 2 except the missing momentum 90 MeV/c.

transverse response functions from the cross section in the
parallel kinematics and investigate the Coulomb effect on the
response functions extracted for the (e, e′p) reactions.

From Eq. (1), using the Rosenbluth separation for the total
structure function of the inclusive (e, e′) reaction [17], we
redefine the total response function in the parallel kinematics

Stot(q, θ, pm) = 1

K

q4

Q4
ε(θ )

d3σ

dEf d�f d�p

= ε(θ )RL + q2

2Q2
RT , (3)

where the missing momentum is determined by the kine-
matics pm = p − q. The virtual photon polarization is
given by

ε(θ ) =
[

1 + 2q2

Q2
tan2 θ

2

]−1

. (4)

This equation is a linear function of the independent variable
ε(θ ) with slope RL and intercept proportional to RT .

In order to extract the longitudinal and transverse response
functions, the three-momentum and energy transfers are kept

constant, and the incident electron energies and the scattering
angles are varied. We choose the three electron scattering
angles, θ = 30◦, 60◦, and 110◦, the three-momentum transfers
q = 600, 900 MeV/c, and the energy transfer ω = 100 MeV.
In these kinematics, the kinetic energies of the knocked-out
proton are varied in terms of the missing momentum. The
detected proton is knocked-out from the p1/2 orbit of 16O in the
all calculations. Unfortunately, although the experimental data
were measured from NIKHEF [18], Saclay [19], and JLab [13],
the number of these data are not enough to use the Rosenbluth
separation in the parallel kinematics.

In Fig. 1, we show the cross sections for the cases of three
kinematics at q = 900 MeV/c and ω = 100 MeV. The electron
kinematics are the incident electron energy Ei = 1778.5 MeV
and the scattering angle θ = 30◦, Ei = 945.8 MeV and θ =
60◦, and Ei = 598.2 MeV and θ = 110◦. The solid and the
dotted curves represent the results of the PWBA and the
approximate DWBA, labeled ‘PW’ and ‘DW’, respectively.
The positions of the peaks for the dotted lines are shift
to the right side with larger scattering angles. The electron
Coulomb distortion is larger at the forward angle than at
the backward angle since the longitudinal term contributes
relatively large to the cross section comparing the transverse
term.
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FIG. 4. The longitudinal response functions for the p1/2 shell of 16O at q = 600, 900 MeV/c and the energy transfer ω = 100 MeV. The
solid lines are the results for the PWBA calculations and the dotted curves are for the approximate DWBA calculation.
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FIG. 5. The transverse response functions for the p1/2 shell of 16O at q = 600, 900 MeV/c and the energy transfer ω = 100 MeV. The solid
lines are the results for the PWBA calculations and the dotted curves are for the approximate DWBA calculation.

In Figs. 2 and 3, we show the Rosenbluth separation plots
in terms of ε(θ ) in Eq. (3) for a constant three-momentum
transfers 600 MeV/c and 900 MeV/c and the energy transfer
100 MeV at the missing momenta pm = −90 and 90 MeV/c,
which are the positions of the peak for the cross sections.
The points represent the values of the total response functions
at each angles. The dotted lines are the best fits for three
points and become a straight line. The Rosenbluth plots of
the PWBA become a straight line like the solid lines. The
Coulomb distortions increase as the virtual photon polarization
ε(θ ) increases, where the scattering angles decrease. These are
the same results as Fig. 1.

In Figs. 4 and 5, the longitudinal and transverse response
functions are extracted from the slopes and intercepts in
Figs. 2 and 3 according to Eq. (3). The Coulomb distortion
effects of the longitudinal response function are larger than
those of the transverse response function. While the positions
of the peaks and the shapes are similar to the cross sections, the
effects of the electron Coulomb distortion appear to be larger
on the longitudinal and transverse response functions than on

the corresponding cross sections. The Rosenbluth separation
is still a best tool for extracting the various response functions
in the presence of the electron Coulomb distortion from the
experimental data and/or the full DWBA calculation although
the separation may not be valid.

In this work, we extract the longitudinal and transverse
response functions in the parallel kinematics for the exclusive
(e, e′p) reaction. We follow the Rosenbluth separation to ob-
tain the longitudinal and transverse response functions which
is commonly used in the inclusive (e, e′) reaction. The effects
of the electron Coulomb distortion on the response functions
appear to be different from those on the corresponding cross
section while the shape and the positions of the peaks are
similar to the cross sections. In conclusion, this method
furnishes the information of the longitudinal and transverse
response functions for experiments and/or the full DWBA
calculation.
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