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Parametrization of the deuteron wave function obtained within a dispersion approach
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We present a convenient analytical parametrization of the deuteron wave function obtained previously within a
certain dispersion technique. We fit the numerical results with a discrete superposition of Yukawa-type functions
in both configuration and momentum spaces.
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Recently, in Ref. [1], it was shown that the deuteron tensor
polarization component T20(Q2) provides a crucial test of
deuteron wave functions in the range of momentum transfers
available in recent experiments. The calculation [1] shows
that the most popular model wave functions (see, e.g., Refs.
[2,3]) do not give an adequate description of T20(Q2) and
should be avoided in favor of those obtained in the dispersion
potential-less inverse scattering approach with no adjustable
parameters [4] (see also Ref. [5]) and which give the best
description. Some time ago this function (which we call the MT
wave function, following Ref. [6]) was used in the calculation
of the neutron charge form factor [7]. The results of the
calculation (providing 12 new points) are compatible with
existing values of this form factor from other authors. A fit
is obtained for the whole set (36 points) taking into account
the data for the slope of the form factor at Q2 = 0. These
results will be used in the neutrino-scattering experiments at
Fermilab [8].

The aim of this Brief Report is to present a conven-
tional algebraic parametrization (as a discrete superposition
of Yukawa-type terms) of the deuteron MT wave function
calculated within a dispersion approach.

The first article on this approach was published by Shirokov
[9], where the discontinuity of the wave function through the
right (kinematical) cut was given in terms of the discontinuity
of the Jost matrix. In Ref. [10] the important role of left
cuts (≈25%) was shown. The characteristics of these cuts can
be found using the unitarity condition [11–13]. The difficult
problem of constructing the Jost matrix in the case of mixing of
channels was solved in Ref. [14], where the results of Ref. [15]
were generalized. Let us note briefly the main characteristic
features of these wave functions, which are obtained in the
frame of the potential-less approach to the inverse scattering
problem.

An important feature of these wave functions is the fact
that they are “almost model independent:” no form of any
NN interaction Hamiltonian is used. Instead, the MT wave
functions are given by the dispersion-type integral directly and
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in terms of the experimental scattering phases and the mixing
parameter for NN scattering in the 3S1-3D1 channel [16]. To
describe the scattering phases at high energies, the Regge-pole
model for NN-scattering amplitudes was used. Parameters of
the Regge-pole fit were determined from data on the total and
differential NN cross sections, on the ratio of the real and
imaginary parts of the forward scattering amplitude, and on
the slope of the differential cross section [17].

It is worth noting that the MT wave functions were obtained
using quite general assumptions about analytical properties of
quantum amplitudes such as the validity of the Mandelstam
representation for the deuteron electrodisintegration ampli-
tude. These wave functions have no fitting parameters and can
be altered only along with a modification of the NN-scattering
phase analysis.

As noted above, in the potential-less approach to the
inverse scattering problem, one constructs the wave function
(and not the potential). In principle, one can then con-
struct the interaction potential corresponding to this wave
function. However, two problems arise in this approach.
The first one is how to choose the class of functions
from which the potential is to be obtained (local, nonlocal,
separable, etc.). The second problem, a more difficult one,
is familiar to inverse scattering problem in general: the
problem of potential stability against small variations of
the wave function. Because we are focusing on the wave
functions, both these problems remain outside the scope of this
Brief Report.

Let us note that the process of constructing these wave
functions is closely related to the equations obtained in the
framework of the dispersion approach based on the analytic
properties of the scattering amplitudes [18,19] (see also
Ref. [20] and especially the detailed version in Ref. [21]).
This approach applies the dispersion technique using integrals
over composite-system masses.

The dispersion problem of the wave-function reconstruc-
tion from the scattering phases is stable, that is small changes
in phases result in small changes of the wave functions. In
the dispersion approach, the wave function in the coordinate
representation is related to the scattering phases through a
double integral formula: The phase is integrated to obtain the
Jost matrix, which is further integrated to obtain the wave
function. This results in a suppression of the uncertainties

0556-2813/2007/76(1)/017001(4) 017001-1 ©2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.76.017001


BRIEF REPORTS PHYSICAL REVIEW C 76, 017001 (2007)

TABLE I. Deuteron properties.

MT model Empirical Ref.

Binding energy εd (MeV) 2.224996 2.224575(9) [23]
Asymptotic D/S state η 0.0253 0.0256(4) [24]
Matter radius rd (fm) 1.972 1.971(6) [25]
Quadrupole moment Qd (fm2) 0.2731 0.2859(3) [26]
D-state probability PD (%) 6.2

in individual measurements of the scattering phases that
are taken into account in the construction of the fitting
function.

In principle one expects that, in the dispersion approach,
the wave functions at small distances (and the electromagnetic
deuteron form factors at large momentum transfer) should
depend strongly on the behavior of the scattering phases
at high energies (including those for which experimental
data are not available). The corresponding estimate was
performed in Ref. [22] for the example of the deuteron charge
form factor. However, a good description of the deuteron
electromagnetic form factors and of T20(Q2) in the model
(see Refs. [1,7]) suggests that the phase reconstruction by
the Regge-pole analysis of the scattering amplitudes gives an
adequate description of the scattering phases for the energy
ranges discussed above.

A nonrelativistic calculation of the low-energy properties of
the deuteron gives the values presented in Table I together with
the experimental values. An update on the wave functions [4]
taking account of recent data on the phase analysis in the
3S1-3D1 channel is an interesting task to be performed. Usu-
ally, the deuteron wave functions are approximated by finite
sets of Yukawa-type functions. So, we present here a simple
parametrization of the deuteron function as a superposition
of Yukawa-type terms (in the spirit of Ref. [27] for the Paris
potential; see also the fit in Ref. [28] for the CD-Bonn wave
function).

We consider the deuteron wave functions ϕl(r) in
the states with orbital momentum l = 0, ϕ0(r) = u(r) and
l = 2, ϕ2(r) = w(r). The ansatz for the analytic versions of
the r-space wave functions, denoted by ua(r) and wa(r), is

ua(r) =
nu∑

j=1

Cje
−mj r ,

wa(r) =
nw∑
j=1

Dje
−mj r

(
1 + 3

mj r
+ 3

(mj r)2

)
, (1)

mj = α + m0 (j − 1),

where the coefficients Cj ,Dj , the maximal value of the
index j , and m0 are defined by the condition of the best fit.
Furthermore, α = √

Mεd , where M is average nucleon mass
and εd is the binding energy of the deuteron.

These wave functions are normalized according to

∫ ∞

0
dr

{
[u(r)]2 + [w(r)]2

} = 1 . (2)

FIG. 1. (Color online) S-wave deuteron wave function in various
models: MT [4,5], solid; Paris [27], short-dashed; CD-Bonn [28],
middle-dashed; Nijmegen-I [29], dash-dot-dotted; Nijmegen-II [29],
dash-dotted; Nijmegen-93 [29], long-dashed; Argonne V18 [30],
dash-dot-dot-dotted lines. Some of the curves are indistinguishable.

The conventional boundary conditions at small r ,

u(r) ∼ r, w(r) ∼ r3, (3)

lead to one condition for Cj and three constraints for Dj , as
follows:

nu∑
j=1

Cj = 0,

nw∑
j=1

Dj =
nw∑
j=1

Djm
2
j =

nw∑
j=1

Dj

m2
j

= 0. (4)

Using the form (2) it is easy to describe the standard
behavior of the deuteron wave functions at r → ∞. The
asymptotic behavior of the S state is

u(r) ∼ ASe
−αr , (5)

and that of the D state is

w(r) ∼ η AS

[
1 + 3

α r
+ 3

(α r)2

]
e−αr . (6)

Here AS and AD = ηAS are the asymptotic S-state and D-state
normalizations, respectively, and η is the asymptotic D/S state
ratio. In our calculation of the MT wave function we use α =
0.231625 fm−1.

FIG. 2. (Color online) D-wave deuteron wave function. Legend
is the same as in Fig. 1.
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The Fourier transforms of wave functions ψl(k), l = 0, 2 in
the momentum representation in r-space are given by

ϕl(r)

r
=

√
2

π

∫ ∞

0
k2dkjl(kr)ψl(k), (7)

where jl(kr) is the spherical Bessel function.
The normalization condition for these wave functions is

given by ∫ ∞

0
k2dk

{
[ψ0(k)]2 + [ψ2(k)]2

} = 1. (8)

The expression of the momentum space wave functions,
following from (2) and (7) are given by

ψa
0 (k) =

√
2

π

∑
j

Cj(
k2 + m2

j

) ,

(9)

ψa
2 (k) =

√
2

π

∑
j

Dj(
k2 + m2

j

) .

The calculated coefficients in Eqs. (2) and (9) are listed in
Table II; a value of m0 = 0.9 fm−1 was used.

The asymptotic behavior at r → ∞ yields, for the obtained
fits of the MT wave functions, the following asymptotic D/S

state ratio:

η = D1

C1
= 0.02531511. (10)

This value is in a good agreement with that of Ref. [2].
The accuracy of our parametrization is illustrated by the

magnitudes of the integrals:{∫ ∞

0
dr [u(r) − ua(r)]2

}1/2

= 4.1 × 10−3, (11)
{∫ ∞

0
dr [w(r) − wa(r)]2

}1/2

= 2.2 × 10−3. (12)

The use of the analytical expressions obtained in
this work results in negligible (∼0.2%) changes in the
deuteron low-energy properties as compared to those ob-
tained with a numerical wave function. The change in
the deuteron matter radius is 0.5%, whereas the deuteron
tensor polarization component T20(Q2) changes by ∼2%.

TABLE II. Coefficients for the parametrized deuteron
wave function calculated within a dispersion approach.
The last Cj and last three Dj are to be computed from
Eq. (4) (nu = 16, nw = 12).

j Cj (fm−1/2) Dj (fm−1/2)

1 0.87872995 0.22245143 × 10−1

2 −0.50381047 −0.41548258
3 0.28787196 × 102 −0.18618515 × 101

4 −0.82301294 × 103 0.21987598 × 102

5 0.12062383 × 105 −0.16885413 × 103

6 −0.10574260 × 106 0.76001430 × 103

7 0.59534957 × 106 −0.22287203 × 104

8 −0.22627706 × 107 0.43330023 × 104

9 0.59953379 × 107 −0.54072021 × 104

10 −0.11282284 × 108 Eq. (4)
11 0.15181681 × 108 Eq. (4)
12 −0.14519973 × 108 Eq. (4)
13 0.96491938 × 107

14 −0.42403857 × 107

15 0.11092702 × 107

16 Eq. (4)

So, we present a convenient analytical parametrization of
the deuteron wave function calculated previously within a
dispersion approach as a discrete superposition of Yukawa-
type functions. This function is plotted in Figs. 1 and 2.
The wave functions [27–30] are also given for comparison.
These high-precision wave functions [27–30] are now widely
used (see, e.g., [31]). Note that the MT wave functions differ
from those of other models up to r <∼ 2.7 fm, i.e., even in the
domain where the one-pion exchange presumably dominates.
This is related to the fact that no additional restrictions
(except the assumption that the Mandelstam representation is
applicable for the amplitudes) were imposed when the inverse
problem was solved by the dispersion method. In particular,
no restrictions were imposed on locality properties and on the
form of the NN interaction.
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