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Novel mechanism for type I superconductivity in neutron stars
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We suggest a mechanism that may resolve a conflict between the precession of a neutron star and the widely
accepted idea that protons in the bulk of the neutron star form a type II superconductor. We will show that if
there is a persistent, nondissipating current running along the magnetic flux tubes the force between magnetic
flux tubes may be attractive, resulting in a type I, rather than a type II, superconductor. If this is the case,
the conflict between the observed precession and the canonical estimation of the Landau-Ginzburg parameter
κ > 1/

√
2 (which suggests type-II behavior) will automatically be resolved. We calculate the interaction between

two vortices, each carrying a current j , and demonstrate that when j > h̄c

2qλ
, where q is the charge of the Cooper

pair and λ is the Meissner penetration depth, a superconductor is always type-I, even when the cannonical
Landau-Ginzburg parameter κ indicates type II behavior. If this condition is met, the magnetic field is completely
expelled from the superconducting regions of the neutron star. This leads to the formation of the intermediate
state, where alternating domains of superconducting matter and normal matter coexist. We further argue that even
when the induced current is small j < h̄c

2qλ
the vortex Abrikosov lattice will nevertheless be destroyed due to the

helical instability studied previously in many condensed matter systems. This would also resolve the apparent
contradiction with the precession of the neutron stars. We also discuss some instances where anomalous induced
currents may play a crucial role, such as in neutron star kicks, pulsar glitches, the toroidal magnetic field and the
magnetic helicity.
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I. INTRODUCTION

This article is motivated by calculations [1] that show a
conflict between the observed magnitude (∼3◦) and frequency
(∼1 per year) of neutron star’s precession [2] and the widely
accepted idea that protons in the bulk of the neutron star
form a type II superconductor. We begin with a review of
this contradiction.

A. Precession and superconductivity

In the generally accepted picture, the interior of a neutron
star contains neutrons and a small number of protons and
electrons. A compilation of neutron and proton scatter-
ing data implies that the extremely cold (108 K), dense
(1013g/cm3) nature of the neutron star should cause the
neutrons to form 3P2 Cooper pairs and become a superfluid
and the protons to form 1S0 Cooper pairs and become a
superconductor [3].

Recently, it has been argued that it is possible the neutrons
and protons do not exist together as condensates until later in
the neutron star’s life. This is based on calculations showing
that the neutron 3P2 gap might be small, which leads to a
better agreement with observations [4]. This would lengthen
the time until the neutrons become a superfluid. Regardless of
when it occurs, in this paper we assume the standard picture
suggesting that both, protons and neutron condensates coexist
and the neutron star is precessing.

*james@physics.ubc.ca
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Because of its zero viscocity, a rotating superfluid cannot
form a solid body to carry circulation but instead forms vortices
of quantized circulation that run in the direction of the angular
velocity [5]. Similarly, a superconductor is a perfect diamagnet
and when subjected to a sufficient magnetic field must form
vortices of quantized flux parallel to carry the field [6]. The
rotation of the neutron star (1–103 Hz) and the presence of
the enormous magnetic field (∼1012 G) are sufficient for both
superfluid and superconducting vortices to form inside the
neutron star. It should be noted that when a superconductor is
placed in a rotating container it corotates with the container at
the expense of a small current known as the London current [7].

Vortices formed in a superconductor can either attract, in
which case the magnetic field wants to be expelled from a
superconductor, or they can repel each other and form a tri-
angular lattice. These two behaviors label the superconductor.
If the vortices attract, the superconductor is called type I and
if they repel it is called type II. The distinction between the
two types of superconductivity will be very important in this
article.

It is generally accepted that the protons in a neutron star
form a type II superconductor [8,9], which means that it
supports a stable lattice of magnetic flux tubes in the presence
of a magnetic field. Vortices formed in a superfluid will always
repel and form a lattice.

The standard way to determine the type of superconductiv-
ity is to calculate the value of the Landau-Ginzburg parameter,
κ = λ

ξ
, where λ is the London penetration depth and ξ is the

coherence length of the superconductor [10]. If κ > 1/
√

2
then the superconductor is type II, otherwise it is type I. A
naive calculation of κ is presented in Ref. [8]. The penetration
depth λ and the coherence length ξ can be calculated using the
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London formula and Pippard’s formula. We find that

λ

ξ
=

(
4

3π2

e2kF

mc2

) 1
2 �p

εp

, (1)

where εp = h̄2k2
F /2m, n0 is the number density, kF is the

Fermi wave number, and �p is the proton gap. Using ρ =
1013 g/cm3, kF 0.7 × 1013 cm−1, and � ∼ 1 MeV we see that
type II superconductivity is supported in the neutron star.

A much more detailed analysis [9] shows that typical values
for the length scales are λ ∼ 120 fm and ξ ∼ 10 fm. These are
similar to the values found in Ref. [1] of λ ∼ 80 fm and ξ ∼
30 fm. Using the latter set we get κ ∼ 2.6, which points to
a type II superconductor. The Landau-Ginzburg parameter is
weakly dependent on density and in the densest part of the
core it can indicate type I behavior [11]. Even so, there still
exist large regions of the neutron star where type II behavior
is predicted.

In a neutron star both condensates are subjected to angular
momentum and magnetic flux and form lattices, but the proton
vortices (∼1024 per m2) are much more numerous than the
neutron vortices (∼1010 per m2) and are tangled around them.
It is the formation of these lattices that cause the contradiction
with the precession of the neutron star.

The existence of precession means that the superfluid
neutron vortices no longer form along the rotational axis of
the star, but along the axis that is the sum of the precession
and angular momentum vectors. When the star precesses the
vortices now move with respect to the rotation of the star and,
in turn, with respect to the proton vortices that are entangling
them. If the precession is large enough one of two things
must happen; either the neutron vortices move with the proton
vortices or they pass through each other.

Requiring the neutron and proton vortices to move together
places severe restrictions on the precession. This is the case
of “perfect pinning” that was discussed in Ref. [12] using
macroscopic dynamics. We will follow the arguments in
Ref. [1] as we are specifically interested in proton vortices
as a mechanism for pinning. Because the core of the star is
superconducting, the proton vortices, which carry magnetic
flux, are resistant to being moved [8] and thus the neutron
vortices are restricted to move slowly. This means that the
neutron vortices are pinned to the rotation of the protons and
thus are pinned to the rotation of the crust. If this pinning
is present the neutron star can only precess at very high
frequencies. If the star is to precess more slowly at large
amplitudes then it is necessary for the neutron vortices to pass
through the proton vortices.

The case of “imperfect pinning” was first discussed in
Ref. [13] using the concept of vortex drag. Microscopically,
this drag is created by large numbers of neutron vortices
passing through proton vortices [1]. This creates a number
of excitations and is a highly dissipative process.

Both methods find that the precession is highly damped and
that there are no modes of large, persistent precession. Based
on these estimates it is concluded that given the observed
precession neutron vortices and proton flux tubes cannot
coexist in the star [1]. Either the star’s magnetic field does not
penetrate any part of the core that is a type II superconductor

or that at least one of the hadronic fluids is not superfluid.
Based on pairing calculations that predict neutron and proton
superfluids coexist in the outer core the latter is very unlikely,
so we will look to the former.

If the core is a type I superconductor, the magnetic flux
could exist in macroscopic regions of normal matter that
surround superconducting regions. In condensed matter this
is known as the “intermediate state” and has been well studied
experimentally and theoretically [14,15]. This state is not
in thermodynamic equalibrium but appears stable because
magnetic flux moves very slowly in a superconductor. Any
magnetic flux present during the formation of the supercon-
ductor would stay in these large regions. The absence of
proton vortices means there would be nothing to impede the
movement of the neutron vortices, thus allowing the star to
precess with a long period.

For proton vortices to not form a lattice, a mechanism must
be present to make the interaction between them attractive
(type I behavior). If it does so even when the cannonical
Landau-Ginzburg parameter suggests that the superconductor
is type II then the inconsistency described above will be
resolved.

B. A new mechanism for type I superconductivity

In this work we suggest a mechanism that leaves the
Landau-Ginzburg parameter unchanged but causes the system
to behave quite differently than in the standard picture.
To be precise, we will show that even when κ > 1√

2
the

system prefers the intermediate state and that the apparent
contradiction between κ ∼ 2.6 and the observed precession is
avoided.

This is achieved if the system supports a persistent,
nondissipating current running along the core of a vortex.
Such topological currents appear in many systems as the
consequence of a quantum anomaly. It is well known that
anomalies, and the topological currents they induce, have
important and nontrivial implications; the electromagnetic
decay of neutral pions π0 → 2γ is a textbook example.

As we will discuss later, analogous topological currents
have even been observed in some condensed matter systems.
However, with a few exceptions, the analysis of quantum
anomalies has not received attention in the literature devoted to
dense matter systems in general, and neutron stars in particular.
In Sec. II we discuss in detail why and when such topological
currents may arise in high density systems.

If such currents are induced, they drastically change the
behavior of the system. Normally the interaction between
superconducting vortices has two terms: an attractive force
that comes from the order field and a repulsive force that
comes from the gauge field. In the presence of an induced
current, a third, attractive force will appear and, if the current
has sufficient magnitude, the system will behave as a type I
superconductor. This situation will be discussed in Secs. II
and IV.

C. Relation to previous work

The same problem has been discussed previously in
Refs. [16,17]. In particular, Ref. [16] has shown that the
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existence of a type I superconductor in a neutron star
resolves the conflict addressed in Ref. [1]. Reference [16]
starts by assuming that the equilibrium structure of a type
I superconductor contains alternating superconducting and
normal domains. By use of a hydrodynamic restriction based
on the moment of inertia of the crust and the moment of
inertia of the superfluid it is shown that the alternating domain
structure seen in type I superconductors will always allow for
undamped precession.

This result can be understood in a different way. The
arguments of Ref. [1] relied on the proton vortices tangling
around the neutron vortices. In a domain structure there is
more room for the neutron vortices to move unhindered by the
proton vortices allowing for large amplitude, high frequency
precession.

However, the calculation in Ref. [16] starts by assuming
that type I superconductivity already exists in neutron stars.
It does not investigate how a type I superconductor could
arise and it is not obvious how to reconcile this with standard
arguments that suggest κ ∼ 2.6, which ambiguously implies
that the superconductor is type II in a finite volume of the
neutron star.

In Ref. [17] a mechanism has been suggested that poten-
tially resolves the conflict between the standard estimation of
κ and type I behavior. The mechanism is based on the idea
that proton and neutron Cooper pairs have almost identical
interactions, akin to their underlying isotopical symmetry,
even though the Fermi momenta and densities for protons
µp and neutrons µn are vastly different. A small difference
in interactions was modeled by a small effective asymmetry
parameter ζ � 1. In this case it has been shown that the
type of superconductivity is not governed by the canonical
Landau-Ginzburg parameter κ , but instead, by an effective
Landau-Ginzburg parameter κ̃ = ζκ . This effective parameter
can be small, κ̃ < 1/

√
2 leading to type I superconductivity

while keeping canonical Landau-Ginzburg parameter large,
κ > 1/

√
2.1

II. PERSISTENT NONDISSIPATING TOPOLOGICAL
CURRENTS AND VORTICES

Though the idea of nondissipating topological current in
vortices was considered long ago [19] in the context of cosmic
strings, we are more interested in the recent developments of
similar phenomena in high density quantum chromodynamics

1The basic assumption of Ref. [17] has been criticized in Ref. [18].
It is not the goal to discuss the approach developed in Ref. [18]
in the present article, but a short remark is warrented. If one uses
the technique from Ref. [18] for QCD (Nc = 2) (which can be solved
exactly for µi � 
QCD), one should anticipate similar results, namely
that vastly different densities for different flavours would lead to very
different scattering lengths for different flavors. The exact solution for
QCD (Nc = 2) teaches us differently: that different flavors interact in
the same way as a result of the underlying flavor symmetry despite
the possiblility of vastly different densities for different flavors. More
studies are required before the basic assumption of Ref. [17] can be
shown to be incorrect.

(QCD) [20–23] and condensed matter systems [24–26]. The
most important result can be formulated as follows.

We will consider the phenomenon of topological currents
in the chiral limit and zero temperature (mq = 0, T = 0).
Corrections due to nonzero fermion mass and temperature,
such as the protons discussed in Sec. III, are well known
and can be explicitly calculated [22]. To remove unnecessary
clutter in the following arguments we will discuss massless
particles. The discussion for massive particles is nearly
identical—only the numerical value of the current (2) will
change.

Consider Dirac fermions with nonvanishing chemical po-
tentials, µL and µR , which correspond to two reservoirs of
particles with different chirality. We are interested in the
phenomena where currents are induced in the background of
an external magnetic field. Each fermion species q makes an
additive contribution to the vacuum expectation values for the
axial and vector currents,〈∫

S

jA · dS
〉

= e(µR + µL)

4π2
�,

(2)〈∫
S

jV · dS
〉

= e(µL − µR)

4π2
�,

where � = ∫
d2x⊥Bz(x⊥) is the total magnetic flux through

the cross section S, and the fermion current densities are
defined as jA = q̄γ 3γ 5q, jV = q̄γ 3q. Formula (2) has a
universal nature, as it originates from the fundamental quantum
anomaly and it is not sensitive to whether the magnetic field is
localized inside of vortex or uniformly distributed over a large
area S.

It is worth noting that similar nondissipating currents have
been discussed in condensed matter literature [24–26]. In
particular, the expression for anomalous supercurrent has been
derived for 3He-A system based on the chiral anomaly (see
Eq. (5.35) and Fig. 23 in Ref. [24]). Some suggestions of how
these effects can be experimentally tested were also presented
in Ref. [24]. An important feature of the 3He-A system is
the existence of the anomalous chiral symmetry, which is not
present in 4He. Therefore this phenomenon exists in 3He-A
but not in 4He.

Anomalous supercurrents may also exist in high Tc super-
conductors with d-wave paring or in a graphene system when
the relevant degrees of freedom satisfy the massless Dirac
equation, with a velocity of order 1/100th that of light. In these
cases, the chiral symmetry is obviously present and there is
a good chance that nondissipating, topological currents may
exist.

In this article we are specifically interested in the vector
current, because it can couple to the electromagnetic field as
a source. Note, though, that in the case of equal chemical
potentials, µR = µL = µ, the vector current is not induced
due to the exact cancellation between left-handed and right-
handed fermions. We need a mechanism capable of producing
an asymmetry between R and L modes. Any P parity violating
processes will do the job.

One such mechanism is the condensation of the pseu-
doscalar Goldstone mode and is the mechanism we will
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assume to be present in this article.2 It is known that
Goldstone modes are likely to condense in nuclear matter
[27,28] and will definitely condense in color superconducting
phases for intermediate chemical potential [29–32]. Below
we will present a simple argument showing that in the
cases of neutral π0 condensation in nuclear matter [28] and
η condensation in the color superconducting phase [32] the
vector current will definitly be induced. We do not want
to describe all possible phases where axial density (and
consequently, the vector current) can be induced but rather
give a simple argument demonstrating why the condensation
of a pseudoscalar Goldstone mode would necessarily lead
to a difference in densities for left-handed and right-handed
species.

To simplify arguments, we consider a QCD model with
just a single flavor. Let us assume that we are in a phase
where the baryon density is nonzero and a neutral η Goldstone
mode is condensed. This implies that our ground state can be
understood as a coherent superposition of an infinitely large
number of the Goldstone η mesons. We expect that the ground
state of the system is not disturbed by adding one extra η meson
into the system. However, we can relate the matrix element
with an extra η meson to the matrix element without the η using
the standard PCAC technique, 〈A|O|Aη〉 ∼ i〈A|[O,Q5]|A〉.
In the present case the coefficient of proportionality would not
be precisely 1/F (where F is the Goldstone coupling constant)
because our Goldstones are in the 〈η〉 condensed phase rather
than in a trivial vacuum.

Taking |A〉 to be the ground state and O the baryon density
operator, one can immediately see that if baryon density does
not vanish in the ground state, then the axial density 〈[O,Q5]〉
will not vanish.3 This implies that densities for left-handed
and right-handed species are different and therefore a vector
current will be induced. We assume this to be the case in what
follows.

2Though, we anticipate that any type of parity violation would
work. In particular, in the presence of magnetic field the neutrons
are polarized along the field. It may lead to a small asymmetry
for left-handed and right-handed electrons in β equilibrium, which
is P-violating process. This asymmetry would effectively lead to
inequality µR 	= µL, which eventually may be sufficient to induce
the currents [33].

3It is interesting to note that although the expectation values of
different operators in dense matter (such as baryon density, diquark
condensate, chiral condensate, pion condensate, etc.) have been
calculated a number of times, in a number of models (see, e.g.,
Ref. [29]), the calculation of axial density has not received much
attention. In fact, although axial density is generically nonzero when a
Goldstone mode is condensed, as argued above, it has been calculated
only recently in QCD (Nc = 2) and in QCD (Nc = 3) with isospin
chemical potential µI 	= 0 [34]. In these cases the exact expressions
can be obtained for the axial density in the regime µI � 
QCD. An
important lesson that Ref. [34] teaches us is that the axial density does
not vanish in spite of the fact that the corresponding axial chemical
potential was not explicitly introduced. Rather, it was generated
dynamically. The presence of the axial density unambiguously
implies that right- and left-handed modes have different densities,
and therefore, the vector current (2) will be induced.

The condensation of charged Goldstone mesons (π±,K)
in the system is much more complicated, but we can expect
that the condensation of the charged pseudoscalar Goldstone
mesons in the system will lead to different densities for L and
R species (and corresponding to different effective chemical
potentials for R and L modes), in which case the vector current
will be also induced.

We should note that the condensation of the pseudo scalar
Goldstone mode is not the only mechanism capable to produce
the asymmetry between R and L modes; any P parity violating
processes can do the same job. The crucial point here is not
the ability to produce the asymmetry (which is a common
phenomenon in neutron stars due to the neutrino emission), but
the ability of the nondissipating persistent currents to keep this
asymmetry through the entire volume of the star and deliver it
to the surface of the star. The phenomenological significance
of this is argued in Sec. V.

As all quarks have nonzero electromagnetic charges; once
a vector current is induced, an electromagnetic current will
also be induced. Our next step is to derive the interaction
between two superconducting vortices where an induced
electromagnetic current is present in their cores. Our ultimate
goal is to understand (at least qualitatively) the changes that
will occur in the system due to these induced currents. This is
the subject of the next two sections.

III. STRUCTURE OF A CURRENT-CARRYING VORTEX

In formulating the problem we assume that the supercon-
ductor is due to nonrelativistic proton Cooper pairing and that
there is pseudoscalar Goldstone Boson condensation present
that breaks parity such that the induced currents discussed
in the previous section appear. Similar results are also valid
for phases where a relativistic field theory should be used;
it does not change the qualatative picture described below.
We are interested in vortex structures at large distances of
the superconducting component ψ . Interactions involving the
normal component do not enter the picture.

We start with the two dimensional Landau-Ginzburg free
energy with term added to model a current source j. As
discussed int the previous section, this current is an induced
persistent electromagnetic current and it couples to the
gauge field naturally. Dependence along the third direction
is neglected so E measures free energy per unit length,

E =
∫

d2x

{
h̄2

2m

∣∣∣∣(∇ − iqA(x)

h̄c

)
ψ(x)

∣∣∣∣2

− µb|ψ(x)|2

+ a

2
|ψ(x)|4 + 1

8π
[∇ × A(x)]2 + 1

c
j · A

}
, (3)

where µb is the chemical potential of the Cooper pairs and
a is related to the scattering length l, a = 4πh̄2l/m. The
fundamental particle here is the proton Cooper pair whose
mass is actually m = 2mp and its charge is q = 2|e|. The
added current source will be used to model the current flowing
along the core of the vortex. As discussed earlier, this current
can be treated as an external electromagnetic current.
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The Landau-Ginzburg free energy without the extra term
for the current source has a symmetry under the following
gauge transformation,

A(x) → A(x) + ∇ϕ(x),
(4)

ψ(x) → e
iq

h̄c
ϕ(x)ψ(x).

We assume that the external current j is conserved ∇ · j = 0
in which case (4) obviously remains a symmetry.

We will choose a form for our current source, j = jδ2(x) ẑ,
which models a current at r traveling in the ẑ direction.

The free energy can be minimized to yield the the equations
of motion. Minimizing with respect to the vector potential A
yields a Maxwell equation for our system,

1

4π
[∇2A − ∇(∇ · A)] = −h̄q

m
jNoether − 1

c
j. (5)

The right-hand side is written in terms of the Noether current

jNoether = 1

2i
(ψ†∇ψ − ψ∇ψ†) − q

h̄c
A|ψ |2. (6)

Minimizing with respect to the order field ψ gives

h̄2

2m

(
∇ − iq

h̄c
A

)2

ψ = a|ψ |2ψ − µbψ. (7)

For determining the structure of the vortex we choose
to place it at the origin and write the ansatz in cylidrical
coordinates,

ψ =
√

µb

a
ρ(r)eiφ, (8)

A = h̄q

c

a(r)

r
φ̂ + f (r) ẑ, (9)

where n0 = µb

a
is the density of the superconductor. The

function ρ(r) ∈ (0, 1) describes the profile function of su-
perconducting density, ρ(r) = 0 being no superconducting
material and ρ(r) = 1 being completely superconducting.
If we assume that the current goes to zero far from the
origin we can use Eq. (6) to see that limr→∞ a(r) = 1 and
limr→∞ f (r) = 0. The phase of ψ is chosen to mimic a
vortex with winding number n = 1 and depends only on the
φ coordinate.

To calculate long-range interactions between vortices we
are interested in solutions the equations of motion as r → ∞.
To decouple our set of differential equations it is convenient
to define

ρ(r) = 1 + σ (r), (10)

a(r) = 1 + rα(r), (11)

such that σ (r), α(r) → 0 as r → ∞. Substituting Eqs. (8)
and (9) into Eq. (5) and linearizing yields the two equations,

∂2α

∂r2
+ 1

r

∂α

∂r
−

(
1

r2
+ 1

λ2

)
α = 0, (12)

(
∇2 − 1

λ2

)
f (r) = 4π

c
jδ2(x), (13)

where λ =
√

mc2

4πq2n0
is the London penetration depth. The first

equation is the modified Bessel equation of the first order. We
want a solution that goes to zero as r → ∞ so we choose the
solution to be a modified Bessel function of the second kind,
α(r) = cφ

λ
K1( r

λ
). The second equation is just a statement of

the Green’s function,

(∇2 − α2)K0(αr) = −2πδ2(x), (14)

which implies that f (r) = − 2j

c
czK0( r

λ
). Going back through

all the substitutions we find that the vector potential is

A = h̄c

q

[
1

r
+ cφ

λ
K1

( r

λ

)]
φ̂ − 2j

c
czK0

( r

λ

)
ẑ. (15)

In comparison the standard case without j we see that a third
term has appeared in the interaction. This attractive component
will play the crucial role in what follows.

A similar procedure follows for the solution to the order
field. Substituting Eqs. (8) and (11) into Eq. (7) and linearizing
yields

1

r

∂

∂r

(
r
∂σ

∂r

)
= 4mµb

h̄2 σ. (16)

This is a modified Bessel equation of the zeroth order that has
a solution, σ (x) = cσK0(

√
2

ξ
r). Substituting this back we find

that

ψ =
√

µb

a

[
1 − cσK0

(√
2

ξ
r

)]
eiφ, (17)

where ξ =
√

h̄2

2mµb
is the coherence length.

In the next section, when calculating the vortex interactions,
it will be useful to “unwind” the phase of the vortex. This
will give a much cleaner solution and is done using a gauge
transformation (4), where ϕ(x) = −( h̄c

q
)φ. The solutions for

the field equations become,

A = h̄c

qλ
cφK1

( r

λ

)
φ̂ − 2j

c
czK0

( r

λ

)
ẑ, (18)

ψ =
√

µb

a

[
1 − cσK0

(√
2

ξ
r

)]
. (19)

We can now move on to calculating the interactions between
vortices.

IV. INTERACTION BETWEEN TWO
CURRENT-CARRYING VORTICES

Superconducting vortices without currents interact through
two forces. There is an attractive force caused by the
superconducting order parameter wanting to have one defect
instead of two and a repulsive electromagnetic force caused
by the charges swirling around the vortex. Two vortices placed
side by side have currents running in opposite directions on
their nearest sides and it is well known that opposite currents
repel.
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Suppose there are two wires, placed parallel to each other,
carrying current. If the currents run in the same direction the
wires will be attracted to one another. Now consider that
superconducting vortices, instead of wires, are carrying the
current. There are three forces working against each other:
the attractive electromagnetic force from the current, the
repulsive electromagnetic force from the gauge field, and
the attractive force from the order field. If the current were
strong enough, the attractive force would be strong enough
to completely cancel the force from the gauge field and the
vortices would always attract and the superconductor would
always act like a type I.

A. Calculations

The philosophy behind calculating the interaction between
vortices is to find the energy of the entire system and then
subtract off the energy of the individual vorticies as originally
outlined in Ref. [35]. The technique we will use was introduced
in Ref. [36] and has been used to calculate vortex interactions
in models with two order parameters [17,37]. The same
philosophy as in Ref. [35] is used but the actual calculation
becomes much less cumbersome. We will reduce the theory
to a noninteracting, linear one and then model the vorticies as
point sources. The interaction energy is then calculated from
this linear theory.

To make the calculation easier it is useful to use a gauge
tranformation to remove the phase in ψ(x). This is described

in the previous section and yields the form ψ =
√

µb

a
(1 − σ ).

To linearize the theory we expand in ρ and A and keep only
quadratic terms to get

Efree =
∫

d2x

{
µb

a

h̄2

2m
(∇σ )2 + 2

µ2
b

a
σ

+ 1

8π

[
(∇ × A)2 + A2

λ2

]}
. (20)

We now add source terms to model the vortices,

Esource =
∫

d2x{τσ + J · A}, (21)

where τ and J are the sources for the fields σ and A.
Minimizing this we get the equations of motion,(

∇2 − 2

ξ 2

)
σ = m

h̄2

a

µb
τ, (22)

(
∇2 − 1

λ2

)
A = 4πJ . (23)

We want to solve for the sources J and τ such that σ and
A have the same asymptotic solutions we obtained earlier in
Eqs. (18) and (19). Using Eq. (14), the derivative of Eq. (14)
with respect to the radial component r , and the identity

d

dr
K0(αr) = −αK1(αr), (24)

we can solve for the sources,

τ = −h̄2

m

µb

a
2πδ2(x), (25)

J = h̄c

2q

∂δ2(x)

∂r
φ̂ + j

c
δ2(x) ẑ. (26)

The interaction energy is found by substituting J = J 1 +
J 2, A = A1 + A2, τ = τ1 + τ2 and σ = σ1 + σ2 into the total
energy E = Efree + Esource and subtracting of the energies
of the vortices, leaving only cross terms. The subscripts 1
and 2 refer to two separate vortices and positions x1 and x2,
respectively. Using the equations of motion we get left over
cross terms that are interpreted as the interaction energy;

Eint =
∫

d2x{τ1σ2 + J1 · A2}. (27)

Though it is not apparent, the interaction energy is symmetric
in the exchange of the subscripts 1 and 2. The apparent
asymmetry arises when the equations of motion for either
subscript 1 or 2 are substituted in. Using Eqs. (9), (10), (25),
and (26) the interaction energy can be written,4

Eint =
∫

d2x

[
−h̄2

m

µb

a
2πδ2(|x − x1|)K0

(√
2

ξ
|x − x2|

)

− h̄2c2

2q2λ

∂δ2(x − x1)

∂r
K1

( |x − x2|
λ

)
−2j1j2

c2
δ2(x − x1)K0

( |x − x2|
λ

)]
,

= 1

2

(
h̄c

qλ

)2 [(
1 − 4q2λ2j1j2

h̄2c4

)
K0

(
d

λ

)
−K0

(√
2d

ξ

)]
, (28)

where d = |x1 − x2|. To evaluate the second term in the
integral we made use of Eqs. (24) and (14).

If j1 and j2 are set to zero we obtain the interaction between
gauge vortices without current. The only new piece in the
interaction is that which comes directly from the current. If j1

and j2 run in the same direction there is an attractive force and
if they run in opposite directions there is a repulsive force. This
is the expected result if we considered parallel wires carrying
current.

The interaction energy (28) determines whether the vortices
attract or repel and whether we see type I or type II behavior
in the superconductor. If we set j1 = j2 = j then there are
two cases to explore; one when j < h̄c2

2qλ
and one when j >

h̄c2

2qλ
. In the first case the first term of Eq. (28) is positive and

we obtain the canonical behavior for a superconductor where
the Landau-Ginzburg parameter decides whether the system
exhibits type I or type II behavior.

4We are thankful to Maxim Lyutikov, who pointed out the missing
factor “c” in the expressions (28) and (29).
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B. Discussions

First, let us consider the regime when current is large,

j >
h̄c2

2qλ
, (29)

and the first term in Eq. (28) becomes negative. This means that
there is no longer a repulsive term present in the interaction
and the vortices will always attract. This is the main result of
this paper. If the condition (29) is met, all the components of
the interaction become attractive. While a naive calculation
of the Landau-Ginzburg parameter suggests it is a type II
superconductor, it actually behaves like type-I, and the conflict
is resolved.

In this case an intermediate state will be formed, suggesting
that alternating domains of superconducting and normal matter
coexist in this regime. This state would be the lowest energy
state on the phase diagram with given B, j satisfying condition
(29). This implies that type II vortices don’t form at any time in
the neutron star’s life, even during the short period of cooling
when the transition to a superconducting state takes place.

One should remark that due to the static nature of the
problem the result (29) persists for relativistic systems, which
may be relevant for study color super conducting phases. The
equations of motion used to derive Eq. (29) remain unchanged

if we replace
√

h̄2

2m
ψ → φrel and redefine the corresponding

coupling constants.
Now let us consider a more realistic case when the current

is small,

j <
h̄c2

2qλ
. (30)

In this case we cannot make any precise statements within our
framework. However, based on experience in similar situations
in condensed matter systems one should expect very dramatic
changes to the vortex lattice when there are currents directed
along the external magnetic field [38–43].

In this literature, the presence of longitudinal currents is
shown to cause a vortex to develop a spiral-vortex instability.
This instability can be delayed for small currents or even
stabilized due to the impurities. The lesson from these
condensed matter systems is that when a current aligns with
the magnetic field of the vortex the properties of the vortex
lattice are completely changed or destroyed.

We expect similar behavior in regions of the neutron star
where both the Landau-Ginzburg parameter suggests type-II
behavior and longitudinal currents are induced. While many
features of the system are still to be explored, the main massage
for the present study that it is very likely (similarly to CM
studies mentioned above) that even small currents (2) can
completely destroy the vortex lattice by replacing it with a
new still unknown structure.

It is not our purpose to discuss the rich physics related to
vortex instabilities resulting from longitudinal currents, but
rather stress that the resulting state will definitely be not
the rigid Abrikosov lattice. It is unclear what structure will
replace the Abrikosov lattice but it is reasonable to believe
that superconductivity would persist in this new regime; the

energy scales associated with currents are much smaller than
the superconducting gap.

It is possible (but not necessary) that the intermediate
state typical for type I superconductivity will develop and
alternating domains of superconducting and normal matter
would coexist. The size and shape of the domains are known to
be very sensitive to many things: geometry, initial conditions,
the method of preparation of a sample, boundary conditions,
surface effects. As is known, the intermediate state is not
in thermodynamic equilibrium in the strict thermodynamical
sense, but rather depends on the history of the system. It is
also possible that other states, such as Bragg glass phase [42]
would develop, or vortex-lattice melting transition would take
place [43].

The exact state is not essential at the moment. What
is essential is that the Abrikosov lattice is destroyed by
longitudinal currents. There are many alternative states that
may replace the Abrikosov lattice. We shall refer to the absence
of the Abrikosov lattice (which is a consequence of type II
superconductivity) as a type I superconductor that supports
the intermediate state even though many other phases may
result from current induced vortex instabilities. Therefore,
the conflict between the precession of a neutron star and the
standard estimation of the Landau-Ginzburg parameter likely
will be resolved even when induced currents are small.

V. CONCLUSION AND SPECULATIONS

If currents are induced in vortices then we have found
a mechanism that reconciles the condradiction between the
precession of neutron stars and the standard presumption that
there is type II superconductivity inside a neutron star. A
sufficiently strong current running along the core of the vortex
and satisfying inequality (29) allows the vortices to attract even
if the Landau-Ginzburg parameter indicates they should repel.

A neutron star would rather form the domain structure
seen in type I superconductors [14,15] rather than the vortex
lattice structure seen in type II superconductors, thus resolving
the puzzle. We also argued that even small currents along
magnetic field can completely change/destroy the structure of
the Abrikosov lattice.

A pertinent question is whether these currents can actually
be induced in neutron stars. The answer depends crucially
on the details of the specific phase realized in the core of a
neutron star. As formulated in Sec. III, the electromagnetic
currents will be induced if the Goldsone modes condense in
the presence of a background magnetic field.

If we assume this is the case then there are many questions
to be considered. How would the magnetic field be distributed?
What is the fate of these currents?

(i) If the current is large, it is expected that the magnetic
field could exist in macroscopically large regions where there
are alternating domains of superconducting (type I) matter and
normal matter commonly known as the intermediate state. It
has been estimated long ago [8] that it takes a very long time
to expel a typical magnetic flux from the neutron star core.
Therefore, if the magnetic field existed before the neutron star
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became a type I superconductor (before it sufficiently cooled
down), it is likely that the magnetic field will remain there.

The intermediate state is characterized by alternating
domains of superconducting and normal matter where the
superconducting domains exhibit the Meissner effect, while
the normal domains carry the required magnetic flux. The
pattern of these domains is strongly related to the geometry
of the problem. The simplest geometry, originally considered
by Landau [44], is a laminar structure of alternating super-
conducting and normal layers. Although precise calculations
are required for understanding of the magnetic structure in
this case,5 one can give some simple estimation of the size
of the domains using the calculations Landau presented for a
different geometry. His formula [44] suggests that the typical
size of a domain is

D ∼ 10
√

R�, (31)

where R is a typical external size identified with a neutron
star core (R ∼ 10 km), while � is the typical width of the
domain wall separating normal and superconducting states.
We estimate � ∼ λ as the largest microscopical scale of
the problem. Numerically, D ∼ 10−1 cm which implies that
a typical domain can accommodate ∼104 neutron vortices
separated by a distance ∼10−3 cm.

(ii) What is the fate of these currents? It is quite possible
that the current will travel inside the superconducting region
in only one direction. The current is conserved, so it must
make a U-turn and start traveling in the opposite direction
either along the crust of the neutron star or through regions of
normal matter in the intermediate state. This is similar to the
case of 3He-A system discussed in Ref. [24] (see Fig. 23 from
that reference).

(iii) If the current on the way back travels through the
normal matter of a different domain (or the crust) then large
current loops with typical sizes comparable to the neutron
star radius would be created. These large current loops would
induce a coherent toroidal magnetic field that, when combined
with the poloidal field present in a neutron star, would create
a nonzero magnetic helicity.

Such a toroidal magnetic field is apparently necessary to
describe the temperature distribution of the crust [45]. It has
been also argued long ago that a toroidal component in the
magnetic field of a neutron star is necessary for stablility of
the poloidal magnetic field [46].

(iv) The existence of a current making a U-turn near the
surface of the star may be a key to the understanding of
the long standing problem of neutron star kicks [47,48]. As
is known, pulsars exhibit rapid proper motion characterized
by a mean birth velocity of 450 ± 90 km/s. Their velocities
range from 100 to 1600 km/s [47] with about 15% of all
pulsars having speeds over 1000 km/s [48]. Pulsars are born

5It is clear that the corresponding calculations would require an
understanding of the nonequilibrium dynamics. Indeed, the resulting
picture of the system would be very different if magnetic field
is turned on before the system becomes superconducting or after.
This unambiguously implies that the corresponding state is not in
thermodynamic equilibrium.

in supernova explosions so common theories naturally to look
for an explanation in the internal dynamics of the supernova.
However, three-dimensional numerical simulations [49] show
that even the most extreme, asymmetric explosions do not
produce pulsar velocities greater than 200 km/s. Therefore, a
different explanation is needed.

The origin of these velocities has been the subject of
intense study. Many of the theories involve an assymetry in the
star’s structure, and indeed, many mechanisims are capable
“in principle” of producing the required asymmetry. In the
presence of an external magnetic field, the neutrinos produced
in the star are automatically asymmetric with respect to the
direction of 
B. However, the most common problem with
the suggested mechanisms is the difficulty of delivering the
produced asymmetry to the surface of the star. Only when
the assymetry reaches the surface of the star may it result in
producing the proper motion of the entire star.

Due to their topological nature, the current (2) may be
capable of delivering the required asymmetry produced in the
interior of the star to the surface without dissipation. Even
in a strongly interacting theory, the current (2) is persistent
and nondissipating. In an environment as unfriendly as the
dense quark/nuclear matter in neutron stars there is still no
dissipation due to rescattering, and can be effectively used to
deliver information across the bulk of the star.

When the current makes a U-turn on the surface, a large
amount of momentum (due to photon emission) can be
transfered to the star. Therefore, this is a unique opportunity to
use our topological currents (2) for delivering the asymmetry
produced in the bulk of the star (e.g., due to the Goldstone
condensation) to solve the problem of neutron star kicks
[47,48].

One should notice that the currents may not satisfy
constraint Eq. (29) for the explanation of neutron star kicks.
Indeed, relatively small current is still capable of transfering
momentum because the U-turn mechanism remains operative.

This asymmetry mechanism is different from most in that
it does not occur during the supernova, but over a long period
of time. The momentum transfered from each emmited photon
is small but if given long enough is sufficient to accelerate the
neutron star to the observed proper velocities.

(v) A different, but likely related phenomena, is the recent
observation of pulsar jets [50] which are apparently related to
neutron star kicks [51,52]. It has been argued that spin axes
and proper motion directions of the Crab and Vela pulsars
are aligned. Such a correlation would follow naturally if we
suppose that the kick is caused by a nondissipating current, as
suggested in (iv). The current, and thus the proper motion, is
aligned with the magnetic field, which itself is correlated with
the axis of rotation.

As we mentioned above, the U-turn mechanism is neces-
sarily accompanied by the photon emission (which delivers
the momenta required for the neutron star kick). It would be
very tempting to identify the observed inner jets [50] with the
photons emitted when the current makes the U-turn and starts
traveling in the opposite direction along the crust. In this sense
the mechanism for the kick is similar to the electromagnetic
rocket effect suggested previously [52].
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(vi) What else could happen with vortices near the crust?
Reference [53] presents calculations in which vortices near the
crust are grabbed and bundled together by the Kelvin-Helmoltz
(KH) waves created by the instability that arises when there
is shear stress between two fluids. This bundling of vortices
could twist them so they no longer line up in an array, but
instead form vortex loops (vortons). These vortex loops lie in
a plane perpendicular to the angular momentum rather than
than along it.

Such surface KH instability may explain pulsar glitches
[54]. Spiral vortex instability [38] observed in condensed
matter systems may also have some relation to the formation
of these vortons and to glitches. The helical structure of the
vortex could expand to the surface and transfer its angular
momentum to the crust.

The vortex loops made from superfluid vortices are not
typically stable (similar to cosmic strings [19]) but the presence
of a current in the core of a superfluid vortex and an external

magnetic field could make these loops stable. If vortons are
stable then they could attract to each other and form a column.
Because they attract very close to each other this structure
would cease to look like a bunch of individual vortices but
like a single cylindrical vortex sheet which carries a surface
current similar to a solenoid. Vortex sheets have been studied
in the context of superfluidity by Landau and Lifshitz [55].

These and many other consequences of this picture still
remain to be explored.
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