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Proton spin polarizabilities from polarized Compton scattering
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Polarized Compton scattering off the proton is studied within the framework of subtracted dispersion relations
for photon energies up to 300 MeV. As a guideline for forthcoming experiments, we focus the attention on
the role of the proton’s spin polarizabilities and investigate the most favorable conditions to extract them with
a minimum of model dependence. We conclude that a complete separation of the four spin polarizabilities is
possible, at photon energies between threshold and the �(1232) region, provided one can achieve polarization
measurements with an accuracy of a few percent.
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I. INTRODUCTION

The polarizabilities of a composite system such as the
nucleon are elementary structure constants, just as its size
and shape. They can be studied by applying electromagnetic
fields to the system. The physical content of the nucleon
polarizabilities can be visualized best by effective multipole
interactions for the coupling of the electric ( �E) and magnetic
( �H ) fields of a photon with the internal structure of the
nucleon. This structure can be accessed experimentally by the
Compton scattering process γ + N → γ + N on the nucleon,
see Refs. [1,2] for recent reviews. When expanding the
Compton scattering amplitude in the energy of the photon, the
zeroth and first order terms follow from a low energy theorem
and can be expressed solely in terms of the charge, mass,
and anomalous magnetic moment of the nucleon. The second
order terms in the photon energy describe the response of the
nucleon’s internal structure to an electric or magnetic dipole
field, they are given by the following effective interaction:

H
(2)
eff = −4π

[
1
2αE1 �E2 + 1

2βM1 �H 2
]
, (1)

where the proportionality coefficients are the electric (αE1) and
magnetic (βM1) dipole (scalar) polarizabilities, respectively.
These global structure coefficients are proportional to the
electric and magnetic dipole moments of the nucleon which
are induced when placing the nucleon in static electric and
magnetic fields. They have been measured extensively using
unpolarized Compton scattering. A fit to all modern low-
energy Compton scattering data yields the following results
for the proton [3]:

α
p

E1 = [12.1 ± 0.3(stat) ∓ 0.4(syst) ± 0.3(mod)]

× 10−4 fm3,

β
p

M1 = [1.6 ± 0.4(stat) ± 0.4(syst) ± 0.4(mod)]

× 10−4 fm3, (2)

with the statistical, systematical, and model-dependent errors,
respectively. These values confirm, beyond any doubt, the
dominance of the electric polarizability αE1. The tiny value
of the magnetic polarizability, βM1, comes about due to
a cancellation of the large paramagnetic contribution of
the N → � spin-flip transition with a nearly equally large
diamagnetic contribution, partly due to pion loop effects.

The internal spin structure of the nucleon appears at third
order in an expansion of the Compton scattering amplitude. It
is described by the effective interaction

H
(3)
eff = −4π

[
1
2γE1E1 �σ · ( �E × �̇E) + 1

2γM1M1 �σ · ( �H × �̇H )

− γM1E2EijσiHj + γE1M2HijσiEj

]
, (3)

which involves one derivative of the fields with regard

to either time or space: �̇E = ∂t
�E and Eij = 1

2 (∇iEj +
∇jEi), respectively. The four spin (or vector) polarizabili-
ties γE1E1, γM1M1, γM1E2, and γE1M2 describing the nucleon
spin response at third order, can be related to a multipole
expansion [4], as is reflected in the subscript notation. For
example, γM1E2 corresponds to the excitation of the nucleon
by an electric quadrupole (E2) field and its de-excitation
by a magnetic dipole (M1) field. Expanding the Compton
scattering amplitude to higher orders in the energy, one obtains
higher order polarizabilities to the respective order, e.g., the
quadrupole polarizabilities to fourth order [4,5].

The effective Hamiltonians of Eqs. (1) and (3) describe a
shift in the nucleon energies at second order in the electro-
magnetic fields. This has been implemented in recent years as
a tool to calculate nucleon polarizabilities in lattice QCD. By
calculating the mass shifts in a constant background field, and
isolating the quadratic response, it has thus been possible to
compute the electric polarizability of the neutron and other
neutral octet and decuplet baryons [6], and the magnetic
polarizability of the proton, neutron, and all other particles
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in the lowest baryon octet and decuplet states [7]. In Ref. [7],
β

p

M1 has been calculated by use of the Wilson action in the pion
mass range 0.5 � mπ � 1 GeV and neglecting disconnected
loop diagrams. For the smallest calculated pion mass of mπ �
500 MeV, a value of β

p

M1 = (2.36 ± 1.20) × 10−4 fm3 was
obtained. While it is encouraging to see that the lattice result
is in the right ballpark when compared to the experimental
value of Eq. (2), a more precise comparison clearly requires
a dynamical fermion calculation, including disconnected loop
diagrams and much smaller pion masses. Such small pion
masses would then allow one to extrapolate safely to the
physical pion mass within the framework of chiral perturbation
theory.

To determine the spin polarizabilities, Eq. (3) can likewise
be used to calculate energy shifts of a polarized nucleon in an
external field. As an example, consider a nucleon polarized
along the z-axis and apply a magnetic field rotating with
angular frequency ω in the xy plane,

�H = B0[cos(ωt)êx + sin(ωt)êy], (4)

where êi stands for the unit vector in the direction i = x, y

and B0 is the magnitude of the field. Such a field leads to
an energy shift �E = ∓2πγM1M1ωB2

0 if the nucleon spin is
oriented along the positive (−) or negative (+) z-axis. The
split between the two levels is then directly proportional to the
magnetic dipole spin polarizability γM1M1.

It has been shown in Ref. [8] that allowing for background
fields with suitable variations in space and time, lattice QCD
should be able to calculate all six dipole polarizabilities. In
particular, calculations are in progress to determine the electric
polarizability of a charged particle such as the proton as well
as the four proton spin polarizabilities of Eq. (3) [9].

A microscopic understanding of the nucleon’s polarizabil-
ities requires to quantify the interplay between resonance
contributions, e.g., the N → � transition, and long range pion
cloud effects. Such systematic studies of the pion cloud effects
became possible with the development of chiral perturbation
theory (ChPT), by systematically expanding the lagrangian
in the external momenta and the pion mass (“p-expansion”).
The first such calculation to the one-loop order, at O(p3),
yielded the following leading terms for the proton scalar
polarizabilities [10]:

α
p

E1 = 10β
p

M1 = 5αemg2
A

96πf 2
π mπ

= 12.2, (5)

where αem = 1/137, gA � 1.27, and fπ = 92.4 MeV. This
result is in remarkable agreement with the experimental result
of Eq. (2). It also illustrates that these quantities diverge in
the chiral limit, which is a challenge for the lattice QCD
calculations. Conversely, if one is in the “small mπ” regime
where the chiral expansion converges well, ChPT can comple-
ment the lattice calculations by extrapolating to the physical
pion mass. The ChPT work was extended to O(p4) within
the heavy-baryon expansion [11]. However, the agreement
with the experimental values of the scalar polarizabilities
became much more challenging when including the � degree
of freedom, which yields a large contribution to β

p

M1 [12–14].

The spin polarizabilities have been calculated within the
framework of ChPT at O(p3) [15] and O(p4) [16–18].
However, much less is known about these observables on the
experimental side, except for the forward (γ0) and backward
(γπ ) spin polarizabilities of the proton, given by the following
linear combinations of the polarizabilities of Eq. (3):

γ0 = −γE1E1 − γM1M1 − γE1M2 − γM1E2, (6)

γπ = −γE1E1 + γM1M1 − γE1M2 + γM1E2. (7)

The forward spin polarizability has been determined from the
Gerasimov-Drell-Hearn sum rule experiments at MAMI and
ELSA [19,20],

γ0 = (−1.00 ± 0.08 ± 0.10) × 10−4 fm4, (8)

and the recent experimental value for the backward spin
polarizability has been obtained by a dispersive analysis of
backward angle Compton scattering [2],

γπ = (−38.7 ± 1.8) × 10−4 fm4. (9)

No data exist for the other two independent proton spin
polarizabilities. It is the aim of the present work to show that
polarized Compton scattering, both near pion threshold and in
the �(1232) resonance region, can be used to determine the
remaining two spin polarizabilities.

The extraction of polarizabilities from Compton scattering
data has been performed by three techniques. The first one
is a low energy expansion of the Compton cross sections.
Unfortunately this procedure is only applicable at photon en-
ergies well below 100 MeV, which makes a precise extraction
a rather challenging task. The sensitivity to the polarizabilities
is increased by measuring Compton scattering observables
around pion threshold and into the �(1232) resonance region.
A second formalism which has been successfully applied to
Compton data in this energy region makes use of dispersion
relations. This formalism has been worked out for both
unsubtracted [21] and subtracted [22] dispersion relations,
and yield the values of the scalar polarizabilities given in
Eq. (2). Recently, a third approach has been developed within
the framework of a chiral effective field theory [23–26]. For
energies below and around pion threshold the full Compton
scattering process has been calculated to fourth order in the
small momenta, allowing for an independent extraction of
the polarizabilities from Compton scattering data. The thus
obtained values for α

p

E1 and β
p

M1 in the work of [23,25] are
nicely compatible with the results given by Eq. (2).

In this work we study the polarized proton Compton
scattering observables both below pion threshold and in the
�(1232) resonance region within the subtracted dispersion
relation formalism of Ref. [22]. In particular we investigate
the sensitivity of different beam and beam-target polarization
observables to the extraction of the proton spin polarizabilities.

After a brief review of fixed-t dispersion relations for the
Compton scattering process in Sec. II, we discuss different
single and double polarization observables in Sec. III. We
present our results for these different polarization observables
in Sec. IV and study the sensitivity to the extraction of the
proton spin polarizabilities. Finally, we give our conclusions
in Sec. V.
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II. FIXED-T SUBTRACTED DISPERSION RELATIONS

In this section we review the essentials of the dispersion
relation formalism for real Compton scattering (RCS), a more
detailed presentation can be found in Refs. [1,22]. Let us first
define the kinematics of RCS on the proton, the reaction

γ (q) + p(p) → γ (q ′) + p(p′), (10)

where the variables in brackets denote the four-momenta of
the participating particles. The familiar Mandelstam variables
are

s = (q + p)2, t = (q − q ′)2, u = (q − p′)2, (11)

which are constrained by s + t + u = 2M2, where M is the
nucleon mass. The crossing-symmetric variable ν is defined
by

ν = s − u

4M
. (12)

The two Lorentz invariant variables ν and t are related to the
initial (Eγ ) and final (E′

γ ) photon laboratory energies and to
the laboratory scattering angle θlab by

ν = Eγ + t

4M
= 1

2
(Eγ + E′

γ ),

t = −4Eγ E′
γ sin2(θlab/2) = −2M(Eγ − E′

γ ).

The T matrix of real Compton scattering can be expressed
by six independent structure functions Ai(ν, t), i = 1, . . . , 6,
which were first introduced in Ref. [21]. These structure
functions depend on ν and t , they are free of kinematic
singularities and constraints, and because of the crossing sym-
metry they satisfy the relation Ai(ν, t) = Ai(−ν, t). Assuming
further analyticity and an appropriate high-energy behavior,
the amplitudes Ai fulfill unsubtracted dispersion relations
(DRs) at fixed t ,

Re Ai(ν, t) = AB
i (ν, t) + 2

π
P

∫ +∞

νthr

dν ′ ν
′ImsAi(ν ′, t)
ν ′2 − ν2

, (13)

where AB
i are the nucleon pole contributions of the Born

terms describing the photon scattering off a point-like nu-
cleon with anomalous magnetic moment, as explicitly given
in Appendix A of Ref. [21]. Furthermore, ImsAi are the
discontinuities across the s-channel cut of the Compton
process, starting at pion production threshold, i.e., νthr =
mπ + (m2

π + t/2)/(2M), with mπ the pion mass. However, as
can be deduced from the asymptotic behavior of the functions
Ai(ν, t) for ν → ∞ and fixed t [22], such unsubtracted DRs
do not converge for the amplitudes A1 and A2. We therefore
subtract the fixed-t DRs of Eq. (13) at ν = 0, with the result

Re Ai(ν, t) = AB
i (ν, t) + [

Ai(0, t) − AB
i (0, t)

]
+ 2

π
ν2P

∫ +∞

νthr

dν ′ ImsAi(ν ′, t)
ν ′(ν ′2 − ν2)

. (14)

Because of the two additional powers of ν ′ in the denominator,
these subtracted DRs should now converge for all of the
invariant amplitudes.

The six subtraction functions Ai(ν = 0, t) appearing in
Eq. (14) can be determined by once-subtracted DRs in the

variable t :

Ai(0, t) − AB
i (0, t) = [

Ai(0, 0) − AB
i (0, 0)

]
+ [

A
t−pole

i (0, t) − A
t−pole

i (0, 0)
]

+ t

π

∫ +∞

4m2
π

dt ′
ImtAi(0, t ′)
t ′(t ′ − t)

+ t

π

∫ −2m2
π −4Mmπ

−∞
dt ′

ImtAi(0, t ′)
t ′(t ′ − t)

,

(15)

where A
t−pole

i (0, t) represents the contribution of the poles in
the t channel, in particular of the π0 pole in the case of A2 as
explicitly evaluated in Ref. [22], and the subtraction constants
ai = Ai(0, 0) − AB

i (0, 0) are related to the polarizabilities as
explained below.

In order to evaluate the dispersion integrals in Eq. (14),
the imaginary parts in the s−channel are calculated from the
unitarity relation, taking into account the πN intermediate
states and the resonant contributions of inelastic channels
involving more pions in the intermediate states. In particular,
for the γN → πN → γN contribution we use the multipole
amplitudes from the analysis of Hanstein et al. [27] for energies
ν � 500 MeV, and at the higher energies up to ν = 1.5 GeV we
take the solutions of the SAID analysis [28]. The multi-pion
intermediate states are approximated by the inelastic decay
channels of the πN resonances as detailed in Ref. [22]. This
simple approximation of the higher inelastic channels is quite
sufficient, because these channels are largely suppressed by
the energy denominator ν ′(ν ′2 − ν2) in the subtracted DRs of
Eq. (14).

The imaginary part in the t-channel integral from 4m2
π →

+∞ in Eq. (15) is saturated by the possible intermediate
states for the t-channel process, which lead to cuts along
the positive t-axis. For values of t below the KK̄ threshold,
the t-channel discontinuity is dominated by the two-pion
intermediate states, γ γ → ππ → NN̄ . We calculate this con-
tribution by evaluating a unitarized amplitude for the γ γ →
ππ subprocess, and then combine it with the ππ → NN̄

amplitudes as determined from dispersion theory by analytical
continuation of the πN scattering amplitudes [29]. The second
integral in Eq. (15) extends from −∞ to −2m2

π − 4Mmπ ≈
−0.56 GeV2. As long as we stay at small (negative) values
of t , this integral is strongly suppressed by the denominator
t ′(t ′ − t) in Eq. (15), and therefore it can be approximated
by the contributions of �-resonance and non-resonant πN

intermediate states. The latter contributions are evaluated
by first evaluating the imaginary parts of the Compton
amplitude in the physical s-channel region by unitarity, and
then extrapolating these results into the unphysical region at
ν = 0 and negative t by means of analytical continuation.

The six subtraction constants ai in Eq. (15) are related to
the electric (αE1) and magnetic (βM1) scalar polarizabilities in
the spin-independent sector,

αE1 = − 1

4π
(a1 + a3 + a6), βM1 = 1

4π
(a1 − a3 − a6),

(16)
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and to the four spin-dependent or vector polarizabilities,

γE1E1 = 1

8πM
(a2 − a4 + 2a5 + a6),

γM1M1 = − 1

8πM
(a2 + a4 + 2a5 − a6),

(17)

γE1M2 = 1

8πM
(a2 − a4 − a6),

γM1E2 = − 1

8πM
(a2 + a4 + a6).

Although in principle all six subtraction constants a1 to
a6 could be used as fit parameters, we restrict the fit to
the parameters a5 and a6, or equivalently to the two spin
polarizabilities γE1E1 and γM1M1. For fixed values of the
fit parameters a5 and a6, the subtraction constants a1 and
a3 are then determined by a recent global fit of the scalar
polarizabilities to the low-energy data [3],

αE1 + βM1 = (13.8 ± 0.4) × 10−4 fm3,

αE1 − βM1 = (10.5 ± 0.9(stat. + syst.) ± 0.7(mod.))

× 10−4 fm3. (18)

In the spin-dependent sector, we use the experimental values
of the forward (γ0) and backward (γπ ) spin polarizabilities
describing the Compton spin-flip amplitude at θ = 0◦ and
180◦, respectively. These observables have been expressed in
Eqs. (6) and (7) by linear combinations of the polarizabilities
defined in Eq. (17), they are related to the subtraction constants
as follows:

γπ = − 1

2πM
(a2 + a5), γ0 = 1

2πM
a4. (19)

In particular, the subtraction constant a2 is fixed by the value
of γπ given by Eq. (9). This definition of the backward spin
polarizability includes both the dispersive and the large π0-
pole contribution. In the analysis of Ref. [2], the latter takes the

value γ
π0−pole
π = −46.7 × 10−4 fm4, which leads to γ

disp
π =

(8.0 ± 1.8) × 10−4 fm4. In fact, the pion pole contribution is
not known to that accuracy, and therefore the error in Eq. (9)
stems from both the dispersive and the pole contributions to
the backward spin polarizability. The value of the forward
spin polarizability, or equivalently of a4, is fixed by Eq. (8).
We conclude that the choice of the subtraction constants a5 and
a6 as fit parameters is equivalent to varying the polarizabilities
γE1E1 and γM1M1. As can be seen from Eqs. (17) and (8),
another possibility would be to fit a2 and a6 or γE1M2 and
γM1E2.

III. CROSS SECTIONS AND
ASYMMETRIES—FORMALISM

The general formalism for RCS with one or two polarized
particles has been originally derived in Ref. [4]. In the
following we only review some pertinent formulas necessary to
define the observables for polarized incident photons scattered
by polarized target nucleons.

We work in a reference frame with the z axis along q̂ (the
direction of the incoming photon), the x axis in the scattering

plane and in the half-plane of the outgoing photon, and the y

axis perpendicular to the scattering plane along the direction
(q̂ × q̂ ′). The photon-polarization density matrix is defined by
the Stokes parameters ξi (i = 1, 2, 3) as follows [30]:

〈εαε∗
β〉 = 1

2
(1 + �σ · �ξ )αβ = 1

2

(
1 + ξ3 ξ1 − iξ2

ξ1 + iξ2 1 − ξ3

)
αβ

,

(20)

where εµ is the photon polarization vector chosen in the
radiation gauge, �ε · �q = 0, and α, β = 1, 2 denote either of
the two orthogonal directions x and y. The total degree of

photon polarization is given by ξ =
√

ξ 2
1 + ξ 2

2 + ξ 2
3 , and ξ =√

ξ 2
1 + ξ 2

3 and ξ2 describe the degrees of linear and circular
polarization, respectively. Furthermore, ξ2 = +1 and ξ2 = −1
correspond to right- and left-handed states, respectively, and
in the case of linear polarization the azimuthal angle φ

between the electric field and the scattering plane is defined
by cos 2φ = ξ3/ξ and sin 2φ = ξ1/ξ. With these definitions,
the Stokes parameters take the same value in the c.m. and
laboratory frames.

The nucleon polarization density matrix is described by a
polarization four-vector Sµ that is orthogonal to the nucleon
four-momentum [30],

〈u(p)ū(p)〉 = 1
2 (γ · p + M)(1 + γ5γ · S), (21)

where u(p) is a nucleon Dirac spinor normalized as
ū(p)u(p) = 2M .

The differential cross section is related to the T -matrix by

dσ

d�
= �2|T |2, with � =

{
1

8πM

E′
γ

Eγ
(lab frame)

1
8π

√
s

(c.m. frame).
(22)

The T -matrix for polarized photons and polarized targets can
be decomposed in eight independent functions Wij ,

|T ( �γ �N → γN )|2 = W00 + W03ξ3 + N · S(W30 + W+
33ξ3)

+K · S(W+
11ξ1 + W+

12ξ2)

+Q · S(W+
21ξ1 + W+

22ξ2), (23)

with the orthogonal four-vectors K,N , and Q defined as

Kµ = 1
2 (q ′ + q)µ, Nµ = εµαβγ P ′αQβKγ ,

(24)
Qµ = 1

2 (p − p′)µ = 1
2 (q ′ − q)µ,

where ε0123 = 1. The photon asymmetry � follows if the
nucleon polarization vector is set to zero, and the unpolarized
case |T |2 = W00 is recovered for vanishing photon and nucleon
polarization vectors.

In terms of the invariant amplitudes Ai , the functions Wij

read [4,31]

W00 = 1
4 (4M2 − t)(t2|A1|2 + η2|A3|2) − 1

4 (t3|A2|2 − η3|A4|2)

−ν2t(t + 8ν2)|A5|2 + 1
2η(t2 + 2M2η)|A6|2

+Re
{
2ν2t2(A1 + A2)A∗

5 + 1
2η2(4M2A3 + tA4)A∗

6

}
,

(25)
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W03 = ηt

2
Re{((4M2 − t)A1 + 4ν2A5)A∗

3 + 4M2A1A
∗
6}, (26)

W30 = −8νIm(tA1A
∗
5 + ηA3A

∗
6), (27)

W±
33 = Im{−8ν[(tA1 − (t + 4ν2)A5)A∗

6 + ηA3A
∗
5]

± 2

m
(tA2 − 4ν2A5)(ηA∗

4 + tA∗
6)}, (28)

W±
11 = Im

{
t

2M
((4M2 − t)A1 + 4ν2A5)(ηA∗

4 + tA∗
6)

± 2νt(tA2 − 4ν2A5)A∗
6

}
, (29)

W±
12 = Re

{
− η

2M
((4M2 − t)A3 + 4M2A6)(ηA∗

4 + tA∗
6)

± 2νt(tA2 − 4ν2A5)A∗
5

}
, (30)

W±
21 = 2Im{−M(tA2 − 4ν2A5)(ηA∗

3 + (t + 4ν2)A∗
6)

± ν(tA1 − (t + 4ν2)A5)(ηA∗
4 + tA∗

6)}, (31)

W±
22 = 2Re{−Mt(tA2 − 4ν2A5)A∗

1 ∓ νηA3(ηA∗
4 + tA∗

6)},
(32)

where we have introduced the invariant variable η = 4ν2 +
t − t2/(4M2). Below the pion photoproduction threshold the
functions Ai are real, and therefore only the six structures
W00,W03,W

±
12, and W±

22 contribute below threshold.
In the following, we focus on the asymmetries that can

be obtained by varying the photon and target polarizations in
Eq. (23):

(i) circular photon polarization (ξ2 = ±1) and target spin
aligned in the ±z direction,

�2z = σR
+z − σL

+z

σR+z + σL+z

= σR
+z − σR

−z

σR+z + σR−z

= CK
z W+

12 + CQ
z W+

22

W00
,

(33)

where the coefficients CK,Q
z can be written in terms of

laboratory or invariant variables as

CK
z = −1

2
(Eγ + E′

γ cos θlab)

= − s − M2

2M
− t(s + M2)

4M(s − M2)
,

CQ
z = 1

2
(Eγ − E′

γ cos θlab) = − t(s + M2)

4M(s − M2)
; (34)

(ii) circular photon polarization (ξ2 = ±1) and target spin
aligned in the ±x directions,

�2x = σR
+x − σL

+x

σR+x + σL+x

= σR
+x − σR

−x

σR+x + σR−x

= CK
x W+

12 + CQ
x W+

22

W00
, (35)

with

CK
x = CQ

x = −1

2
E′

γ sin θlab = − M
√−ηt

2(s − M2)
; (36)

(iii) linearly polarized photons, either parallel or perpendicu-
lar to the scattering plane (ξ3 = ±1), and target nucleon
polarized perpendicularly to the scattering plane,

�3y = (σ ‖ − σ⊥)y − (σ ‖ − σ⊥)−y

(σ ‖ + σ⊥)y + (σ ‖ + σ⊥)−y

= CN
y

W+
33

W00
, (37)

with

CN
y = M

2
Eγ E′

γ sin θlab = M

4

√−ηt ; (38)

(iv) linearly polarized photons, either parallel or perpendic-
ular to the scattering plane (ξ3 = ±1), and unpolarized
target nucleons,

�3 = σ ‖ − σ⊥

σ ‖ + σ⊥ = W03

W00
; (39)

(v) photons linearly polarized at ϕ = ±π/4 with respect to
the scattering plane (ξ1 = ±1) and the nucleon target
polarized in the scattering plane in the ±z direction,

�1z = σ
π/4
+z − σ

−π/4
+z

σ
π/4
z + σ

−π/4
z

= σ
π/4
+z − σ

π/4
−z

σ
π/4
+z + σ

π/4
−z

= CK
z W+

11 + CQ
z W+

21

W00
, (40)

with coefficients CK,Q
z as defined in Eqs. (34);

(vi) photons linearly polarized at ϕ = ±π/4 with respect
to the scattering plane (ξ1 = ±1) and nucleon targets
polarized in the ±x direction,

�1x = σ
π/4
+x − σ

−π/4
+x

σ
π/4
+x + σ

−π/4
+x

= σ
π/4
+x − σ

π/4
−x

σ
π/4
+x + σ

π/4
−x

= CK
x W+

11 + CQ
x W+

21

W00
, (41)

with CK,Q
x given in Eq. (36).

IV. RESULTS AND DISCUSSION

In this section we present our predictions for the po-
larization observables. Our results are based on subtracted
DRs evaluated with the pion photoproduction multipoles of
Refs. [27,28] as input. Because of the subtraction, two-
pion and heavier intermediate states will generally yield
only small corrections. Four of the subtraction constants are
determined by the experimental values for the polarizabilities
αE1, βM1, γ0, and γπ . The remaining two constants are
obtained by fixing the spin polarizabilities γE1E1 and γM1M1.
In the following figures, we start from the predictions of fixed-t
DRs for the dispersive part of the spin polarizabilities [1,5],

γE1E1 = −4.3 × 10−4 fm4, γM1M1 = 2.9 × 10−4 fm4, (42)

which are then varied by ± 2 units. We note that here and in the
following discussion including the figures, the values of the
spin polarizabilities refer only to their dispersive parts, that is,
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FIG. 1. (Color online) The beam-target asym-
metry �2z as function of the photon laboratory
energy Eγ plotted at different values of the pho-
ton scattering angle θlab = 30◦ (upper row), 90◦

(central row), and 150◦ (lower row). The results
of the dispersion calculation are obtained by using
the experimental values for αE1, βM1, and γ0, as
given by Eqs. (18) and (8), while the remaining
polarizabilities are taken as free parameters. Left
column: results for fixed γM1M1 and γπ as indicated,
and the following values of γE1E1: −4.3 (red solid
lines), −2.3 (blue dashed lines), and −6.3 (black
dotted lines); central column: results for fixed γE1E1

and γπ as indicated, and the following values of
γM1M1: 2.9 (red solid lines), 4.9 (blue dashed lines),
and 0.9 (black dotted lines); right column: results
for fixed γE1E1 and γM1M1 as indicated, and the
following values of γπ : 8 (red solid lines), 9.8 (blue
dashed lines), and 7.2 (black dotted lines).

the pion pole contribution, γ
π0−pole
E1E1 = −γ

π0−pole
M1M1 = 11.68 ×

10−4 fm4, has been subtracted. Because of the relatively large
error bar for γπ , we also vary this polarizability within its error
band while keeping γE1E1 and γM1M1 fixed at their central
values.

Figure 1 shows the asymmetry �2z, with circular photon
polarization and target aligned parallel to the incoming
photon. We observe asymmetries up to 90% and a strong

dependence on both angle and energy, with distinct structures
near the threshold for pion photoproduction. Although the
asymmetry near θlab = 90◦ is smaller than for the forward
and backward directions, it is rather sensitive to a variation
of γM1M1 both near threshold and in the � (1232) resonance
region. Within the range of the variation, �2z changes by 15–
20 %, which provides a promising signal to determine the spin
polarizability γM1M1. Figure 2 displays the same information
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γM1M1 = 2.9
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FIG. 2. (Color online) The beam-target
asymmetry �2x as function of the photon lab-
oratory energy Eγ plotted at different values
of the photon scattering angle θlab : 30◦ (upper
row), 90◦ (central row), and 150◦ (lower row).
For further notation see Fig. 1.
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FIG. 3. (Color online) The beam-target asymmetries �2z (upper
row) and �2x (lower row) as function of the photon scattering angle
θlab and at fixed photon laboratory energy Eγ = 240 MeV. The results
of the dispersion calculation are obtained by using the experimental
values for αE1, βM1, γ0, and γπ as given by Eqs. (18), (9), and (8),
while γE1E1 and γM1M1 are taken as free parameters. Left column:
results for fixed γM1M1 = 2.9 and the following values of γE1E1: −4.3
(red solid lines), −6.3 (black dotted lines), and −2.3 (blue dashed
lines); right column: results for fixed γE1E1 = −4.3, and the following
values of γM1M1: 2.9 (red solid lines), 4.9 (blue dashed lines), and 0.9
(black dotted lines).

for the asymmetry �2x , with circular photon polarization and
target aligned sideways to the incident photon. Contrary to
the previous figure, the maximum asymmetry is now reached
at scattering angles θlab ≈ 90◦, and the maximum sensitivity
occurs by changing γE1E1. Within the range of variation, this
observable changes by 15% near threshold and 40% in the
� region. The right panels of Figs. 1 and 2 show that these
observables are hardly changed by a variation of γπ . As a
result, the observables �2z and �2x sample conclusive and
complementary information on the nucleon’s spin structure.
Furthermore, through the input of the DRs, they are related to
the physics of the observables E and F of pion photoproduction.

The full angular distribution for �2z and �2x are shown
in Fig. 3 for a photon beam of 240 MeV. It is seen that
the discussed sensitivity extends over a large angular range
between 30◦ and 150◦. In view of the error bars of the
backward scalar and vector polarizabilities, αE1 − βM1 and γπ ,
respectively, the cleanest information should however come
from angles around θlab ≈ 90◦.

Figure 4 displays the results for the beam asymmetry �3,
for linear photon polarization, which is obtained by averaging
the double-polarization observable �3y over the target po-
larizations. This observable rises from large negative values
at low energies to positive values in the resonance region.
Moreover, there appear interesting cusp effects, especially at
forward angles. The figure shows strong sensitivity to changes
of γM1M1. Within the range of our variation, the asymmetry
�3 changes by about 0.15 near threshold and nearly 0.30
in the resonance region. The LEGS data [32] taken at 65◦
and 90◦ are compatible with our central value for γM1M1

(full lines), they scatter about this value at 135◦. As in the
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FIG. 4. (Color online) The beam asymmetry
�3 as function of the photon laboratory energy
Eγ plotted at different values of the photon scat-
tering angle θc.m. : 65◦ (upper row), 90◦ (central
row), and 135◦ (lower row). The experimental
data are from Ref. [32]. For further notation see
Fig. 1.
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FIG. 5. (Color online) The beam asymmetry �3 (upper row) and
beam-target asymmetry �3y (lower row) as function of the photon
scattering angle θc.m. and at fixed photon laboratory energy Eγ =
275 MeV. The experimental data are from Ref. [32]. For further
notation see Fig. 3.

previous examples, the variation of γπ leads to much smaller
effects. Figure 5 shows the full angular distribution for �3

and the double-polarization observable �3y in the resonance
region. Large asymmetries are predicted for both observables
over a wide angular range. Moreover, the sensitivity to the
variation is large, and while �3 is particularly sensitive
to γM1M1, the related double-polarization asymmetry �3y

changes strongly with γE1E1. We conclude that these two
observables are particularly useful to disentangle the unknown
spin polarizabilities.

The physics behind the asymmetry �3 is addressed in
Fig. 6 as function of the photon energy. The Born terms,
subtraction constants, and t-channel contributions provide a
negative background whose height at the resonance depends
strongly on the value of γM1M1. The S-wave multipoles in
the dispersion integral provide the interesting cusp effect near
threshold through the opening of the imaginary part, whereas
the P-waves are responsible for the further increase to large

positive values in the �(1232) resonance region. In conclusion,
the large effect is mainly given by the M

(3/2)
1+ multipole of pion

photoproduction.
Let us now address the question of the model dependence

of the dispersive approach. The general answer is that the
errors in fixed-t dispersion relations increase with both the
beam energy and the scattering angle. If the energy gets
larger, the unknown contributions of the higher resonances
and backgrounds become more and more important for the
evaluation of the s-channel dispersion integrals. Large angles
and energies, on the other hand, require the knowledge of the
subtraction functions at large (negative) t-values. Of course,
the error also depends on the specific variable under discussion.
We have studied these error sources for all the shown variables
and found them to yield only small corrections in all the
interesting cases, that is for large asymmetries and large
sensitivity to the variation. Specifically for �3 and �3y in
Fig. 5, the neglect of the two-pion production changes these
asymmetries by less than 0.01 at all energies and angles. It is
therefore reasonable to assume that also the neglected higher
resonance and background contributions above ν = 1.5 GeV
are irrelevant for our discussion. Concerning the error from
the t-channel integral, we find that the contribution from the
negative t-channel cut is negligible for Eγ � 230 MeV. At
the energy Eγ = 275 MeV shown in Fig. 5, the asymmetry
�3 increases by less than 0.02 if we completely neglect that
contribution, while �3y is even less affected by the t-channel
integral. In conclusion, even a very conservative estimate
yields errors of a few percent at most, which are almost
negligible in view of the large range of variation predicted
for �3 and �3y .

Let us finally discuss the beam-target asymmetries with
photons linearly polarized at azimuthal angles φ = ±45◦

with respect to the scattering plane. These asymmetries are
related to the observables G and H of pion photoproduction.
They vanish below the one-pion threshold, because they
thrive on the imaginary part of the scattering amplitudes.
For the same reason, Fig. 7 does not show a peak near
the � resonance, because all � multipoles carry the same
phase. Instead, these observables are strongly enhanced by
interference of non-resonant S-wave and resonant P-wave
pion production. Since the pion photoproduction multipoles
are quite well known in the � region, we expect a rather
model-independent information. The asymmetry �1z turns out
to be small at all angles and energies. Figure 7 shows the
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FIG. 6. (Color online) Different contribu-
tions in the dispersion relation calculation to
the beam asymmetry �3 as function of the
photon laboratory energy Eγ at photon scattering
angle of 90◦, for different values of γM1M1 as
indicated on the figure. The black dotted curves
show the contribution from Born diagrams +
subtraction constants + t-channel. The blue
dashed curves are the contribution from Born
diagrams + subtraction constants + t-channel +
M1+ multipole in the s-channel. The red solid
curves are the total result. The experimental data
are from Ref. [32].

015203-8



PROTON SPIN POLARIZABILITIES FROM POLARIZED . . . PHYSICAL REVIEW C 76, 015203 (2007)

-0.1

0 θlab = 90o

γπ = 8

γM1M1 = 2.9

γE1E1 varied

Σ 1z

θlab = 90o

γπ = 8

γE1E1 = -4.3

γM1M1 varied

θlab = 90o

γπ  varied

γM1M1 = 2.9

γE1E1 = -4.3

0

0.05

0.1

150 200 250 300

θlab = 150o

Eγ (MeV)

Σ 1x

200 250 300

θlab = 150o

Eγ (MeV)

200 250 300

θlab = 150o

Eγ (MeV)

FIG. 7. (Color online) The beam-target
asymmetries �1z (upper row) at photon scat-
tering angle θlab = 90◦ and �1x (lower row) at
θlab = 150◦, plotted as function of the photon
laboratory energy Eγ . Further notation as in
Fig. 1.

most promising kinematics at angles near θlab = 90◦, where the
asymmetry changes up to about 8% over the range of variation.
The asymmetry �1x , on the other hand, has its maximum
sensitivity at the backward angles. However, the variations of
γE1E1 and γM1M1 yield similar effects, such that the observed
change is qualitatively proportional to the difference of the
two polarizabilities. In conclusion, these asymmetries �1x

and �1z would have to be measured with an accuracy of a
few percent in order to get useful information on the spin
polarizabilities.

V. SUMMARY AND CONCLUSIONS

Compton scattering probes the response of the nucleon to an
external electromagnetic field. At low energies, this response
is described by two scalar and four vector polarizabilities,
which contain global information on the excitation spectrum.
Whereas the scalar polarizabilities are now known with rela-
tively small error bars, our knowledge on the spin-dependent
sector is as yet incomplete. Only two combinations of the
vector polarizabilities have been measured. The forward spin
polarizability has been determined by forward dispersion
relations as an energy-weighted integral over the helicity-
dependent total cross sections. Furthermore, the backward
spin polarizability has recently been measured both below
and in the �(1232) resonance region, however with a larger
model dependence. It has been known for some time that
it will take a full-fledged experimental program including
several polarization observables in order to achieve a complete
separation of the spin polarizabilities. Considerable theoretical
work has been dedicated to finding the appropriate observables
and kinematics for this purpose.

In our present work we study polarized Compton scattering
within the framework of dispersion relations at t = const.

Subtraction of these relations speeds up the convergence of
the dispersion integrals, and the subtraction constants of the
six relativistic amplitudes turn out to be linear combinations
of the six polarizabilities. In most cases also the unsubtracted
integrals converge and hence a prediction for the polarizabili-
ties is given. However, we choose to subtract all six integrals
in order to reduce the model dependence on the high-energy
spectrum as much as possible. Four of the subtraction constants
are then fixed by the experimental values for the electric
(αE1) and magnetic (βM1) scalar polarizabilities as well as
the forward (γ0) and backward (γπ ) spin polarizabilities. The
remaining two independent polarizabilities are taken to be
γE1E1 and γM1M1. They are varied about a central value
as predicted by dispersion relations, within a range which
comprises several predictions from effective field theories and
dispersive approaches.

Whereas the scalar polarizabilities contribute to the dif-
ferential cross section already at second order in the photon
beam energy, the vector polarizabilities appear only at third
or fourth order, depending on the observable. It is therefore
not surprising that it takes at least 100 MeV to get visible
effects of the vector polarizabilities. Even at energies near
the pion production threshold, the asymmetries change at
most by 10% over the range of our variation. Of course, the
experiments could eventually yield polarizabilities far outside
the range of the existing predictions. However we choose
to stay on the conservative side regarding our predictions.
Much larger effects are obtained in the first resonance
region, in which both the cross sections and the asymmetries
increase considerably. Specifically, we find a good chance to
solve the open questions by the following two independent
setups:

(i) Circularly polarized photons and targets aligned in the
beam direction (�2z) or transverse to the beam in the
scattering plane (�2x). Both asymmetries should yield a
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reasonably large sensitivity to the spin polarizabilities in
the threshold region and increasingly large effects closer
to the resonance region. Moreover, the response to the
variation shows interesting cusp effects at threshold and
a distinctly different sensitivity of these observables with
regard to γE1E1 and γM1M1.

(ii) Linearly polarized photons, parallel or perpendicular to
the scattering plane, and with unpolarized targets (�3)
or with targets polarized perpendicular to the scattering
plane (�3y). The sensitivity of these two observables
is relatively small near threshold but very large in the
resonance region. Moreover, the variations of the spin
polarizabilities affect the observables in a completely
different way, with �3 being mainly sensitive to γM1M1

whereas �3y being mainly sensitive to γE1E1.

We further looked at the observables �1z and �1x , obtained
with photons linearly polarized at an angle of 45◦ against
the scattering plane and target alignment perpendicular to this
plane. However, these asymmetries turn out to be small in
general, and even though the relative effect of the variations
may be large, such experiments will require asymmetry
measurements at the few percent level.

With the advent of new experimental tools as polarized
targets and photon beams it will be possible to study the
full spin structure of Compton scattering. The new HIGS
project [33] of a high-intensity beam with circularly polarized
photons in an energy range up to 140–160 MeV is ideally
suited to perform the discussed experiments in the threshold

region. Complementary investigations should be performed
at energies closer to the first resonance region, in which we
expect much larger cross sections and sensitivities to the spin
polarizabilities. Such experiments in the first resonance region
are planned using the Crystal Ball detector at MAMI [34]. We
strongly believe that only a combination of such experimental
projects will provide the “sharp knife” to extract the spin
polarizabilities in an unambiguous way. The spin polarizabil-
ities of the nucleon are fundamental structure constants of the
nucleon, just as shape and size of this strongly interacting
many-body system, which strongly justifies the experimental
effort. Such activities are both important and timely, they will
provide stringent precision tests for the existing predictions
of effective field theories and the new results expected from
the lattice gauge community for the polarizability of the
nucleon.
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