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Properties of possible new unflavored mesons below 2.4 GeV
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The global features of spectrum of highly excited light nonstrange mesons can be well understood within
both chiral symmetry restoration scenario combined with the relation M2 ∼ J + n and within a nonrelativistic
description based on the relation M2 ∼ L + n. The predictions of these two alternative classifications for missing
states are different and only future experiments can distinguish between the two. We elaborate and compare
systematically the predictions of both schemes, which may serve as a suggestion for future experiments devoted
to the search for missing states.
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I. INTRODUCTION

In recent years many new data on unflavored mesons have
appeared in the section “Further States” of the Particle Data
Group [1]. The main source for these data came from the
Crystal Barrel experiment, where plenty of new states were
observed in the proton-antiproton annihilation in the energy
range 1.9–2.4 GeV [2,3]. The obtained spectrum remarkably
confirmed the approximate linearity of both Regge trajectories
and radial Regge trajectories (or, equivalently, the equidistance
of daughter trajectories). An important feature of the spectrum
is that the slopes of both types of trajectories are almost equal,
i.e., the following relation can be written (see, e.g., [4,5] for
discussions):

M2
i ∼ J + n + ci, (1)

where i denotes a set of quantum numbers, J is the spin, n is the
“radial” quantum number, and ci is a constant. Theoretically
such type of mass formulas appeared in dual [6], hadron string
[7], and AdS/QCD [8] models. The experimental spectrum
of unflavored mesons reveals a clear-cut clustering of states
near certain equidistant values of masses square [5], which
implies that the constants ci should be equal or differ by an
integer. If we fit the experimental data by means of Eq. (1), the
constants ci will not be universal and a relation between
different ci a priori is not clear.

However, instead of Eq. (1), one can consider its nonrela-
tivistic analog [9–12],

M2
i ∼ L + n + c, (2)

with the angular momentum of quark-antiquark pair L being
related to the total spin J as J = L, L ± 1 depending on
the mutual orientation of the quark/antiquark spin s. It turns
out that the angular momentum assignment can be chosen
such that the constant c will be approximately universal, as is
written in Eq. (2). This means, in particular, that L and quark
spins s can be added as in the usual quantum mechanics. Such
a physical picture is quite unexpected because light mesons are
ultrarelativistic systems, therefore L and s cannot be separated,
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a conserved quantum number is the total spin J , while L would
be conserved with the spinless quarks only. The validity of
Eq. (2) could be a nontrivial consequence of the asymptotic
suppression of the spin-orbital correlations in excited hadrons
[9,12–14].

Relation (2) implies a duplication of states in the channels
where the resonances can be created by different angular
momentum. For instance, the vector mesons can have either
L = 0 or L = 2 (the so-called S- and D-wave mesons in the
quantum-mechanical terminology), hence, they are duplicated.
Experimentally such a duplication is well seen [2,3]. In
practice, the separation of resonances into states with different
angular momentum can be achieved by using the polarization
data. Following this method, the experiment of the Crystal
Barrel Collaboration obtained a good separation for the states
with (C, I ) = (+1, 0), (−1, 1) [3]. The separation in other
channels should be tentatively guessed. As long as one
accepts a nonrelativistic framework, the parity of the quark-
antiquark pair is defined as P = (−1)L+1. The states with
maximal L at given mass are then parity singlets, associating
them with the resonances on the leading Regge trajectories, we
obtain a correct qualitative picture of the known experimental
spectrum.

Another pattern of parity doubling is predicted by the chiral
symmetry restoration (CSR) scenario (see [12] for a review). If
effective CSR occurs high in the spectrum, the chiral multiplets
become complete. In particular, this implies the absence of
parity singlet states among highly excited hadrons. Within the
CSR picture, the duplication of some trajectories appears due
to an assignment of states on these trajectories to different
chiral multiplets.

The classifications of states based on CSR and the ones
based on Eq. (2) cannot coexist because the relativistic chiral
basis and the nonrelativistic n2s+1LJ basis are incompatible
[15], the chiral basis, however, can meet Eq. (1).

Thus, an intriguing problem emerges—which alternative (if
any) is realized in nature? The answer can be provided by ex-
amining the phenomenological implications of the possibilities
above, such as spectroscopic predictions. A phenomenological
analysis of these predictions is still absent in the literature and
the present paper is intended to fill in this gap, providing
thereby a stimulus for the search of new states that distinguish
between the two alternatives.
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We will show by an explicit assignment of mesons accord-
ing to the quantum numbers (L, n) that relation (2) describes
the spectrum of practically all confirmed and unconfirmed
unflavored mesons except the masses of Goldstone bosons.
There are only eight missing states below 2.4 GeV, which
allow us to justify or falsify the classification in future. The
CSR scenario predicts these eight states as well, but it predicts
also many missing states beyond them.

The paper is organized as follows. In Sec. II we remind
the reader of some phenomenological ideas concerning the
origin of linear spectrum and estimate qualitatively an expected
value for the constant c in Eq. (2). Section III contains our
phenomenological analysis and predictions. We conclude in
Sec. IV.

II. THEORETICAL DISCUSSIONS

Let us present some known heuristic arguments in favor of
linear spectrum. For high radial or orbital excitation, a meson
state can be considered quasiclassically as a pair of relativistic
quarks interacting via a linear potential. Consequently, ne-
glecting the quark spin, the meson mass can be written as

M = 2p + σr, (3)

where p is the relativistic quark momentum and σ is the string
tension. The maximal length of the chromoelectric flux tube
between the quarks is l = M/σ . Applying the quasiclassical
(WKB) quantization condition,∫ l

0
p dr = πn, (4)

with the momentum p taken from Eq. (3), one obtains

M2 ∼ n. (5)

A “next-to-leading” correction to the presented picture
can be considered. It comes from the Bohr-Sommerfeld
quantization condition (4): n must be replaced by n + γ , where
γ is a constant of order of unity characterizing the nature of
turning points. In Eq. (3) one deals with a centrosymmetrical
potential. It is well known (see, e.g., [16]) that in this case
γ = 1

2 . Hence, the corrected linear spectrum is

M2 ∼ n + 1
2 . (6)

Exactly this type of spectrum is predicted by the Lovelace-
Shapiro dual amplitude [17], where γ = 1

2 comes from
the Adler self-consistency condition (at p2 = m2

π , the
ππ scattering amplitude is zero). In some channels this
spectrum appeared naturally within the QCD sum rules [18],
where γ = 1

2 stems from the absence of dimension-two
gauge-invariant condensate. Recently the intercept 1

2 has been
reported within a holographic dual of QCD (the second
reference in [8]).

Specific boundary conditions can lead to another value
for γ . We mention the following possibilities: identified ends
(closed string) correspond to γ = 0, S-wave states correspond
to γ = 3

4 , infinite potential walls at the ends correspond to
γ = 1. The first possibility is unrealistic for mesons, thus in a
general case we expect γ to lie in the interval 1

2 � γ � 1.

According to Regge theory and simple hadron string
considerations, M2 is also linear in the angular momentum
L (Chew-Frautschi formula). This suggests that n in Eq. (5)
might be substituted by n + L, thus resulting in Eq. (2).
Unfortunately, we are not aware of solid arguments for such a
replacement.

The linear spectrum (5) is an exact result within a kind
of dimension-two QCD, the ’t Hooft model [19]. The next-
to-leading correction to Eq. (5) within this model, however,
is O(ln n) rather than a constant. In this respect we should
remind the reader that the ’t Hooft model is defined in a
specific sequence of Nc → ∞ limits, mq → 0 while mq �
g ∼ 1/

√
Nc, where mq denotes current quark mass and g is

coupling constant. In contrast to QCD, we cannot set mq = 0
from the very beginning. On the other hand, if one takes into
account the masses of current quarks in the derivation above,
the logarithmic corrections emerge naturally (see, e.g., [20]).

A delicate point in such kind of reasoning is the relative
value of slope between radial and orbital trajectories. The
matter is that M2 = 4πσ in the derivation above, but M2 =
2πσ according to the Chew-Frautschi formula. Naively, this
leads to M2 ∼ L + 2n rather than to Eq. (2). A possible reason
is that the parity is not properly incorporated: It is related to the
orbital motion (defined through L) in three space dimensions,
but in one space dimension it is related to the reflections
of wave functions. Considering the radial excitations of a
one-dimensional object, one deals with the latter case, where
the states alternate in parity, like in the ’t Hooft model. The
extraction of states with the same parity is then tantamount to
enlarging of the slope by two times.

The note above is a particular manifestation of a general
problem: A linear potential plus a semiclassical analysis
produces a necessarily different angular and radial slopes, for
this reason it may be suggestive only and by no means may
serve for justification of Eq. (2). A derivation of Eq. (2) or
Eq. (1) is a challenge for future quark models [21], presently
these empirical relations do not have solid theoretical support.
In particular, Eq. (2) implies the existence of a single
“principal” quantum number, N = L + n, like in a hydrogen
atom [11], a development of this analogy could be far reaching.

III. FITS AND PREDICTIONS

Using experimental masses from the Particle Data Group
[1] one can perform a global fit of the data by the linear
spectrum. Such an analysis was performed in [5]. The result
is that on average the masses of well-known light nonstrange
mesons behave as (in GeV2)

M2
exp ≈ 1.14(N + 0.54), N = 0, 1, 2. (7)

One can consider the states observed by the Crystal Barrel
experiment [3], which allow us to extend Eq. (7) to N = 3, 4.
It turns out that both slope and intercept are then changed
negligibly [5]. Comparing Eqs. (6) and (7) we see that our
guess on the “next-to-leading” correction is compatible with
the experimental data.

Partly following [2,3], we classify the light nonstrange
mesons according to the values of (L, n), see Table I. As
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TABLE I. Classification of light non-strange mesons according to the values of (L, n). The states with the lowest star rating (according
to [3]) are marked by the question mark, the states, which presumably have a large admixture of strange quark, are marked by the double
question mark.

L
n

0 1 2 3 4

0

π(140)

η(548)(??)

ρ(770)

ω(782)

π(1300)

η(1295)(??)

ρ(1450)

ω(1420)

π(1800)

η(1760)

ρ(?)

ω(?)

π(2070)

η(2010)

ρ(1900)

ω(?)

π(2360)

η(2285)

ρ(2150)

ω(2205)(?)

1

f0(1370)

a0(1450)(??)

a1(1260)

f1(1285)

b1(1230)

h1(1170)

a2(1320)

f2(1275)

f0(1770)

a0(?)

a1(1640)

f1(?)

b1(1620)(?)

h1(1595)(?)

a2(1680)

f2(1640)

f0(2020)

a0(2025)

a1(1930)(?)

f1(1971)

b1(1960)

h1(1965)

a2(1950)(?)

f2(1934)

f0(2337)

a0(?)

a1(2270)(?)

f1(2310)

b1(2240)

h1(2215)

a2(2175)(?)

f2(2240)

2

ρ(1700)

ω(1650)

π2(1670)

η2(1645)

ρ2(?)

ω2(?)

ρ3(1690)

ω3(1670)

ρ(2000)

ω(1960)

π2(2005)

η2(2030)

ρ2(1940)

ω2(1975)

ρ3(1982)

ω3(1945)

ρ(2265)

ω(2295)(?)

π2(2245)

η2(2267)

ρ2(2225)

ω2(2195)

ρ3(2300)(?)

ω3(2285)

seen from Table I, the states with equal N = L + n are
indeed approximately degenerate (one should read the data
in a diagonal way, the frames are introduced for conve-
nience). We will regard the averaged values of masses and
widths at given N from [5] as predictions for unknown
states in the mass region under consideration. Thus, for
M(N ) we have (in MeV): M(0) ≈ 785,M(1) ≈ 1325 ±
90,M(2) ≈ 1700 ± 60 M(3) ≈ 2000 ± 40,M(4) ≈ 2270 ±
40. Looking at Table I, we make the following predic-
tions for the nonstrange mesons which still have not been
observed.

(i) In the energy range 1700 ± 60 MeV there exists
a0, f1, ρ2, ω2, as well as the second ρ and ω mesons.
Their widths are approximately � = 200 ± 70 MeV.
The state X(1650) with IG(JPC) = 0−(??−) cited in [1]
might be a possible candidate for the predicted ω or
ω2 mesons. The state X(1750) with IG(JPC) =??(1−−)
cited in [1] might be a possible candidate for the
predicted ω or ρ mesons.

(ii) In the energy range 2000 ± 40 MeV there exists the
second ω meson. Its width is approximately � = 220 ±
70 MeV. The state X(1975) with IG(JPC) =??(???) cited
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TABLE I. (Continued.)

3

f2(2001)

a2(2030)

f3(2048)

a3(2031)

b3(2032)

h3(2025)

f4(2018)

a4(2005)

f2(2293)

a2(2255)

f3(2303)

a3(2275)

b3(2245)

h3(2275)

f4(2283)

a4(2255)

4

ρ3(2260)

ω3(2255)

ρ4(2230)

ω4(2250)(?)

π4(2250)

η4(2328)

ρ5(2300)

ω5(2250)

L
n

0 1 2 3 4

in [1] might be a possible candidate for the predicted ω

meson.
(iii) In the energy range 2270 ± 40 MeV there exists a0

meson. Its width is approximately � = 270 ± 60 MeV.
The states X(2210) and X(2340) with IG(JPC) =??(???)
cited in [1] might be possible candidates for the predicted
a0 meson.

Thus, the nonrelativistic n2s+1LJ assignment based on
Eq. (2) predicts eight nonstrange mesons in the energy range
1.6–2.3 GeV which have never been observed and are awaiting
their discovery.

Consider predictions of the CSR scenario based on Eq. (1).
Evidently, all eight missing states above should also follow
from this scenario if effective CSR takes place above 1.7 GeV.
We will enumerate the predictions which go beyond these eight
new mesons.

(i) 1700 ± 60 MeV. The indications on CSR are not solid
in this mass region. Nevertheless, if CSR happens we
may expect in the minimal scenario the appearance
of parity partners for ρ3 and ω3 mesons—new a3 and

f3 mesons, respectively. If CSR leads to parity-chiral
multiplets described in [12] the (1, 0) ⊕ (0, 1) and ( 1

2 , 1
2 )

representations of SU (2)L × SU (2)R] then we should
expect also the second ρ3 and ω3 mesons and their ( 1

2 , 1
2 )

chiral partners, the h3 and b3 mesons.
(ii) 2000 ± 40 MeV. We should expect at least the parity

partners for a4 and f4 mesons—the states ρ4 and ω4. If
CSR results in parity-chiral multiplets described in [12]
then we should expect also the second a4 and f4 states,
their chiral partners η4 and π4, and the second ρ3 and ω3

mesons [all carry the representation ( 1
2 , 1

2 )].
(iii) 2270 ± 40 MeV. We should expect at least the parity

partners for ρ5 and ω5 mesons—the states a5 and f5. If
CSR leads to parity-chiral multiplets described in [12]
then we should expect also the second ρ5 and ω5 states,
their chiral partners h5 and b5, and the second a4 and f4

mesons [all carry the representation ( 1
2 , 1

2 )].

Thus, the CSR scenario combined with a clustering of
states expressed by Eq. (1) leads to a richer spectrum of high
excitations.
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IV. CONCLUSIONS

We have provided in a concise form the concrete spectro-
scopic predictions which follow from recent discussions on
global features of a light nonstrange meson spectrum.

The assumption that relation (2) does not depend on
quantum numbers of unflavored nonexotic mesons allows us
to provide the whole spectrum with two input parameters only,
the universal slope and intercept. The quasiclassical and some
other arguments indicate that these inputs could be related.
Fixing the physical values for the slope and intercept, universal
relation (2) gives 100 nonstrange mesons below 2.4 GeV,
see Table I. Except in some rare cases, e.g., the Goldstone
bosons, the agreement with the masses of known confirmed
resonances from the Particle Data Group [1] and unconfirmed
states observed by Crystal Barrel [3] is impressive. There exist
only eight missing states which have never been observed. The
predictions for their masses and widths are given and possible
candidates are indicated. We do not see any theoretical reasons
why those states should be absent in nature, most likely they
still have been not detected experimentally. The seemingly

random (factor isospin) distribution of missing states on the
spectrum supports our belief.

Relation (2) is in odds with the Lorentz group (angular
momentum L is not conserved quantum number in relativistic
quark-antiquark pair) and chiral symmetry restoration. Both
obstacles can be overcome if one accepts relation (1), the
number of predicted states below 2.4 GeV is then substantially
larger.

The discovery of the indicated missing resonances in
future experiments will constitute a crucial test for the two
alternatives discussed in the paper, providing thereby an
important step forward toward establishing final order in the
spectroscopy of light mesons.
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