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The temperature and chemical potential dependent surface tension of bags is introduced into the gas of
a quark-gluon bags model. This resolves a long standing problem of a unified description of the first- and
second-order phase transition with the crossover. Such an approach is necessary to model the complicated
properties of quark-gluon plasma and hadronic matter from the first principles of statistical mechanics. The
suggested model has an exact analytical solution and allows one to rigorously study the vicinity of the critical
endpoint of the deconfinement phase transition. The existence of higher order phase transitions at the critical
endpoint is discussed. In addition, we found that at the curve of a zero surface tension coefficient there must exist
the surface induced phase transition of the second or higher order, which separates the pure quark-gluon plasma
(QGP) from the crossover states, which are the mixed states of hadrons and QGP bags. Thus, the present model
predicts that the critical endpoint of quantum chromodynamics is the tricritical endpoint.

DOI: 10.1103/PhysRevC.76.014903 PACS number(s): 25.75.Nq

I. INTRODUCTION

Investigation of the strongly interacting matter properties
observed in relativistic nuclear collisions has reached the stage
where the predictions of the lattice quantum chromodynamics
(QCD) can be checked experimentally on the existing data
and future mesurements at BNL Relativistic Heavy Ion
Collider (RHIC), CERN Super Proton Synchrotron (SPS), and
GSI Facility for Antiproton and Ion Research (GSI-FAIR).
However, a comparison of the theoretical results with the
experimental data is not straightforward because during the
collision process the matter can have several phase transfor-
mations that are difficult to model. The latter reason stimulated
the development of a wide range of phenomenological models
of the strongly interacting matter equation of state that are used
in dynamical simulations.

One of these models is the famous bag model [1], which
treats the hadrons as the bags of the quark-gluon plasma
(QGP) confined inside a hadron with the help of bag pressure.
The bag model is able to simultaneously describe the hadron
mass spectrum, i.e, the hadron masses and their proper
volumes, and the properties of the deconfined phase [2,3].
This success led to the development of a statistical model
of QGP, the gas of bags model (GBM) [4–6], which itself
contains two well-known models of deconfined and confined
phases: the bag model of QGP [2] and the hadron gas
model [7]. There were hopes [8] that an exact analytical
solution of the GBM found in Ref. [4] could be helpful in
understanding the properties of strongly interacting matter.
However, this solution does not allow one to introduce the
critical end point (CEP) of the strongly interacting matter
phase diagram. Also, a complicated construction of the line,
along which the phase transition order gradually increases,
suggested in Ref. [8], does look too artificial. Therefore, the
present GBM formulation lacks an important physical input
and is interesting only as a toy example that can be solved
analytically.

On the other hand, the models, which can correctly
reproduce the expectation [9–11] that the endpoint of the

first-order phase transition (PT) line to QGP should be the
second-order critical point, are indeed necessary for heavy
ion phenomenology. In addition, such phenomenological
models can provide us with the information about the phase
structure and equation of state of strongly interacting matter
that is located between the critical endpoint and the region
of the color superconductivity because such information is
unavailable otherwise. Therefore, the present work is devoted
to the extension of the GMB. We think that the GMB can
be drastically improved by the inclusion of such a vitally
important element as the surface tension of the quark-gluon
bags.

The dynamical surface tension of the quark-gluon bags was
estimated long ago [12,13], but it was never used in statistical
descriptions of the equation of state. Moreover, the estimate of
the bag surface tension made in Ref. [13] is negligible for u and
d quarks and, hence, can be safely neglected in our treatment.
The situation with the surface tension of the quark-gluon bags
is somewhat unclear: the early estimates within the MIT Bag
Model [14,15] indicate that small hadronic bubbles can exist
in the hot QGP, whereas the analysis based on the effective
potential of the first-order PT in early Universe [16] does not
support the results of Refs. [14] and [15]. Thus, it turns out that
the surface energy may play an important role in the properties
of hadronic bubbles [14–16] and QGP bags [17]; the surface
tension of large bags was not included in a consistent statistical
description of QGP. Therefore, the present article is devoted
to the investigation and analysis of the critical properties of
the model of quark-gluon bags with surface tension (QGBST
model hereafter).

In statistical mechanics there are several exactly solvable
cluster models with the first-order PT that describe the critical
point properties very well. These models are built on the
assumptions that the difference of the bulk part (or the volume
dependent part) of the free energy of two phases disappears at
phase equilibrium and that, in addition, the difference of the
surface part (or the surface tension) of the free energy vanishes
at the critical point. The most famous of them is the Fisher
droplet model (FDM) [18,19], which has been successfully
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used to analyze the condensation of a gaseous phase (droplets
of all sizes) into a liquid. The FDM has been applied to many
different systems, including nuclear multifragmentation [20],
nucleation of real fluids [21], the compressibility factor of real
fluids [22], clusters of the Ising model [23], and percolation
clusters [24].

On the basis of the statistical multifragmentation model
(SMM) [25] commonly used to study nuclear multifrag-
mentation, there was recently formulated a simplified SMM
version [26,27] that was solved analytically both for infinite
[28,29] and for finite [30,31] volumes of the system. In the
SMM the surface tension temperature dependence differs
from that of the FDM, but it had been shown [29] that
the value of Fisher exponent τSMM = 1.825 ± 0.025, which
contradicts the FDM value τFDM ≈ 2.16, is consistent with
ISiS Collaboration data [32] and EOS Collaboration data [33].
Our analytical results [29] have been confirmed by numerical
studies [34,35].

Such an experimentally obtained range of the τ index
is of principal importance because it gives very strong
evidence that the SMM, and, thus, the nuclear matter,
has a tricritical endpoint rather than a critical endpoint
[28,29].

This success of the SMM initiated the studies of the
surface partitions of large clusters within the Hills and Dales
Model [36,37] and led to the discovery of the origin of
the temperature independent surface entropy similar to the
FDM. As a consequence, the surface tension coefficient
of large clusters consisting of discrete constituents should
linearly depend on the temperature of the system [36] and
must vanish at the critical endpoint. However, the present
formulation of the Hills and Dales Model [36,37], which
successfully estimates the upper and lower bounds of the
surface deformations of the discrete physical clusters, does
not look suitable for quark-gluon bags. Therefore, in this
work we assume a certain dependence of the surface tension
coefficient on temperature and baryonic chemical potential,
and we concentrate on the impact of the surface tension of
the quark-gluon bags on the properties of the deconfinement
phase diagram and the QCD critical endpoint. A discussion
of the origin of the surface tension is a subject of our future
work.

Here we show that the existence of a crossover at low
values of the baryonic chemical potential along with the first-
order deconfinement PT at high baryonic chemical potentials
leads to the existence of an additional PT of the second
or higher order along the curve where the surface tension
coefficient vanishes. Thus, it turns out that the QGBST model
predicts the existence of the tricritical rather than the critical
endpoint.

This article is organized as follows. Section II contains the
formulation of the basic ingredients of the GBM. In Sec. III
we formulate the QGBST model and analyze all possible
singularities of its isobaric partition for vanishing baryonic
densities. This analysis is generalized to nonzero baryonic
densities in Sec. IV. Section V is devoted to the analysis of the
surface tension induced PT that exists above the deconfinement
PT. The conclusions and research perspectives are summarized
in Sec. V.

II. BASIC INGREDIENTS OF THE GBM

To review the basic ingredients of the GBM let us consider
the Van der Waals gas consisting of n hadronic species, which
are called bags in what follows, at zero baryonic chemical
potential. Its grand canonical partition (GCP) is given by [4]

Z(V, T ) =
∑
{Nk}

[
n∏

k=1

[(V − v1N1 − · · · − vnNn) φk(T )]Nk

Nk!

]

× θ (V − v1N1 − ... − vnNn), (1)

where the function φk(T ) ≡ gkφ(T ,mk)

φk(T ) ≡ gk

2π2

∫ ∞

0
p2dp e− (p2+m2

k
)1/2

T = gk

m2
kT

2π2
K2

(mk

T

)

is the particle density of bags of mass mk , eigenvolume vk , and
degeneracy gk . Using the standard technique of the Laplace
transformation [4,28] with respect to volume, one obtains the
isobaric partition

Ẑ(s, T ) ≡
∫ ∞

0
dV exp(−sV )Z(V, T )

= 1

[s − F (s, T )]
, (2)

with F (s, T ) ≡
n∑

j=1

exp(−vj s)gjφ(T ,mj ). (3)

From the definition of pressure in the grand canonical
ensemble it follows that, in the thermodynamic limit, the
GCP of the system behaves as Z(V, T ) � exp[pV/T ]. An
exponentially increasing Z(V, T ) generates the rightmost
singularity s∗ = p/T of the function Ẑ(s, T ) in variable s.
This is because the integral over V in Eq. (2) diverges at its
upper limit for s < p/T . Therefore, the rightmost singularity
s∗ of Ẑ(s, T ) gives us the system pressure

p(T ) = T lim
V →∞

ln Z(V, T )

V
= T s∗(T ). (4)

The singularity s∗ of Ẑ(s, T ) (2) can be calculated from the
transcendental equation [4,28]

s∗(T ) = F (s∗, T ). (5)

As long as the number of bags, n, is finite, the only possible
singularities of Ẑ(s, T ) (2) are simple poles. For example, for
the ideal gas [n = 1; v1 = 0 in Eq. (5)] s∗ = g1φ(T ,m1) and
thus from Eq. (4) one gets p = T g1φ(T ,m1), which corre-
sponds to the grand canonical ensemble ideal gas equation of
state for the particles of mass m1 and degeneracy g1.

However, in the case of an infinite number of sorts of bags
an essential singularity of Ẑ(s, T ) may appear. This property is
used in the GBM: to the finite sum over different bag states in
Eq. (2) the integral

∫ ∞
M0

dmdv...ρ(m, v) is added with the bag
mass-volume spectrum, ρ(m, v), which defines the number of
bag states in the mass-volume region [m, v; m + dm, v + dv].
In this case the function F (s, T ) in Eqs. (2) and (5) should be
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replaced by

F (s, T ) ≡ FH (s, T ) + FQ(s, T ) =
n∑

j=1

gje
−vj sφ(T ,mj )

+
∫ ∞

Vo

dv

∫ ∞

Mo+Bv

dmρ(m, v) exp(−sv)φ(T ,m).

(6)

The first term of Eq. (6), FH , represents the contribution of
a finite number of low-lying hadron states. This function has
no s singularities at any temperature T and can generate a
simple pole of the isobaric partition, whereas the mass-volume
spectrum of the bags FQ(s, T ) can be chosen to generate an
essential singularity sQ(T ) ≡ pQ(T )/T that defines the QGP
pressure pQ(T ) at zero baryonic densities [4,38,39].

The mass-volume spectrum is the generalization of the
exponential mass spectrum introduced by Hagedorn [40,41].
The usage of the grand canonical description for the exponen-
tial mass spectrum was recently strongly criticized [42–44]
because of the thermostatic properties of this spectrum.
Fortunately, the Van der Waals repulsion compensates the
growing part of the mass-volume spectrum and, hence,
the criticism of Refs. [42–44] is irrelevant to the present
model.

There are several possibilities to parametrize the mass-
volume spectrum ρ(m, v). Thus, in the simplest case one can
assume that for heavy resonances their mass and eigenvolume
are proportional, i.e., the spectrum ρ(m, v) contains the
function δ(m − v Const). An alternative choice was suggested
in Ref. [38], but in either case the resulting expression for the
continuum spectrum of the GBM FQ(s, T ) can be cast as

FQ(s, T ) = u(T )
∫ ∞

V0

dv
exp[−v(s − sQ(T ))]

vτ
, (7)

where u(T ) and τ > 0 are the model parameters. The QGP
pressure p(T ) = T sQ(T ) can be parameterized in many
ways. For instance, the MIT bag model equation of state
[1] corresponds [38] to sQ(T ) ≡ 1

3σQT 3 − B
T

and u(T ) =
Cπ−1σ

δ+1/2
Q T 4+4δ(σQT 4 + B)3/2. Here B denotes the bag

constant, σQ = π2

30
95
2 is the Stefan-Boltzmann constant count-

ing gluons (spin, color) and (anti-)quarks (spin, color, and
u, d, and s flavors) degrees of freedom; and the constants
C, δ < 0, Vo ≈ 1 fm3, and Mo ≈ 2 GeV are the parameters
of the mass-volume spectrum. A recent attempt to derive the
mass-volume spectrum that accounts for additional constraints
can be found in Ref. [39].

III. THE ROLE OF SURFACE TENSION

At the moment the particular choice of function FQ(s, T )
(7) is not important. The key point for our study is that it should
have the form of Eq. (7), which has a singularity at s = sQ

because for s < sQ the integral over dv diverges at its upper
limit. Note that the exponential in Eq. (7) is nothing else, but
a difference of the bulk free energy of a bag of volume v, i.e.,
−T sv, which is under external pressure T s, and the bulk free

energy of the same bag filled with QGP, i.e., −T sQv. At phase
equilibrium this difference of the bulk free energies vanishes.
Despite all positive features, Eq. (7) lacks the surface part of
the free energy of bags, which will be called a surface energy
hereafter. In addition to the difference of the bulk free energies
the realistic statistical models that demonstrated their validity,
the FDM [18] and the SMM [25], have the contribution of
the surface energy that plays an important role in defining the
phase diagram structure [28,31]. Therefore, we modify Eq. (7)
by introducing the surface energy of the bags in a general
fashion [29]:

FQ = u(T )
∫ ∞

V0

dv
exp[(sQ(T ) − s)v − σ (T )vκ]

vτ
, (8)

where the ratio of the temperature dependent surface tension
coefficient to T (the reduced surface tension coefficient here-
after) has the form σ (T ) = σo

T
· [ Tcep−T

Tcep
]2k+1 (k = 0, 1, 2, ...).

Here σo > 0 can be a smooth function of the temperature, but
for simplicity we fix it to be a constant. For k = 0 the two
terms in the surface (free) energy of a v-volume bag have a
simple interpretation [18]: thus, the surface energy of such
a bag is σ0v

κ , whereas the free energy, which comes from
the surface entropy σoT

−1
cep vκ , is −T σoT

−1
cep vκ . Note that the

surface entropy of a v-volume bag counts its degeneracy factor
or the number of ways to make such a bag with all possible
surfaces. This interpretation can be extended to k > 0 on the
basis of the Hills and Dales Model [36,37].

In choosing such a simple surface energy parametrization
we follow the original Fisher idea [18], which allows one
to account for the surface energy by considering some mean
bag of volume v and surface vκ . The consideration of the
general mass-volume-surface bag spectrum we leave for the
future investigation. The power κ < 1 that describes the bag’s
effective surface is a constant, which, in principle, can differ
from the typical FDM and SMM value 2

3 . This is so because
near the deconfinement PT region QGP has low density
and, hence, like in the low density nuclear matter [45], the
nonspherical bags (spaghetti-like or lasagna-like [45]) can be
favorable (see also Refs. [14] and [15] for the bubbles of
complicated shapes). A similar idea of “polymerization” of
gluonic quasiparticles was introduced recently [46].

The second essential difference with the FDM and SMM
surface tension parametrization is that we do not require the
vanishing of σ (T ) above the CEP. As will be shown later,
this is the most important assumption that, in contrast to
the GBM, allows one to naturally describe the crossover
from hadron gas to QGP. Note that a negative value of the
reduced surface tension coefficient σ (T ) above the CEP does
not mean anything wrong. As we discussed previously, the
surface tension coefficient consists of energy and entropy parts
that have opposite signs [18,36,37]. Therefore, σ (T ) < 0 does
not mean that the surface energy changes the sign, but it
rather means that the surface entropy, i.e., the logarithm of
the degeneracy of bags of a fixed volume, simply exceeds the
surface energy. In other words, the number of nonspherical
bags of a fixed volume becomes so large that the Boltzmann

014903-3



K. A. BUGAEV PHYSICAL REVIEW C 76, 014903 (2007)

exponent, which accounts for the energy “costs" of these bags,
cannot suppress them anymore.

Finally, the third essential difference with the FDM and the
SMM is that we assume that the surface tension in the QGBST
model happens at some line in the µB − T plane, i.e., Tcep =
Tcep(µB). However, in subsequent sections we consider Tcep =
Const for simplicity, and in Sec. V we discuss the necessary
modifications of the model with Tcep = Tcep(µB).

The surface energy should, in principle, be introduced into a
discrete part of the mass-volume spectrum FH , but a successful
fitting of the particle yield ratios [7] with the experimentally
determined hadronic spectrum FH does not indicate such a
necessity.

In principle, besides the bulk and surface parts of free
energy, the spectrum (8) could include the curvature part as
well, which may be important for small hadronic bubbles
[14,15] or for cosmological PT [16]. We stress, however, that
the critical properties of the present model are defined by the
infinite bag; therefore the inclusion in Eq. (8) of a curvature
term of any sign could affect the thermodynamic quantities
of this model at s = sQ(T ) and σ (T ) = 0, which is possible
at the (tri)critical endpoint only (see below). If, the curvature
term was really important for cluster models like the present
one, then it should have been seen also at the (tri)critical
points of the FDM, the SMM, and many systems described
by the FDM [20–24], but this is not the case. Indeed, recently
the Complement method [47] was applied to the analysis of the
largest, but still mesoscopic, drop of a radius Rdr representing
the liquid in equilibrium with its vapor. The method allows
one to find out the concentrations of the vapor clusters in
a finite system under a whole range of temperatures and to
determine the free energy difference of two phases with high
precision. The latter enables us to extract not only the critical
temperature, the surface tension coefficient, and even the value
of Fisher index τ of the infinite system but also such a delicate
effect as the Gibbs-Thomson correction [48] to the free energy
of a liquid drop. Note that the Gibbs-Thomson correction
behaves as R−1

dr , but the Complement method [47] allows one
to find it, whereas the curvature part of the free energy, which
is proportional to Rdr, is not seen for either a drop or for
smaller clusters. Such a result is directly related to the QGP
bags because QCD is expected to be in the same universality
class [9] as the three-dimensional Ising model whose clusters
were analyzed in Ref. [47]. Therefore, admitting that for finite
QGP bags the curvature effects may be essential, we leave them
out because the critical behavior of the present model is defined
by the properties of the infinite bag. On the other hand, similar
to the FDM, the SMM, and FDM-like systems [20–24,47], we
assume that the curvature part of the free energy of the infinite
QGP bag is not important and leave for future analysis the
question of why this is so.

According to the general theorem [4] the analysis of PT
existence of the GCP is now reduced to the analysis of the
rightmost singularity of the isobaric partition (2). Depending
on the sign of the reduced surface tension coefficient, there are
three possibilities.

(I) The first possibility corresponds to σ (T ) > 0. Its
treatment is very similar to the GBM choice (7) with τ > 2 [4].
In this case at low temperatures the QGP pressure T sQ(T ) is

FIG. 1. (Color online) Graphical solution of Eq. (5) that cor-
responds to a PT. The solution of Eq. (5) is shown by a filled
hexagon. The function F (s, ξ ) is shown by a solid curve for
a few values of the parameter ξ . The function F (s, ξ ) diverges
for s < sQ(ξ ) (shown by dashed lines), but is finite at s = sQ(ξ )
(shown by black circle). At low values of the parameter ξ =
ξA, which can be either T or µB , the simple pole sH is the
rightmost singularity and it corresponds to the hadronic phase. For
ξ = ξB � ξA the rightmost singularity is an essential singularity
s = sQ(ξB ), which describes QGP. At intermediate value ξ = ξC both
singularities coincide, sH (ξC) = sQ(ξC), and this condition is a Gibbs
criterion.

negative and, therefore, the rightmost singularity is a simple
pole of the isobaric partition s∗ = sH (T ) = F (sH (T ), T ) >

sQ(T ), which is mainly defined by a discrete part of the
mass-volume spectrum FH (s, T ). The last inequality provides
the convergence of the volume integral in Eq. (8) (see Fig. 1).
On the other hand at very high T the QGP pressure dominates
and, hence, the rightmost singularity is the essential singularity
of the isobaric partition s∗ = sQ(T ). The phase transition
occurs when the singularities coincide:

sH (Tc) ≡ pH (Tc)

Tc

= sQ(Tc) ≡ pQ(Tc)

Tc

, (9)

which is nothing else but the Gibbs criterion. The graphical
solution of Eq. (5) for all these possibilities is shown in Fig. 1.
Like in the GBM [4,8], the necessary condition for the PT
existence is the finiteness of FQ(sQ(T ), T ) at s = sQ(T ). It
can be shown that the necessary conditions are the following
inequalities: FQ(sQ(T ), T ) > sQ(T ) for low temperatures and
F (sQ(T ), T ) < sQ(T ) for T → ∞. These conditions provide
that at low T the rightmost singularity of the isobaric partition
is a simple pole, whereas for high T the essential singularity
sQ(T ) becomes its rightmost one (see Fig. 1 and a detailed
analysis of case µB �= 0).

The PT order can be found from the T derivatives of sH (T ).
Thus, differentiating Eq. (5) one finds

s ′
H = G + uKτ−1(	,−σ ) · s ′

Q

1 + uKτ−1(	,−σ )
, (10)
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where the functions G and Kτ−a(	,−σ ) are defined as

G ≡ F ′
H + u′

u
FQ + (Tcep − 2kT )σ (T )

(Tcep − T )T

× uKτ−κ(	,−σ ), (11)

Kτ−a(	,−σ ) ≡
∫ ∞

Vo

dv
exp[−	v − σ (T )vκ]

vτ−a
, (12)

where 	 ≡ sH − sQ.
Now it is easy to see that the transition is of the first

order, i.e., s ′
Q(Tc) > s ′

H (Tc), provided σ (T ) > 0 for any τ . The
second or higher order phase transition takes place provided
s ′
Q(Tc) = s ′

H (Tc) at T = Tc. The latter condition is satisfied
when Kτ−1 diverges to infinity at T → (Tc − 0), i.e., for
T approaching Tc from below. Like for the GBM choice
(7), such a situation can exist for σ (Tc) = 0 and 3

2 < τ � 2.
Studying the higher T derivatives of sH (T ) at Tc, one can
show that for σ (T ) ≡ 0 and for (n + 1)/n � τ < n/(n − 1)
(n = 3, 4, 5, ...), there is a nth order phase transition

sH (Tc) = sQ(Tc), s ′
H (Tc) = s ′

Q(Tc), · · ·
(13)

s
(n−1)
H (Tc) = s

(n−1)
Q (Tc), s

(n)
H (Tc) �= s

(n)
Q (Tc),

with s
(n)
H (Tc) = ∞ for (n + 1)/n < τ < n/(n − 1) and with a

finite value of s
(n)
H (Tc) for τ = (n + 1)/n.

(II) The second possibility, σ (T ) ≡ 0, described in the
preceding paragraph, does not give anything new compared to
the GBM [4,8]. If the PT exists, then the graphical picture of
singularities is basically similar to Fig. 1. The only difference
is that, depending on the PT order, the derivatives of F (s, T )
function with respect to s should diverge at s = sQ(Tc).

(III) A principally new possibility exists for T > Tcep,
where σ (T ) < 0. In this case there exists a crossover, if for
T � Tcep the rightmost singularity is sH (T ), which corresponds
to the leftmost curve in Fig. 1. Under the latter, its existence can
be shown as follows. Let us solve the equation for singularities
(5) graphically (see Fig. 2). For σ (T ) < 0 the function
FQ(s, T ) diverges at s = sQ(T ). On the other hand, the partial

FIG. 2. (Color online) Graphical solution of Eq. (5) that corre-
sponds to a crossover. The notations are the same as those in Fig. 1.
Now the function F (s, ξ ) diverges at s = sQ(ξ ) (shown by dashed
lines). In this case the simple pole sH is the rightmost singularity for
any value of ξ .

derivatives ∂FH (s,T )
∂s

< 0 and ∂FQ(s,T )
∂s

< 0 are always negative.
Therefore, the function F (s, T ) ≡ FH (s, T ) + FQ(s, T ) is a
monotonically decreasing function of s, which vanishes at
s → ∞. Since the left-hand side of Eq. (5) is a monotonically
increasing function of s, then there can exist a single intersec-
tion s∗ of s and F (s, T ) functions. Moreover, for finite sQ(T )
values this intersection can occur on the right-hand side of the
point s = sQ(T ), i.e., s∗ > sQ(T ) (see Fig. 2). Thus, in this case
the essential singularity s = sQ(T ) can become the rightmost
one for infinite temperature only. In other words, the pressure
of the pure QGP can be reached at infinite T , whereas for finite
T the hadronic mass spectrum gives a nonzero contribution
into all thermodynamic functions. Note that such a behavior
is typical for the lattice QCD data at zero baryonic chemical
potential [49].

It is clear that in terms of the present model a crossover
existence means a fast transition of energy or entropy density
in a narrow T region from a dominance of the discrete
mass-volume spectrum of light hadrons to a dominance of
the continuous spectrum of heavy QGP bags. This is exactly
the case for σ (T ) < 0 because in the right vicinity of the point
s = sQ(T ) the function F (s, T ) decreases very fast and then
it gradually decreases as a function of the s variable. Because
FQ(s, T ) changes quickly from F (s, T ) ∼ FQ(s, T ) ∼ sQ(T )
to F (s, T ) ∼ FH (s, T ) ∼ sH (T ), their s derivatives should
change quickly as well. Now, recalling that the change from
F (s, T ) ∼ FQ(s, T ) behavior to F (s, T ) ∼ FH (s, T ) in the
s variable corresponds to the cooling of the system (see
Fig. 2), we conclude that there exists a narrow region of
temperatures, where the T derivative of system pressure, i.e.,
the entropy density, drops down from ∂p

∂T
∼ sQ(T ) + T

dsQ(T )
dT

to ∂p

∂T
∼ sH (T ) + T dsH (T )

dT
, very fast compared to other regions

of T , if the system cools. If, however, in the vicinity of
T = Tcep − 0 the rightmost singularity is sQ(T ), then for
T > Tcep the situation is different and the crossover does not
exist. A detailed analysis of this situation is given in Sec. V.

Note also that all these nice properties would vanish if the
reduced surface tension coefficient were zero or positive above
Tcep. This is one of the crucial points of the present model that
puts forward certain doubts about the vanishing of the reduced
surface tension coefficient in the FDM [18] and the SMM [25].
These doubts are also supported by the first principle results
obtained by the Hills and Dales Model [36,37], because the
surface entropy simply counts the degeneracy of a cluster of
a fixed volume and it does not physically affect the surface
energy of this cluster.

IV. GENERALIZATION TO NONZERO BARYONIC
DENSITIES

The possibilities (I)–(III) discussed in the preceding section
remain unchanged for nonzero baryonic numbers. The latter
should be taken into consideration to make our model more
realistic. To keep the presentation simple, we do not account
for strangeness. The inclusion of the baryonic charge of the
quark-gluon bags does not change the two types of singularities
of the isobaric partition (2) and the corresponding equation for
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them (5), but it leads to the following modifications of the FH

and FQ functions:

FH (s, T , µB ) =
n∑

j=1

gje
bj µB

T
−vj sφ(T ,mj ), (14)

FQ(s, T , µB ) = u(T ,µB )
∫ ∞

V0

dv

× exp[(sQ(T ,µB ) − s)v − σ (T )vκ]

vτ
. (15)

Here the baryonic chemical potential is denoted as µB , and
the baryonic charge of the j th hadron in the discrete part of
the spectrum is bj . The continuous part of the spectrum, FQ,
can be obtained from some spectrum ρ(m, v, b) in the spirit of
Refs. [38] and [39], but this will lead us away from the main
subject.

The QGP pressure pQ = T sQ(T ,µB ) can also be chosen
in several ways. Here we use the bag model pressure

pQ = π2

90
T 4

[
95

2
+ 10

π2

(µB

T

)2
+ 5

9π4

(µB

T

)4
]

− B, (16)

but the more complicated model pressures, even with the
PT of other kinds like the transition between the color
superconducting QGP and the usual QGP, can be, in principle,
used.

The conditions necessary for a PT existence are

F ((sQ(T ,µB = 0) + 0), T , µB = 0) > sQ(T ,µB = 0), (17)

F ((sQ(T ,µB ) + 0), T , µB ) < sQ(T ,µB),∀µB > µA . (18)

Condition (17) provides that the simple pole singularity s∗ =
sH (T ,µB = 0) is the rightmost one at vanishing µB = 0 and
given T , whereas condition (18) ensures that s∗ = sQ(T ,µB)
is the rightmost singularity of the isobaric partition for all
values of the baryonic chemical potential above some positive
constant µA. This can be seen in Fig. 1 for µB being a variable.
Because F (s, T , µB ), where it exists, is a continuous function
of its parameters, one concludes that, if conditions (17) and
(18), are fulfilled, then at some chemical potential µc

B(T ), both
singularities should be equal. Thus, one arrives at the Gibbs
criterion (9), but for two variables,

sH (T ,µc
B(T )) = sQ(T ,µc

B(T )) . (19)

It is easy to see that the inequalities (17) and (18) are the
sufficient conditions of a PT existence that can be used for
more complicated functional dependencies of FH (s, T , µB )
and FQ(s, T , µB ) than the ones used here.

For our choice, Eqs. (14), (15), and (16), of FH (s, T , µB )
and FQ(s, T , µB ) functions, the PT exists at T < Tcep, because
the sufficient conditions (17) and (18) can be easily fulfilled
by a proper choice of the bag constant B and the function
u(T ,µB) > 0 for the interval T � Tup with the constant Tup >

Tcep. Clearly, this is the first-order PT, because the surface
tension is finite and it provides the convergence of the integrals
(11) and (12) in the expression (10), where the usual T

derivatives should be now understood as the partial ones for
µB = const.

B

CEP

Hadrons
M

ixed Phase

T 

QGP

cross−over

FIG. 3. (Color online) A schematic picture of the deconfinement
phase transition diagram in the plane of baryonic density ρB and
T for the second-order PT at the critical endpoint (CEP), i.e., for
3
2 < τ � 2. For the third-order (or higher) PT, the boundary of the
mixed and hadronic phases (dashed curve) should have the same
slope as the boundary of the mixed phase and QGP (solid curve) at
the CEP.

Assuming that the conditions (17) and (18) are fulfilled by
the correct choice of the model parameters B and u(T ,µB ) >

0, one can see now that at T = Tcep there exists a PT as well, but
its order is defined by the value of τ . As was discussed in the
preceding section for 3

2 < τ � 2, there exists the second-order
PT. For 1 < τ � 3

2 there exists a PT of higher order, defined by
the conditions formulated in Eq. (13). This is a new possibility,
which, to our best knowledge, does not contradict any general
physical principle (see Fig. 3).

The case τ > 2 can be ruled out because there must
exist the first-order PT for T � Tcep, whereas for T < Tcep

there exists the crossover. Thus, the critical endpoint in the
T − µB plane will correspond to the critical interval in the
temperature-baryonic density plane. because such a structure
of the phase diagram in the variable’s temperature-density
has, to our knowledge, never been observed, we conclude that
the case τ > 2 is unrealistic (see Fig. 4). Note that a similar
phase diagram exists in the FDM with the only difference that
the boundary of the mixed and liquid phases (the latter in

B

Hadrons

M
ixed Phase

CELineT 

QGP

cross−over

FIG. 4. (Color online) A schematic picture of the deconfinement
phase transition diagram in the plane of baryonic density ρB and T

for τ > 2. The critical endpoint in the µB − T plane generates the
critical end line (CELine) in the ρB − T plane shown by the thick
horizontal line. This occurs because of the discontinuity of the partial
derivatives of sH and sQ functions with respect to µB and T .
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the QGBST model corresponds to QGP) is moved to infinite
particle density.

V. SURFACE TENSION INDUCED PHASE TRANSITION

Using our results for Case III of the preceding section, we
conclude that above Tcep there is a crossover, i.e., the QGP and
hadrons coexist together up to the infinite values of T and/or
µB . Now, however, it is necessary to answer the question: How
can the two different sets of singularities that exist on two sides
of the line T = Tcep provide the continuity of the solution of
Eq. (5)?

It is easy to answer this question for µB < µc
B(Tcep) because

in this case all partial T derivatives of sH (T ,µB), which is
the rightmost singularity, exist and are finite at any point of
the line T = Tcep. This can be seen from the fact that for the
considered region of parameters sH (T ,µB ) is the rightmost
singularity and, consequently, sH (T ,µB) > sQ(T ,µB). The
latter inequality provides the existence and finiteness of
the volume integral in FQ(s, T , µB ). In combination with the
power T dependence of the reduced surface tension coefficient
σ (T ) the same inequality provides the existence and finiteness
of all its partial T derivatives of FQ(s, T , µB ), regardless
of the sign of σ (T ). Thus, using the Taylor expansion in
powers of (T − Tcep) at any point of the interval T = Tcep and
µB < µc

B(Tcep), one can calculate sH (T ,µB) for the values of
T > Tcep that are inside the convergency radius of the Taylor
expansion.

The other situation is for µB � µc
B(Tcep) and T > Tcep,

namely, in this case above the deconfinement PT there must
exist a weaker PT induced by the disappearance of the reduced
surface tension coefficient. To demonstrate this we have solve
Eq. (5) in the limit, when T approaches the curve T = Tcep

from above, i.e., for T → Tcep + 0, and study the behavior of T

derivatives of the solution of Eq. (5) s∗ for fixed values of µB .
For this purpose we have to evaluate the integrals Kτ (	, γ 2)
introduced in Eq. (12). Here the notations 	 ≡ s∗ − sQ(T ,µB )
and γ 2 ≡ −σ (T ) > 0 are introduced for convenience.

To avoid the unpleasant behavior for τ � 2 it is convenient
to transform Eq. (12) further on by integrating by parts:

Kτ (	, γ 2) ≡ gτ (V0) − 	

(τ − 1)
Kτ−1(	, γ 2)

+ κγ 2

(τ − 1)
Kτ−κ(	, γ 2), (20)

where the regular function gτ (V0) is defined as

gτ (V0) ≡ 1

(τ − 1)V τ−1
0

exp
[−	V0 + γ 2V κ

0

]
. (21)

For τ − a > 1 one can change the variable of integration v →
z/	 and rewrite Kτ−a(	, γ 2) as

Kτ−a(	, γ 2) = 	τ−a−1
∫ ∞

V0	

dz
exp

[
−z + γ 2

	κ
zκ

]
zτ−a

≡ 	τ−a−1Kτ−a(1, γ 2	−κ) . (22)

This result shows that in the limit γ → 0, when the rightmost
singularity must approach sQ(T ,µB) from above, i.e., 	 →
0+, the function (22) behaves as Kτ−a(	, γ 2) ∼ 	τ−a−1 +
O(	τ−a). This is so because for γ → 0 the ratio γ 2	−κ

cannot go to infinity; otherwise the functionKτ−1
(
1, γ 2	−κ

)
,

which enters into the right-hand side of Eq. (20), would diverge
exponentially and this makes impossible the existence of the
solution of Eq. (5) for T = Tcep. The analysis shows that for
γ → 0 there exist two possibilities: either ν ≡ γ 2	−κ →
Const or ν ≡ γ 2	−κ → 0. The most straightforward way
to analyze these possibilities for γ → 0 is to assume the
following behavior,

	 = Aγ α + O(γ α+1), (23)
∂	

∂T
= ∂γ

∂T
[Aαγ α−1 + O(γ α)] ∼ (2 k + 1)Aαγ α

2(T − Tcep)
, (24)

and find out the α value by equating Eq. (24) with the T

derivative (10).
Indeed, using Eqs. (10), (11), and (12), one can write

∂	

∂T
= G2 + uKτ−κ(	, γ 2) 2 γ γ ′

1 + uKτ−1(	, γ 2)
≈ 	2−τG2

uKτ−1(1, ν)

+ 2γ γ ′	1−κ[νκKτ−2κ(1, ν) − Kτ−1−κ(1, ν)]

(τ − 1 − κ)Kτ−1(1, ν)
, (25)

where the prime denotes the partial T derivative. Note that the
function G2 ≡ F ′ + u′Kτ (	, γ 2) − s ′

Q can vanish for a few
values of µB only. In the last step of deriving Eq. (25) we used
the identities (20) and (22) and dropped the nonsingular terms.
As we discussed above, in the limit γ → 0 the function ν either
remains a constant or vanishes, then the term νκKτ−2κ(1, ν)
in Eq. (25) either is of the same order as the constant
Kτ−1−κ(1, ν) or vanishes. Thus, to reveal the behavior of (25)
for γ → 0 it is sufficient to find a leading term out of 	2−τ

and γ γ ′	1−κ and compare it with the assumption (23).
The analysis shows that for 	2−τ � γ γ ′	1−κ the last

term in the right-hand side of Eq. (25) is the leading one.
Consequently, equating the powers of γ of the leading terms
in Eqs. (24) and (25), one finds

γ α−2 ∼ 	1−κ ⇒ ακ = 2 for τ � 1 + κ

2k + 1
, (26)

where the last inequality follows from the fact that the term
γ γ ′	1−κ in Eq. (25) is the dominant one.

Similarly, for 	2−τ � γ γ ′	1−κ one obtains γ α−1γ ′ ∼
	2−τ and, consequently,

α = 2

(τ − 1)(2k + 1)
for τ � 1 + κ

2k + 1
. (27)

Summarizing our results for γ → 0 as

∂	

∂T
∼ Tcepγ

α

T − Tcep
=




[
T −Tcep

Tcep

] 2k+1
κ

−1
, τ � 1 + κ

2k+1 ,[
T −Tcep

Tcep

] 2−τ
τ−1

, τ � 1 + κ

2k+1 ,

(28)
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we can also write the expression for the second derivative of
	 as

∂2	

∂T 2
∼




[
T −Tcep

Tcep

] 2k+1
κ

−2
, τ � 1 + κ

2k+1 ,[
T −Tcep

Tcep

] 3−2τ
τ−1

, τ � 1 + κ

2k+1 .

(29)

The last result shows us that, depending on κ and k values,
the second derivatives of s∗ and sQ(T ,µB ) can differ from
each other for 3

2 < τ < 2 or can be equal for 1 < τ � 3
2 . In

other words, we found that at the line T = Tcep there exists
the second-order PT for 3

2 < τ < 2 and the higher order PT
for 1 < τ � 3

2 , which separates the pure QGP phase from the
region of a crossover, i.e., the mixed states of hadronic and
QGP bags. Because it exists at the line of a zero surface tension,
this PT will be called the surface induced PT. For instance,
from Eq. (29) it follows that for k = 0 and κ > 1

2 there is the
second-order PT, whereas for k = 0 and κ = 1

2 or for k > 0
and κ < 1 there is the third-order PT, and so on.

Because the analysis performed in the present section did
not include any µB derivatives of 	, it remains valid for the
µB dependence of the reduced surface tension coefficient,
i.e., for Tcep(µB). However, it is necessary to make a few
comments on a possible location of the surface tension null line
Tcep(µB). In principle, such a null line can be located anywhere,
if its location does not contradict the necessary conditions
(17) and (18) of the first deconfinement PT existence. Thus,
the surface tension null line must cross the deconfinement
line in the µB − T plane at a single point, which is the
tricritical endpoint (µcep

B ; Tcep(µcep
B )), whereas for µB > µ

cep
B

the null line should have a temperature for the same µB higher
than that of the deconfinement one, i.e., Tcep(µB) > Tc(µB)
(see Fig 5). Clearly, there exist two distinct cases for the
surface tension null line: either it is endless or it ends at zero
temperature. But recalling that at low temperatures and high
values of the baryonic chemical potential there may exist the
Color-Flavor-Locked phase [50], it is possible that the null
line may also cross the boundary of the Color-Flavor-Locked
phase and, perhaps, it may create another special point at this
intersection. From the present lattice QCD data, case C in
Fig. 5 is the least possible.

One may wonder why this surface induced PT has not
been observed so far. The main reason is that the lattice QCD
calculations at nonzero µB are very difficult, and because of
this the identification of the precise location of the critical
endpoint is a highly nontrivial task [9–11]. Therefore, the
identification of the second or higher order PT, which might be
located in the vicinity of the deconfinement PT, can be a real
challenge. In addition, for all µB > µ

cep
B the surface induced

PT may lie so close to the deconfinement PT line that it would
be extremely difficult to observe it at the present lattices.

To understand the meaning of the surface induced PT it
is instructive to quantify the difference between phases by
looking into the mean size of the bag:

〈v〉 ≡ −∂ ln F (s, T , µB )

∂s

∣∣∣∣
s=s∗−0

. (30)

As was shown in hadronic phase phase 	 > 0 and, hence,
it consists of the bags of finite mean volumes, whereas, by

Hadrons+QGP

B

QGP

A

B

C

T 

Hadrons

CEP

cross−over

FIG. 5. (Color online) A schematic picture of the deconfinement
phase transition diagram (full curve) in the plane of baryonic chemical
potential µB and T for the second-order PT at the tricritical endpoint
(CEP). The model predicts an existence of the surface induced PT of
the second or higher order (depending on the model parameters). This
PT starts at the CEP and goes to higher values of T and/or µB . Here it
is shown by the dashed curve CEP-A, if the phase diagram is endless,
by the dashed-dot curve CEP-B, if the phase diagram ends at T = 0,
or by the dashed-double-dot curve CEP-C, if the phase diagram ends
at µB = 0. Below (above) each of A or B curves the reduced surface
tension coefficient is positive (negative). For the curve C the surface
tension coefficient is positive outside of it.

construction, the QGP phase is a single infinite bag. For the
crossover states 	 > 0 and, therefore, they are the bags of
finite mean volumes, which gradually increase, if the rightmost
singularity approaches sQ(T ,µB), i.e., at very large values of
T and/or µB . Such a classification is useful to distinguish
QCD phases of present model: it shows that hadronic and
crossover states are separated from the QGP phase by the
first-order deconfinement PT and by the second or higher order
PT, respectively.

VI. CONCLUSIONS AND PERSPECTIVES

Here we suggest an analytically solvable statistical model
that simultaneously describes the first- and second-order PTs
with a crossover. The approach is general and can be used
for more complicated parameterizations of the hadronic mass-
volume spectrum, if in the vicinity of the deconfinement PT
region the discrete and continuous parts of this spectrum can
be expressed in the form of Eqs. (14) and (15), respectively.
Also the actual parametrization of the QGP pressure p =
T sQ(T ,µB) has not been used so far, which means that our
result can be extended to more complicated functions, which
can contain other phase transformations (chiral PT, or the PT
to color superconducting phase) provided that the necessary
conditions (17) and (18) for the deconfinement PT existence
are satisfied.

In this model the desired properties of the deconfinement
phase diagram are achieved by accounting for the temperature
dependent surface tension of the quark-gluon bags. As we
show, it is crucial for the crossover existence that at T = Tcep
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the reduced surface tension coefficient vanishes and remains
negative for temperatures above Tcep. Then the deconfinement
µB − T phase diagram has the first-order PT at µB > µc

B(Tcep)
for 3

2 < τ < 2, which degenerates into the second-order PT
(or higher order PT for 3

2 � τ > 1) at µB = µc
B(Tcep), and

a crossover for 0 � µB < µc
B(Tcep). These two ingredients

drastically change the critical properties of the GBM [4] and
resolve the long-standing problem of a unified description of
the first- and second-order PTs and a crossover, which, despite
all claims, was not resolved in Ref. [8]. In addition, we found
that at the null line of the surface tension there must exist a
surface induced PT of the second or higher order that separates
the pure QGP from the mixed states of hadrons and QGP bags,
which coexist above the crossover region (see Fig. 5). Thus,
the QGBST model predicts that the QCD critical endpoint is
the tricritical endpoint. It would be interesting to verify this
prediction with the help of the lattice QCD analysis. For this,
one will need to study the behavior of the bulk and surface
contributions to the free energy of the QGP bags and/or the
string connecting the static quark-antiquark pair.

In contrast to popular mean-field models, the PT mechanism
in the present model is clear: it happens because of the
competition of the rightmost singularities of the isobaric
partition function. Because the GCP function of the QGBST
model does not depend on any (baryonic, entropy, or energy)
density, but depends exclusively on T ,µB , and V , its phase
diagram does not contain any back bending and/or spinodal
instabilities [51] that are typical for the mean-field (=classical)
models. The found exact analytical solution does not require
a complicated and artificial procedure of conjugating the two
parts of the equation of state in the vicinity of the critical
endpoint like is done by hands in Refs. [52] and [53] because
all this is automatically included in the statistical description.

Also in the QGBST model the pressure of the deconfined
phase is generated by the infinite bag, whereas the discrete
part of the mass-volume spectrum plays an auxiliary role
even above the crossover region. Therefore, there is no reason
to believe that any quantitative changes of the properties of
low-lying hadronic states generated by the surrounding media
(like the mass shift of the ω and ρ mesons [54]) would be the
robust signals of the deconfinement PT. On the other hand,
the QGP bags created in the experiments have finite mass and
volume and, hence, the strong discontinuities that are typical
for the first-order PT should be smeared out, which would
make them hardly distinguishable from the crossover. Thus, to

seriously discuss the signals of the first-order deconfinement
PT and/or the tricritical endpoint, one needs to solve the finite
volume version of the QGBST model like it was done for the
SMM [30] and the GBM [31]. This, however, is not sufficient
because, to make any reliable prediction for experiments, the
finite volume equation of state must be used in hydrodynamic
equations, which, unfortunately, are not suited for such a
purpose. Thus, we are facing a necessity to return to the
foundations of heavy ion phenomenology and to modify them
according to the requirements of the experiments. The present
model can be considered the next step in this direction.

Although the present model has a great advantage compared
to other models because, in principle, it can be formulated
on the basis of the experimental data on the degeneracies,
masses, and eigenvolumes of hadronic resonances in the spirit
of Ref. [38], a lot of additional work is necessary to properly
study the issues addressed in Ref. [55]. Thus, above the surface
tension null line the hadrons can coexist with QGP at high
temperatures. Consequently, the nonrelativistic consideration
of hard core repulsion in the present model should be modified
to its relativistic treatment for light hadrons as is suggested
in Refs. [56] and [57]. This can lead to some new effects
discussed recently in Ref. [57]. Also, the realistic equation
of state requires the inclusion of the temperature and mass
dependent width of heavy resonances into a continuous part
of the mass-volume spectrum, which may essentially modify
our understanding of the crossover mechanism [58].

Finally, a precise temperature dependence of the surface
tension coefficient along with the role of the curvature part
of free energy of the bags should be investigated and their
relation to the interquark string tension should be studied in
detail. For this it will be necessary to modify the Hills and
Dales Model [36,37] to include the surface deformations with
the base of arbitrary size, because its present formulation is
suited for discrete clusters and, hence, for discrete bases of
surface deformations.

ACKNOWLEDGMENTS

I am thankful to A. Blokhin for important comments and to
K. Rajagopal for pointing out Ref. [13]. The warm hospitality
of the Frankfurt Institute for Advanced Studies, where an
essential part of this work was done, is appreciated. The
financial support of the Alexander von Humboldt Foundation
is acknowledged.

[1] A. Chodos et al., Phys. Rev. D 9, 3471 (1974).
[2] E. V. Shuryak, Phys. Rep. 61, 71 (1980).
[3] J. Cleymans, R. V. Gavai, and E. Suhonen, Phys. Rep. 130, 217

(1986).
[4] M. I. Gorenstein, V. K. Petrov, and G. M. Zinovjev, Phys. Lett.

B106, 327 (1981).
[5] R. Hagedorn and J. Rafelski, Phys. Lett. B97, 136 (1980).
[6] J. I. Kapusta, Phys. Rev. D 23, 2444 (1981).
[7] See, for instance, J. Cleymans and H. Satz, Z. Phys. C 57, 135

(1993); G. D. Yen, M. I. Gorenstein, W. Greiner, and S. N. Yang,
Phys. Rev. C 56, 2210 (1997); P. Braun-Munzinger, I. Heppe,

and J. Stachel, Phys. Lett. B465, 15 (1999); F. Becattini,
M. Gazdzicki, A. Keranen, J. Manninen, and R. Stock, Phys.
Rev. C 69, 024905 (2004).
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