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Quarkonia and quark drip lines in a quark-gluon plasma
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We extract the Q-Q̄ potential by using the thermodynamic quantities obtained in lattice gauge calculations.
The potential is tested and found to give spontaneous dissociation temperatures that agree well with those from
lattice gauge spectral function analysis. Using such a Q-Q̄ potential, we examine the quarkonium states in a
quark-gluon plasma and determine the “quark drip lines” which separate the region of bound color-singlet QQ̄

states from the unbound region. The characteristics of the quark drip lines severely limit the region of possible
bound QQ̄ states with light quarks to temperatures close to the phase transition temperature. Bound quarkonia
with light quarks may exist very near the phase transition temperature if their effective quark mass is of the order
of 300–400 MeV and higher.
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I. INTRODUCTION

The degree to which the constituents of a quark-gluon
plasma (QGP) can combine to form composite entities is an im-
portant property of the plasma. It has significant implications
on the nature of the phase transition, the quark-gluon plasma
equation of state, the probability of recombination of plasma
constituents prior to the phase transition, and the chemical
yields of the observed bound hadrons. The successes of the
recombination model [1–10] suggests that quark partons may
form bound or quasibound states in the quark-gluon plasma,
at least at, or close to, the phase transition temperature. It is an
important theoretical question as to the range of temperatures
in which these quarkonia may be bound or quasibound. The
successes of the thermal model [1–4,11–20] for hadron yields
also raises the important question of whether hadrons may
become bound or quasibound in the quark-gluon plasma. If
they are indeed bound in the quark-gluon plasma, the approach
to chemical equilibrium may commence in the quark-gluon
plasma phase before the phase transition, and the boundaries
of the quark-gluon plasma phase and the hadron phase may
overlap.

Recent spectral analyses of quarkonium correlators indi-
cated that J/ψ may be stable up to 1.6Tc where Tc is the phase
transition temperature [21,22]. Subsequently, there has been
renewed interest in quarkonium states in quark-gluon plasma,
as Zahed and Shuryak suggested that QQ̄ states with light
quarks may be bound up to a few Tc [23]. Quarkonium bound
states and instanton molecules in the quark-gluon plasma have
been considered by Brown, Lee, Rho, and Shuryak [24]. As
heavy quarkonia may be used as a diagnostic tool [25], there
have been many recent investigations on the stability of heavy
quarkonia in the plasma [26–39].

Previously, DeTar [40], Hansson, Lee, and Zahed [41], and
Simonov [42] observed that the range of strong interaction is
not likely to change drastically across the phase transition
and suggested the possible existence of relatively narrow
low-lying QQ̄ states in the plasma. On the other hand, Hatsuda
and Kunihiro [43] considered the persistence of soft modes
in the plasma which may manifest themselves as pionlike

and sigmalike states. The use of the baryon-strangeness
correlation and charge fluctuation to study the abundance of
light quarkonium states in the plasma has been suggested
recently [44,45].

We would like to investigate the composite properties of
the plasma and to determine its “quark drip lines.” We shall
focus our attention on color-singlet Q-Q̄ states, and the Q-Q̄
quantities in this paper refer to those of color-singlet Q-Q̄
states unless specified otherwise. Here we follow Werner and
Wheeler [46] and use the term “drip line” to separate the
region of bound color-singlet QQ̄ states from the unbound
region of spontaneous quarkonium dissociation. It should
be emphasized that a quarkonium can be dissociated by
collision with constituent particles to lead to the corresponding
“particle-dissociation lines,” which can be interesting subjects
for future investigation.

We would like to use the potential model to study the
stability of quarkonia, as the potential model can be used
to evaluate many more quantities than the lattice gauge
spectral function analysis. The potential model lends itself
to extrapolation into unknown regions of quark masses and
temperatures. An important physical quantity in the potential
model is the Q-Q̄ potential between the quark Q and the
antiquark Q̄ at a separation R at a temperature T . Previous
work in the potential model uses the color-singlet free
energy F1(R, T ) [26,31,38] or the color-singlet internal energy
U1(R, T ) [23,32,37] obtained in lattice gauge calculations as
the Q-Q̄ potential, without rigorous theoretical justifications.
Here, the subscripts of U1(R, T ) and F1(R, T ) refer to the
color-singlet property of the Q-Q̄ system. The internal energy
U1(R, T ) is significantly deeper and spatially more extended
than the free energy F1(R, T ). The degree of quarkonium
binding will be significantly different whether one uses the
internal energy U1(R, T ) or the free energy F1(R, T ) as
the Q-Q̄ potential. Treating the internal energy U1(R, T ) as the
Q-Q̄ potential led Shuryak and Zahed to suggest the possibility
of color-singlet quarkonium states with light quarks in the
plasma [23]. The conclusions will be quite different if one
uses the free energy F1(R, T ) as the Q-Q̄ potential.
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While F1(R, T ) or U1(R, T ) can both be used as the Q-Q̄
potential at T = 0 [at which F1(R, T ) = U1(R, T )], the
situation is not so clear in a thermalized quark-gluon plasma.
It is important to find out the meaning of these thermodynamic
quantities calculated in the finite-temperature lattice gauge
theory so as to extract the Q-Q̄ potential.

If one constructs the Schrödinger equation for the Q and
Q̄ in a thermal medium, the Q-Q̄ potential in the Schrödinger
equation contains those interactions that act on Q and Q̄,
when the medium particles have rearranged themselves self-
consistently. On the other hand, the total internal energy
U1(R, T ) contains not only these interactions that act on Q

and Q̄, but also the internal gluon energy Ug(R, T ) relative
to the gluon internal energy Ug0 in the absence of Q and Q̄,
as shown deductively in Ref. [27] starting from the definition
of the free energy in lattice gauge theory in quenched QCD.
If the gluon internal energy Ug(R, T ) were independent of
R, then U1(R) could well be used as the Q-Q̄ potential.
However, in the grand canonical ensemble Ug(R, T ) depends
on R. To get the Q-Q̄ potential, it is therefore necessary to
subtract Ug(R, T ) − Ug0 from U1(R, T ). As the subtleties
of these results may not appear evident and the problem of
nonperturbative QCD so intrinsically complicated, a thorough
understanding of an analogous, but not identical, problem in
quantum electrodynamics (QED) is worth having. Therefore,
we examine in detail the simple QED case of Debye screening
of charges Q and Q̄ in a massless charged medium in a grand
canonical ensemble, where the results can be readily obtained
analytically. We would like to show that there is a relationship
between the Q-Q̄ potential and the total internal energy when
screening occurs: the Debye screening Q-Q̄ potential between
two static opposite charges in QED can be obtained from the
total internal energy by subtracting out the internal energy of
the medium particles.

The results in the Debye screening case in QED support our
previous conclusion in Ref. [27] that in the QCD lattice gauge
calculations in the grand canonical ensemble, it is necessary to
subtract out the R-dependent internal energy of the QGP from
the total internal energy in order to obtain the potential between
Q and Q̄ in the plasma. Additional lattice gauge calculations
may be needed to evaluate the QGP internal energy in the
presence of Q and Q̄. It is nonetheless useful at this stage
to suggest approximate ways to evaluate the QGP internal
energy. We proposed earlier a method that makes use of the
equation of state of the quark-gluon plasma obtained in an
independent lattice gauge calculation [27]. The equation of
state provides a relationship between the QGP internal energy
and the QGP entropy content. As the QGP entropy content is
the difference U1−F1, the Q-Q̄ potential can be represented as
a linear combination of U1 and F1, with coefficients depending
on the quark-gluon plasma equation of state. The proposed
potential was tested and found to give spontaneous dissociation
temperatures that agree well with those from lattice gauge
spectral function analysis in the quenched approximation.

The comparison of the potential model results with those
from spectral analyses in the same quenched approximation is
useful as a theoretical test of the potential model. However,
in the quenched approximation, the quark-gluon plasma
is assumed to consist of gluons only, and the effects of

dynamical quarks have not been included. As dynamical
quarks provide additional screening, one wishes to know
whether this additional screening will significantly modify the
binding energies of quarkonia. The presence of dynamical
quarks also lowers the phase transition temperature from
269 MeV for quenched QCD to 154 MeV for full QCD with
three flavors [47]. For these reasons, it is necessary to include
dynamical quarks to assess their effects on the stability of
quarkonia. The knowledge of the single-particle states using
potentials extracted from lattice gauge calculations in full QCD
can then be used to examine the stability of both heavy and light
quarkonia and to determine the location of the quark drip lines.
We focus our attention mainly on heavy quarkonia for which
a nonrelativistic treatment is a good description. However,
the problem of the stability of quarkonia with light quarks is
intrinsically so complicated and the question of their stability
up to a temperature of few units of Tc so important [1–23]
that even an approximate estimate using the nonrelativistic
potential model is worth having. The subject of light quarkonia
will be examined again, with the inclusion of the relativistic
effects as in recent works [48,49], over the course of time.

The authors of Refs. [50,51] claim recently that potential
models cannot describe heavy quarkonia above Tc, as their
potential model correlators fail to reproduce lattice gauge
correlators for all cases with all types of potentials. Such a
complete disagreement for all cases and all types of potentials
suggests that the lack of agreement may not be due to the
potential model (or models) themselves but rather to their
method of evaluating the meson correlators in the potential
model. We showed recently that when the contributions
from the bound states and continuum states are properly
treated [30], the potential model correlators obtained with the
proposed potential in Ref. [27] are consistent with lattice gauge
correlators.

This paper is organized as follows. In Sec. II, we describe
the puzzling behavior of the increase of the entropy of the
QCD medium as the separation between Q and Q̄ increases.
To understand such a behavior, we introduce in Sec. III
a simple model of Debye screening in QED for which
various thermodynamic quantities can be readily calculated. In
Sec. VI, the variation of the number density and entropy
density of the medium particles for a Q-Q̄ pair in De-
bye screening is shown to depend on the Q-Q̄ separation
R when the second-order contributions are included. In
Sec. V, we find similarly that the internal energy of the
medium particles in Debye screening also increases with R

when second-order contributions are included. In Sec. VI,
we examine the Schrödinger equation for the relative motion
of Q and Q̄ and identify the potential between Q and Q̄

in Debye screening. We reach the conclusion that to obtain
the Debye screening potential between two static charges in
the grand canonical ensemble, it is necessary to subtract out
the internal energy of the medium particles from the total
internal energy. Returning to lattice gauge calculations in
Sec. VII, we suggest a method in which the medium internal
energy can be approximately determined and subtracted by
using the information on the quark-gluon plasma of state.
Consequently, the Q-Q̄ potential turns out to be a linear
combination of U1(R, T ) and F1(R, T ), with coefficients
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depending on the equation of state. In Sec. VIII, we use
different potentials to calculate the spontaneous dissociation
temperatures for various quarkonia and compare them with
those obtained from lattice gauge spectral function analyses
in quenched QCD. The dissociation temperatures obtained
with the proposed linear combination of U1 and F1 give the
best agreement with those from the spectral function analyses.
In Sec. IX, we show how the thermodynamical quantities in
full QCD with two flavors are parametrized. The dissociation
temperatures for various heavy quarkonia for full QCD with
two flavors are obtained in Sec. X. We introduce the quark
drip lines in quark-gluon plasma in Sec. XI. We conclude and
summarize our discussions in Sec. XII.

II. THERMODYNAMIC QUANTITIES IN LATTICE GAUGE
CALCULATIONS AND DEBYE SCREENING

Thermodynamic quantities for a heavy quark pair in the
color-singlet state were studied by Kaczmarek and Zantow in
quenched QCD and in full QCD with two flavors [33,34]. They
calculated 〈trL(r/2)L†(−R/2)〉 and obtained the color-singlet
free energy F1(R, T ) from

〈trL(R/2)L†( − R/2)〉 = e−F1(R,T )/kT . (1)

Here trL(R/2)L†( − R/2) is the trace of the product of two
Polyakov lines at R/2 and −R/2. The free energy F1(R, T ), in
the presence of the Q-Q̄ pair, is measured relative to the free
energy without the Q-Q̄ pair. The quark and the antiquark lines
do not, in general, form a close loop. As a gauge transformation
introduces phase factors at the beginning and the end of an open
Polyakov line, 〈trL(R/2)L†( − R/2)〉 is not gauge invariant
under a gauge transformation. Calculations have been carried
out in the Coulomb gauge which is the proper gauge to study
bound states.

From the free energy F1, Kaczmarek and Zantow [33,34]
calculated the internal energy U1 using the statistical identity

U1(R, T ) = F1(R, T ) + TS1(R, T ), (2)

where S1(R, T ) = −∂F1(R, T )/∂T is the entropy of the
system in the presence of a color-singlet Q-Q̄ pair and is
measured relative to the entropy of the system in the absence
of the Q-Q̄ pair.

In order to extract the Q-Q̄ potential from thermodynamic
quantities calculated in the lattice gauge theory, we need
to understand the behavior of the free energy F1(R, T ), the
internal energy U1(R, T ), and T times the entropy, TS1(R, T ),
which we will also call “the entropy” for simplicity of
nomenclature. As these three quantities are related by Eq. (2),
we need to find out the behavior of only two of them. Following
the terminology used in lattice gauge calculations [34], U1, F1,
and TS1 are defined as being measured relative to their
corresponding quantities in the absence of Q and Q̄.

We can begin by studying the entropy TS1(R, T ) of the
system. We note that the lattice gauge calculations show that
the total entropy TS1(R) increases as a function of R, and
saturates after the separation reaches a large value of R [34]
as shown in Fig. 1(a). What does such a behavior tell us about
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FIG. 1. (a) Total entropy TS1(R, T ) as a function of R at T =
1.3Tc from the lattice gauge calculations [34]. (b) Ratio η(R) =
TS(R)/TS(R → ∞) [which is also equal to N (R)/N (R → ∞) and
U (R)/U (R → ∞)] as a function of R/rD in a thermal medium under
Debye screening.

the response of the medium particles to the presence of the
external color sources of Q and Q̄ in a thermal bath?

In the system under consideration, the system consists of the
Q, the antiquark Q̄, and the quark-gluon plasma. For simplicity
we can examine the quenched case for which the quark-gluon
plasma is assumed to consist of gluons only. The entropy of the
system therefore comes from the sum of the entropies of Q, Q̄,

and the gluons. However, in the lattice gauge calculations in a
thermal bath, the Q and Q̄ are held fixed and do not contribute
to the entropy of the system. The entropy of the system TS1

comes entirely from the gluons. By fixing a temperature and
focusing our attention at the state of thermal equilibrium in
lattice gauge calculations, the gluons are in a grand canonical
ensemble in contact with the thermal bath. The content and
thermodynamical properties of the gluons are determined by
the condition of thermal equilibrium at the fixed temperature
of the thermal bath. The observed behavior of the entropy
TS1(R) as a function of R in Fig. 1(a) suggests that the gluon
entropy content increases as the separation R increases, and
the entropy saturates when R reaches a certain limit.

As we know from the work of Landau and Belenkii [52],
the entropy content of a system is closely correlated with the
number of particles in the system. The behavior of the entropy
suggests that the number of gluons increases as the separation
R increases. How do we explain such a behavior? If the number
of gluons increases as a function of R, what happens to the
internal energy content of the gluons as a function of R, and
how does that affect the total internal energy and the potential
between Q and Q̄ we wish to extract?

III. ANALOGOUS PROBLEM OF DEBYE
SCREENING IN QED

The QCD problem of a quark and an antiquark in the
presence of the actions of the gluons is so complicated that
it is worth having even a good understanding of the puzzling
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behavior in an analogous, but not identical, problem of a static
positive charge Q and another negative charge Q̄ under the
action of charged medium particles in QED. We would like
to ask whether there is a similar behavior of the number and
entropy of medium particles as the separation R between the
positive charge Q and the negative charge Q̄ increases. If
the number of medium particles increases as a function of
R, what happens to the internal energy content of the system
and the medium particles as a function of R, and what is the
relationship between the potential between Q and Q̄ and total
internal energy we wish to extract?

Accordingly, we study the simple system of Debye screen-
ing and consider a Q with charge +q held fixed at −R/2 and a
Q̄ with a charge −q at R/2, in a medium of massless fermions
with charges e± = ±q, in a thermal bath of temperature T

in a grand canonical ensemble. Any pair of charged particles
with charges e1 and e2 separated by a distance r are assumed
to interact with a Coulomb interaction e1e2/|r|. To make the
problem simple, we assume the attainment of local thermal
equilibrium.

When the external charges Q and Q̄ are introduced into the
medium, the medium fermions will rearrange themselves in
both coordinates and momenta to reach a new local thermal
equilibrium. The total number of medium particles in the
system is not a constant of motion but is determined by the
condition of thermal equilibrium, maintained by the thermal
bath.

When the external charges Q and Q̄ are separated by a dis-
tance R at a temperature T , the self-consistent rearrangement
of the medium charged fermion particles leads to a potential
V (r, R) at a point r and under a local thermal equilibrium,
the momentum distribution of the medium particles at r in the
Born-Oppenheimer treatment is given by

f±(r, p, R) = 1

exp{[p + e±V (r, R)]/T } + 1
. (3)

Here and henceforth, the + and − subscripts designate
quantities for the positive and negative medium particles,
respectively.

From the above Wigner function distribution, we can obtain
various thermodynamic quantities. The integration of the
Wigner function over all momenta gives the spatial number
density distribution n±(r, R) at r, when Q and Q̄ are separated
by R, that is,

n±(r, R) = g

2π2

∫
p2dpf±(r, p, R), (4)

where g is the degeneracy of the levels. We can consider
the high temperature case for which it is useful to expand
various quantities as a power series of e±V ((r, R)/T . Up to the
second order in [e±V (r, R)/T ]2, the medium particle density
is

n±(r, R) = n0
±{1 − a1[e±V (r, R)/T ]

+ a2[e±V (r, R)/T ]2}, (5)

where

n0
± = gT3

2π2

3

4
ζ (3)�(3), (6)

a1 =
1
2ζ (2)
3
4ζ (3)

= 0.91233, (7)

and

a2 =
1
2ζ (1)
3
4ζ (3)

= 0.3845. (8)

In passing, we note that if the medium particles obeys
Boltzmann statistics, the coefficients a1 and a2 would
equal a1 = 1 and a2 = 0.5, as it follows from the expan-
sion of the well-known Boltzmann distribution n±(r, R) =
n0

±exp{−e±V (r, R)/T } for Boltzmann particles in an external
field. The values of the a1 and a2 coefficients for Boltzmann
statistics differ only slightly from the corresponding values in
Eqs. (7) and (8) for fermion particles.

For the Fermi-Dirac medium particles, the entropy density
at r, when Q and Q̄ are separated by R, is given by

σ±(r, R) = g

2π2

∫
p2dp{−f±lnf±

− (1 − f±)ln(1 − f±)}. (9)

Upon substituting the Fermi-Dirac distribution of Eq. (3) into
the above equation, we find

σ±(r,R) = g

2π2

∫
p2dpf±(r,p,R)

{
4p

3
+e±V (r, R)

}/
T

≡
〈

4p

3
+ e±V (r, R)

〉/
T , (10)

and we obtain

σ±(r, R) = σ 0
±{1 − b1[e±V (r, R)/T ]

+ b2[e±V (r, R)/T ]2}, (11)

where

σ 0
± = gT3

2π2

7

8
ζ (4)

4

3
�(4), (12)

b1 =
3
4ζ (3)

[
4
3�(4) − �(3)

]
7
8ζ (4) 4

3�(4)
= 0.7139, (13)

and

b2 =
1
2ζ (2)

[
4
3

�(4)
2 − �(3)

]
7
8ζ (4) 4

3�(4)
= 0.2171. (14)

Here we have purposely written the numerators of the b1 and
b2 coefficients as a difference where the first term comes from
〈4p/3〉 and the second term comes from 〈e±V 〉 of Eq. (10).

The evaluation of various thermodynamic quantities re-
quires the knowledge of V (r, R). To determine V (r, R) self-
consistently, we have the charge density at the point r, when
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Q and Q̄ are separated by R,

ρtotal(r, R) = qδ

(
r + R

2

)
− qδ

(
r − R

2

)

+ e+n+(r, R) + e−n−(r, R). (15)

Using the number density distribution given in Eq. (5), the
charge density, up to the second power in e±V (r, R)/T ,
becomes

ρtotal(r, R) = qδ

(
r + R

2

)
− qδ

(
r − R

2

)

− n0a1q
2V (r, R), (16)

where n0 = n0
+ + n0

− and the zeroth-order and second-order
terms of Eq. (5) cancel out on account of the presumed charge
neutrality of the system for which n0

+ = n0
−. The Poisson

equation for the potential is then given by

∇2
r V (r, R) = −4π

{
qδ

(
r + R

2

)
− qδ

(
r − R

2

)

− n0a1q
2V (r, R)

}
, (17)

which has the solution

V (r, R) = qe−µr+

r+
− qe−µr−

r−
, (18a)

r± = |r ± R/2|, (18b)

µ =
√

4πn0a1q2

T
= 1

rD

, (18c)

where µ is the Debye mass and rD is the Debye screening
length.

IV. VARIATION OF NUMBER DENSITY AND ENTROPY
DENSITY WITH R IN DEBYE SCREENING

The simple solution V (r, R) in Eq. (??) allows us to
have a profile of the self-consistent medium particle number
density and entropy density in all spatial points at local
thermal equilibrium at T . In Eqs. (5) and (11), the coefficients
of a1, a2, b1, and b2 are all positive. For positive medium
particles, the first-order increment in the number density
n+(r, R) and σ+(r, R), [also u+(r, R) in Eq. (32)] are therefore
measured by [− e+V (r, R)/T ] illustrated in Fig. 2 as a
function of ρ/rD and z/rD . As one observes, the first-order
contributions, given by −e+V (r, R)/T , represent a depletion
for the positive medium particles near the positive static charge
Q at −R/2 and an enhancement near the negative static
charge Q̄ at R/2. The degree of depletion and the degree
of enhancement are equal and opposite to each other. When
we sum over all spatial points, the sum of the first-order
depletion and enhancement cancel each other to give a zero
total contribution.

The second-order contributions are proportional to
[e+V (r, R)/T ]2 and are always positive. They are illustrated
in Fig. 3 as a function of ρ/rD and z/rD for different Q-Q̄
separations. They always enhance the number density and the
entropy density. The enhancement is small when the two static
charges are close together in Fig. 3(a), as there is a substantial
cancellation of the two terms in Eq. (18a). The enhancement
reaches a constant value when the static charges Q and Q̄

reaches a separation of 1–2 units of the Debye screening length
as shown in Figs. 3(b) and 3(c).

If one integrates over all spatial points to obtain the total
number of positive charge medium particles, one finds that the
integration over the first-order term,

∫
dr[−e+V (r, R)/T ],

is zero because the depletion cancels the enhancement.
However, the second-order contributions always give a positive
contribution, and the number of positive medium particles,
measured relative to the corresponding quantity in the absence

FIG. 2. (Color online) First-order term
[−e+V (ρz, T )/T ] in units of q2/rD in Eqs. (5),
(11), and (32) that contributes to the increments
in n+(ρz,R), σ+(ρz, R), and u+(ρz, R), as a
function of the spatial coordinates ρ/rD and
z/rD .
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FIG. 3. (Color online) Second-order term
(e+V (ρz, R)/T )2 in units of (q2/rDT )2 in
Eqs. (5), (11), and (32) that contributes to
n+(ρz, R), σ+(ρz,R), and u+(ρz, R), as a func-
tion of the spatial coordinates ρ/rD and z/rD .

of Q and Q̄, is given by

N+(R) =
∫

dr{n+(r, R) − n0
+}

= n0
+

∫
dra2[e+V (r, R)/T ]2. (19)

We can write the above as

N+(R)

N+(R → ∞)
= η(R), (20)

where

η(R) = 1

4π

∫
dζ

[
e−ζ+

ζ+
− e−ζ−

ζ−

]2

, (21)

with ζ = r/rD, ζ± = |r ± R/2|/rD, η(0) = 0, and η(R →
∞) = 1. In Eq. (20), N+(R → ∞) is the increment in the
number of positive medium particles when Q and Q̄ are far
separated,

N+(R → ∞) = n0
+3a2

(
q2

rDT

)2
4π

3
r3
D. (22)

The increase in the total number of positive medium particles
is small when Q and Q̄ are close together, and the increase
saturates when R reaches a few units of the Debye screening
length r

D
. For our charge-neutral system, we obtained from

Eq. (5) in a similar way N−(R) = N+(R).
Similarly, the entropy density of the medium particles

is depleted near the static charge of the same sign and is
enhanced in the vicinity of the static charge of the opposite
sign. When integrated over all spatial points, the depletion and
the enhancement cancel to the first order. The second-order

contributions always give a positive total entropy,

T S±(R) = T

∫
dr{σ±(r, R) − σ 0

±}

= T σ 0
±

∫
drb2[e±V (r, R)/T ]2, (23)

which is small at small R and saturates at large R. We can
write the above as

T S±(R)

T S±(R → ∞)
= η(R), (24)

where

T S±(R → ∞) = T σ 0
±3b2

(
q2

rDT

)2
4π

3
r3
D. (25)

A comparison of N± and TS± shows that

N±(R)

N±(R → ∞)
= T S±(R)

T S±(R → ∞)
= η(R). (26)

If we define N (R) = N+ + N−(R), and TS(R) = TS+(R) +
TS−(R), the increment of the total number and entropy of the
medium particles due to the presence of Q and Q̄ (measured
relative to the corresponding quantities in the absence of Q

and Q̄), is

N (R)

N (R → ∞)
= T S(R)

T S(R → ∞)
= η(R). (27)

Thus, the ratios TS(R)/TS(R → ∞), N±(R)/N±(R → ∞),
and TS(R)/TS(R → ∞) [also U (R)/U (R → ∞) as we will
see in the next section] behave in the same way as a function of
R. We show the behavior of η(R) = TS(R)/TS(R → ∞) for
the Debye screening case in Fig. 1(b), and it has the same shape
as TS1(R) obtained in the lattice gauge calculations shown in
Fig. 1(a).

One can therefore understand that as the result of constrain-
ing the system to be in contact with a thermal bath in the grand

014902-6



QUARKONIA AND QUARK DRIP LINES IN A QUARK- . . . PHYSICAL REVIEW C 76, 014902 (2007)

canonical ensemble, the medium particle numbers and entropy
increase with increasing R to maintain a thermal equilibrium
until they saturate at large separation. The thermal bath is
therefore a participant in altering the content of the medium
particles, when the Q is separating from the antiquark Q̄. (See
Sec. VI for a discussion on the role of the thermal bath.)

V. VARIATION OF THE INTERNAL ENERGY WITH R IN
DEBYE SCREENING

Previously in quenched QCD, we found a relationship
between the total internal energy and the Q-Q̄ potential [27].
As the problem of nonperturbative QCD is so intrinsically
complicated, a thorough understanding of such a relationship
in an analogous, but not identical, problem in QED is worth
having. We are therefore motivated to examine the mechanism
of Debye screening due to the medium particles in QED. Of
particular interest is to see whether the relationship between the
total internal energy and the Q-Q̄ potential in Debye screening
in QED resembles a similar relationship in lattice gauge theory
obtained previously in QCD [27].

When Q and Q̄ separated by a distance R are screened
by medium particles, the total internal energy Utotal(R) of the
system of medium particles, Q, and Q̄ is the sum of the kinetic
energy of the medium particles and the interaction energies of
the the medium particles, Q, and Q̄, when the medium particles
have rearranged themselves self-consistently,

Utotal(R) =
∫

dr

{
g

2π2

∫
p2dp[f+(r, p, R)

+ f−(r, p, R)]p

}
+ 1

2

∫
dr

{
e+δ

(
r + R

2

)

+ e−δ

(
r − R

2

)
+ e+n+(r, R)

+ e−n−(r, R)

}
V (r, R) −

∫
dr(u0

+ + u0
−),

(28)

where u0
± is the internal energy density of the medium in the

absence of Q and Q̄ given by

u0
± = gT4

2π2

7

8
ζ (4)�(4), (29)

and Utotal(R) is measured relative to the total internal energy of
the system in the absence of Q and Q̄, U 0

medium = ∫
dr(u0

+ +
u0

−). Using the solution of V (r, R) in Eq. (??) and excluding
the infinite energies of a point source acting on itself, Eq. (28)
gives

Utotal(R) = −q2e−µR

R
− q2

rD

+
∫

dr[{u+(r, R) − u0
+}

+ {u−(r, R) − u0
−}], (30)

where u±(r, R) are the internal energy density of the positive
and negative charged medium particles in the presence of Q

and Q̄ given by

u±(r, R) = g

2π2

∫
p2dpf±(r, p, R)

{
p + e±V (r, R)

2

}

≡
〈
p + e±V (r, R)

2

〉
. (31)

Using the local Fermi-Dirac distribution of Eq. (3), we obtain

u±(r, R) = u0
±{1 − c1[e±V (r, R)/T ]

+ c2[e±V (r, R)/T ]2}, (32)

where c1 and c2 are positive constants,

c1 =
3
4ζ (3)

[
�(4) − �(3)

2

]
7
8ζ (4)�(4)

= 0.7933, (33)

and

c2 =
1
2ζ (2)

[
�(4)

2 − �(3)
2

]
7
8ζ (4)

= 0.2895. (34)

A comparison of u±(r, R) in Eq. (32) with n±(r, R) and
u±(r, R) in Eqs. (5) and (11) indicates that the first- and
second-order contributions to u±(r, R) behave in the same way
as those of n±(r, R) and σ±(r, R). The first-order increment
of the internal energy density of the medium particles is
suppressed near the static charge of the same sign, and is
enhanced near the static charge of the opposite sign as shown
in Fig. 2, while the second-order contributions to the internal
energy are always positive as shown in Fig. 3. The first-order
contributions cancel each other, when they are integrated over
all the spatial points. However, the second-order contributions
are always positive, and the integration of the second-order
contributions always yield a positive quantity. The total
medium internal energy of the positive and negative medium
particles, measured relative to the corresponding quantities in
the absence of Q and Q̄, are

U±(R) =
∫

dr{u±(r, R) − u0
±}

= n0
±

∫
drc2[e±V (r, R)/T ]2. (35)

Relative to the total internal energy in the absence of Q and
Q̄, the total internal energy in the presence of Q and Q̄ is

Umedium(R) − U 0
medium = U+(R) + U−(R). (36)

Equation (30) can therefore be written as

Utotal(R) = −q2e−µR

R
− q2

rD

+ Umedium(R) − U 0
medium. (37)

From Eqs. (35), (19), and (21), the quantity U±(R) can be
written as

U±(R)

U±(R → ∞)
= η(R), (38)

014902-7



CHEUK-YIN WONG PHYSICAL REVIEW C 76, 014902 (2007)

where

U±(R → ∞) = u0
±3c2

(
q2

rDT

)2
4π

3
r3
D. (39)

A comparison of N± and TS± shows that

U±(R)

U±(R → ∞)
= N±(R)

N±(R → ∞)

= TS±(R)

TS±(R → ∞)
= η(R). (40)

Consequently, if we define U (R) = U+(R) + U−(R), we also
have

U (R)

U (R → ∞)
= N (R)

N (R → ∞)

= TS(R)

TS(R → ∞)
= η(R). (41)

In this simple model of Debye screening, the ratios of
TS(R)/TS(R → ∞), N(R)/N(R → ∞), and U (R)/U (R →
∞) are equal, and their behavior is shown in Fig. 1(b). The
entropy, total number, and internal energy of the medium
particles (relative to the corresponding quantities in the
absence of Q and Q̄) is zero at R = 0 and increases as a
function of R until they saturate when the separation R reaches
a few units of the Debye screening length.

VI. SCHRÖDINGER EQUATION FOR Q- Q̄ SYSTEM IN
DEBYE SCREENING

As the dynamics of a quark and an antiquark in a quark-
gluon plasma is very complicated, it is worth having a good
understanding of the mechanism of screening and its effects
on the interaction between a Q and an antiquark Q̄ in
an analogous, but not identical, problem. We are therefore
motivated to examine the mechanism of Debye screening
due to the medium particles in QED. Of particular interest
is to obtain the relationship between the Q-Q̄ potential in the
Hamiltonian and the total internal energy Utotal, in order to find
out whether this relationship resembles a similar relationship
in lattice gauge theory obtained previously in Ref. [27].

It is, however, somewhat tricky to determine the Hamil-
tonian for the Q and Q̄ system in a medium under Debye
screening (and analogously, but not identically, under color-
charge screening in QCD). We can follow the basic principles
of statistical physics as described by Landau and Lifshitz [53].
Accordingly, we start with a closed system of a heavy Q and
Q̄ with medium particles and consider a small “subsystem” S

that contains the Q, the Q̄, and the medium. As the number of
medium particles of the whole closed system is very large, the
number of medium particles contained in the small subsystem
S can still be very large, and a statistical description of this
small subsystem S is applicable. This subsystem S is not a
closed system, and it undergoes all kinds of interaction and
medium particle exchanges with the complementary part S ′
of the whole system. We can describe this subsystem S to
be in contact with a very large complementary part S ′, which
we can call a “thermal bath” in this connection. The QED

system discussed in the last few sections or the QCD system in
lattice gauge calculations (the so-called “system” of Q, Q̄, and
medium particles in contact with a thermal bath), corresponds
in actual fact to the “subsystem” S out of the whole closed
system S + S ′.

Under a perturbation of the subsystem S away from
thermal equilibrium such as occurs in the displacement of
Q relative to Q̄, the medium in the subsystem S will
respond to the perturbation and will relax to a new state of
thermal equilibrium after a certain relaxation time, trelax(S).
For example, from the results concerning the medium entropy
and number contents in the subsystem S as a function of
the separation between Q and Q̄ obtained in the last few
sections (Fig. 1), we know that under a displacement of the
relative separation of the Q and Q̄, the medium particles
will exchange between S and the thermal bath S ′ in order
to make the subsystem S under thermal equilibrium. In this
case, the relaxation time trelax(S) corresponds to the exchange
of medium particles through imaginary boundaries between S

and the thermal bath S ′. Relaxation time grows smaller as the
subsystem S decreases in size [53]. For a small subsystem S,
this relaxation time trelax(S) can be very short. On the other
hand, for heavy Q and Q̄ in the subsystem, the period of
Q-Q̄ relative motion, tQQ̄, can be relatively long because
of the large mass of Q and Q̄. The period tQQ̄ can be so
much greater than the medium relaxation time trelax(S), tQQ̄ �
trelax(S), that the medium can be considered as reaching a state
of thermal equilibrium approximately instantaneously, at any
time during the (supposedly slow) motion of the heavy quark
Q and antiquark Q̄. For the medium particles, this is just
the Born-Oppenheimer approximation for the description of
the states of the medium particles in the subsystem S, as
presented in the last few sections and used in lattice gauge
calculations to obtain the medium particle configurations in
QCD.

In what sense can energy and entropy be considered
conserved under a periodic motion of the Q and Q̄ in the
medium? The whole closed system consists of the subsystem
S ′ and S, and the subsystem S is not a closed system. From
the results of the last few sections, we know that if we move
the Q closer relative to the Q̄ in the subsystem S, then the
medium particles (and its entropy and energy contents) will
move from the subsystem S into the complementary part S ′ so
as to maintain thermal equilibrium in the subsystem S. When
we move the Q farther relative to the Q̄, then the medium
particles, entropy, and energy contents will move from the
complementary system S ′ back into the subsystem S so as to
maintain thermal equilibrium in the subsystem S. For slow
periodic motion of Q and Q̄, the motion can be so slow
that the exchange of medium particles between S and S ′ can
be approximated as taking place with no excitation of the
medium. In this sense, the idealized periodic motion of Q and
Q̄ can thus be adiabatic in the lowest order with an “adiabatic”
exchanging the energy content and the entropy content of the
medium particles back and forth between the subsystem S

and the complementary system S ′. Additional interactions of
the bound periodic Q-Q̄ states with the medium particles that
lead to the nonadiabatic excitation of both objects can then be
considered in higher-order approximations.
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Thus, in this adiabatic picture of tQQ̄ � trelax(S), the Q and
Q̄ experience the interactions from all medium particles which
adjust themselves (within a relaxation time which is taken to be
so small as to be approximately instantaneous) at all instances
of the dynamical motion of the Q and Q̄. The potential energy
of the Q and Q̄ at a separation r in the Hamiltonian for the Q

and Q̄ is half of the integral of the product of the local point
charges of the Q and Q̄ with their local potentials V (r, R)
arising from a self-consistent rearrangement of all particles
when Q and Q̄ are at the separation R, excluding the infinite
self-energy contributions. In addition to the potential energy
of the Q and Q̄, the Hamiltonian for the Q-Q̄ system consists
also of the kinetic energy of Q and Q̄. The Hamiltonian for
the Q-Q̄ system is therefore given by

H = p2
Q

2mQ

+
p2

Q̄

2mQ̄

+ 1

2

∫
dr

[
e+δ

(
r + R

2

)

+ e−δ

(
r − R

2

)]
V (r, R)

= p2
Q

2mQ

+
p2

Q̄

2mQ̄

+ 1

2
[e+V (r, R)|r=−R/2

+ e−V (r, R)|r=R/2]. (42)

Upon making the change of the variables from pQ and pQ̄

to the center-of-mass momentum Pc.m. = pQ + pQ̄ and the
relative momentum pR = (pQ −pQ̄)/2, and using the solution
V (r, R) of Eq. (??), we find from the above equation

H = P2
c.m.

2(mQ + mQ̄)
+ p2

R

2µred
− q2e−µR

R
− q2

rD

, (43)

where µred = mQmQ̄/(mQ + mQ̄) is the reduced mass. The
Hamiltonian then separates into H = Hc.m. + HR where Hc.m.

is the Hamiltonian for the free motion of the composite two-
body system and HR is the Hamiltonian for the relative motion
of Q and Q̄,

HR = p2
R

2µred
− q2e−µR

R
− q2

rD

≡ p2
R

2µred
+ UQQ̄(R). (44)

From the above equation, we recognize that the potential for
the Q-Q̄ system under screening by the medium, UQQ̄(R), is
given by

UQQ̄(R) = −q2e−µR

R
− q2

rD

. (45)

The QQ̄ potential UQQ̄(R) is just the Debye screening
potential plus an R-independent constant term.

Based on the adiabatic picture of the motion of Q and Q̄,
the Hamiltonian formulated in Eq. (42) indeed gives correctly
the Hamiltonian with the Debye screening potential. The R-
independent term −q2/rD is also an important part of the
screening contribution. We note that if we expand the Q-Q̄
Hamiltonian for the case of small µ representing the screening

effects, then Eq. (44) becomes

HR ∼ p2
R

2µred
− q2(1 − µR)

R
− q2

rD

= p2
R

2µred
− q2

R
, (46)

which is the same Hamiltonian as that of the unscreened case.
Thus, we reach the interesting result that in the lowest order
of the screening parameter µ = 1/rD , a properly calibrated
Hamiltonian of a system under screening, with the shift of
the level of the potential, −q2/rD , is the same Hamiltonian
without screening. In practical terms, if we calculate the mass
of a Q-Q̄ system without screening, we expect that within the
lowest order of the screening parameter µ, the mass eigenvalue
of the system to be nearly unchanged when screening is
present. Numerical calculations of the mass of bound L = 0
charmonium using the potential model of Ref. [27] indeed
shows that the absolute value of the charmonium L = 0 mass
changes only very slightly as a function of temperature up to
1.5Tc [30].

From the above discussions in the simple case of Debye
screening, we observe that the potential between Q and
Q̄, UQQ̄(R), differs from the total internal energy Utotal(R).
Because of Eqs. (45) and (37), they are related by

UQQ̄(R) = Utotal(R) − [
Umedium(R) − U 0

medium

]
. (47)

It is therefore necessary to subtract out the change of the
medium internal energies [Umedium(R)−U 0

medium] from the total
internal energy Utotal(R) to obtain the Q-Q̄ potential UQQ̄(R)
in the grand canonical ensemble. This conclusion for Debye
screening supports similar conclusions in the analogous lattice
gauge theory, where we proved in Eq. (11) of Ref. [27],

U
(1)
QQ̄

(R, T ) = U1(R, T ) − [
U (1)

g (R, T ) − Ug0(T )
]
. (48)

In the above equation, the superscript (1) refers to the color-
singlet state of Q and Q̄, and [U (1)

g (R, T ) − Ug0(T )] is the
increment of gluon energy due to the presence of Q and Q̄.

From the above analysis, we conclude that the relationship
of Eq. (48) in Ref. [27] is a rather general result for heavy
particles under screening in the grand canonical ensemble.

We can understand the results of Eq. (48) [or similarly
Eq. (47)] from another viewpoint. In a standard description of
a (QQ̄) in a medium, we simplify the dynamics by considering
first the (QQ̄) states and the deconfined medium states
separately as independent unperturbed states. We then include
their mutual excitations as perturbative couplings. Thus,
in the lowest-order description without perturbative couplings,
the (QQ̄) states should be obtained without the excitation of
the medium states of deconfined real gluons and vice versa.
In the quenched approximation, the deconfined real gluons in
the quark-gluon plasma in the Feynman diagram language are
those represented by lines with external legs. The change of the
medium internal energies, [U (1)

g (R, T ) − Ug0(T )] in Eq. (48),
represents the excitation of the internal energy states of the
deconfined real gluon medium when the separation between
the Q and the Q̄ changes in the grand canonical ensemble.
As the unperturbed states of the Q-Q̄ relative motion should
be calculated without the excitation of the medium states
of deconfined real gluons, we therefore need to subtract the
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change of the real gluon internal energy from the total internal
energy in Eq. (48) to obtain the Q-Q̄ potential U

(1)
QQ̄

(R, T ),

when the separation between the Q and the Q̄ changes.
In the quenched approximation, the subtraction of this

change in the internal energy of real gluons as a function
of R does not mean that both the real and the virtual gluon
degrees of freedom are frozen. Only the real gluon excitation
energy degrees of freedom are frozen when we calculate the
unperturbed Q-Q̄ bound states of relative motion, for reasons
we have just given. On the other hand, virtual gluons, which in
the Feynman diagram language are represented by gluon lines
with the two endpoints of each line joining onto other quarks
and gluons, change their configurations as the separation R

between the Q and the Q̄ changes. These virtual gluons
mediate the interaction between the Q and the Q̄. The changes
in the virtual gluon configurations modify the interaction
between the Q and the Q̄, resulting in the screening of the
Q-Q̄ potential. This type of virtual gluon excitation is not
frozen and is included in the calculation of the Q-Q̄ potential
and the evaluation of bound states of the Q-Q̄ relative motion.

The reconfiguration of these virtual gluons can take place
in either an adiabatic manner or in the opposite “diabatic”
manner depending on whether the time scale of the relaxation
of these virtual gluons is short compared to the time scale of
the period of the Q-Q̄ relative motion. As we explained earlier,
the adiabatic description is appropriate for very heavy quark
pairs when the relative motion of the Q and the Q̄ is slow.
This is indeed confirmed by the successful identification of
the lattice free energy for a static Q-Q̄ pair as the heavy quark
Q-Q̄ potential, U (1)

QQ̄
(R) at T = 0 [54]. For this case of T = 0,

there are no free gluons nor energy excitations of free gluon
medium states when the separation R between the Q and the
Q̄ changes, and the total free energy of the system is equal to
the total internal energy of the system. The real gluon energy
degrees of freedom are absent and frozen, but the virtual gluon
degrees of freedom adjust themselves as R changes.

The question of whether an adiabatic or a diabatic picture is
a more appropriate description for the potential arises also in
the NN and meson-meson problems at T = 0 in lattice gauge
theory. However, aside from the question of adiabaticity, the
Q-Q̄, NN, and meson-meson potentials differ in their different
degrees of freedom and the methods of calculations. The
Q-Q̄ potential studied here is a (two-body)-plus-(deconfined
medium) problem, while the NN and meson-meson potentials
at T = 0 are (six-body)-plus-(virtual gluons) and (four-body)-
plus-(virtual gluons) problems, respectively. At T = 0, a wave
function treatment of the lattice gauge correlator results in
the correct repulsive potential for the NN potential at short
distances [55], while an adiabatic potential treatment without
using the lattice wave function gives flat NN and meson-meson
potentials [56]. On the contrary, however, another adiabatic
lattice gauge meson-meson potential calculation at T = 0
gives repulsive and attractive inner cores when different
internal degrees of freedom of the light quarks are taken into
account [57]. Furthermore, the lattice gauge wave function
method of Ref. [55] may need additional justifications as
questions have been raised in Appendix A of Ref. [57]
concerning its lattice wave function assumption. While the

work of Ref. [55] appears to give a correct description, much
work remains to be carried out to sort out the differences
of the lattice gauge calculations of Refs. [55–57]. It remains
another separate additional question of how one can obtain
definitive conclusions on the adiabaticity or diabaticity of the
(two-body)-plus-(deconfined medium) potential at T > Tc

from these (six-body)- and (four-body)-plus-(virtual gluon)
problems at T = 0. As many unanswered questions remain to
be resolved, the results of Ref. [55] cannot yet be used, for the
present time at least, to draw conclusions on the adiabaticity or
diabaticity of the Q-Q̄ potential examined here. Nevertheless,
the exploration of the relationship between adiabaticity and
the shape of the relative wave function is an interesting subject
for future investigations.

VII. AN APPROXIMATE METHOD TO SEPARATE OUT
THE Q- Q̄ POTENTIAL FROM U1

From the simple model of Debye screening, we observe that
up to the first order of eV/T , the internal energy of the medium
does not change, but up to the second order the internal energy
increases with an increasing separation between Q and Q̄.
This increase arises from the fact that the thermal equilibrium
attained through the contact with a thermal bath in a grand
canonical ensemble constrains the occupation numbers of the
medium particles, and this newly rearranged distribution leads
to an increase in the number, the entropy, and the internal
energy of the medium, as a function of increasing R.

Returning now to QCD lattice gauge calculations and noting
its similarities with Debye screening of Coulomb charges, we
should therefore expect that the number, the entropy, and the
internal energy of the gluon medium should likewise increase
as function of increasing R between Q and Q̄. Indeed, as
shown for lattice gauge calculations at a fixed temperature in
Fig. 1(a), there is an increase in the entropy of the system as
R increases, similar to the analogous Debye screening case
shown in Fig. 1(b).

Having understood the behavior of various thermodynamic
quantities, we wish to extract the Q-Q̄ potential from lattice
gauge results. The most reliable way is to carry out additional
lattice gauge calculations to obtain U (1)

g (R) and Ug0. The Q-Q̄
potential is then the difference of U1(R) and U (1)

g (R) − Ug0,
as given by Eq. (48). As U (1)

g (R) and Ug0 in lattice gauge
calculations are not yet available, we will try to use another
piece of lattice gauge data to obtain the Q-Q̄ potential, as least
approximately.

We note that in the Debye screening case, Umedium(R) −
U 0

medium is proportional to TS(R), and in the lattice gauge
calculations the quantity TS1(R, T ) has been calculated. We
can look for a similar relationship between the gluon internal
energy and the gluon entropy for the quark-gluon plasma. If
we succeed in relating U (1)

g (R, T ) − Ug0 to TS1(R, T ), then

the Q-Q̄ potential, U (1)
QQ̄

, can be determined from U1(R, T ) by
subtraction using Eq. (48).

The subtraction can be carried out by noting that locally
the quark-gluon plasma internal energy density ε is related
to its pressure p and entropy density σ by the first law of
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thermodynamics,

ε = T σ − p, (49)

and the quark-gluon plasma pressure p is also related to the
plasma energy density ε by the equation of state p(ε) that is
presumed known by another lattice gauge calculation. Thus,
by expressing p as (3p/ε)(ε/3) with the ratio a(T ) = 3p/ε

given by the known equation of state, the plasma internal
energy density ε is related to the entropy density T σ by

ε = 3

3 + a(T )
T σ. (50)

This is just

dU(1)
g

dV
= 3

3 + a(T )

d

dV

∫
drT (σ − σ0 + σ0), (51)

where σ0 is the entropy density in the absence of Q and Q̄.
Noting that the entropy of the medium for the color-singlet
Q-Q̄ pair is TS1 = ∫

drT (σ − σ0) and Ug0 is related to∫
drT σ0, the above equation leads to

d
[
U (1)

g (R, T ) − Ug0(T )
]

dV
= 3

3 + a(T )

T dS1(R, T )

dV
, (52)

and the plasma internal energy integrated over the volume is
given by

U (1)
g (R, T ) − Ug0(T ) = 3

3 + a(T )
TS1(R, T ). (53)

But TS1(R, T ) has already been obtained as U1(R, T ) −
F1(R, T ). The plasma internal energy is therefore equal to

U (1)
g (R, T ) − Ug0 = 3

3 + a(T )
[U1(R, T ) − F1(R, T )].

(54)

The Q-Q̄ potential, U
(1)
QQ̄

, as determined by subtracting the
above plasma internal energy from U1, is then a linear

combination of F1 and U1 given by [27]

W1(R, T ) ≡ U
(1)
QQ̄

(R, T ) = 3

3 + a(T )
F1(R, T )

+ a(T )

3 + a(T )
U1(R, T ), (55)

where for brevity of notation we have renamed U
(1)
QQ̄

(R, T )
as W1(R, T ) and we can define the coefficient of F1, fF =
3/(3+a(T )), as the F1 fraction, and the coefficient of U1, fU =
a(T )/(3 + a(T )), as the U1 fraction. The potential U

(1)
QQ̄

is
approximately F1 near Tc and is approximately 3F1/4 +U1/4
for T > 1.5Tc [27].

VIII. COMPARISON OF DIFFERENT Q- Q̄ POTENTIALS

In the spectral function analyses, the widths of many color-
singlet heavy quarkonium states broaden suddenly at various
temperatures [21,22,35]. In the most precise calculations for
J/ψ using up to 128 timelike lattice slices, the spectrum has
a sharp peak for 0.78Tc � T � 1.62Tc and a broad structure
with no sharp peak for 1.70Tc � T � 2.33Tc [21]. The spectral
peak at the bound state has the same structure and shape at
0.78Tc as it has at 1.62Tc. If one can infer that J/ψ is stable
and bound at 0.78Tc, then it would be reasonable to infer that
J/ψ is also bound and stable at 1.62Tc. The spectral function
at 1.70Tc has the same structure and shape as the spectral
function at 2.33Tc. If one can infer that J/ψ is unbound at
2.33Tc, then it would be reasonable to infer that J/ψ becomes
already unbound at 1.70Tc. We can define the spontaneous
dissociation temperature of a quarkonium as the temperature
at which the quarkonium changes from bound to unbound
and dissociates spontaneously. Thus, from the shape of the
spectral functions, the temperature at which the width of a
J/ψ quarkonium broadens suddenly from 1.62Tc to 1.70Tc

corresponds to the J/ψ spontaneous dissociation temperature.
Spontaneous dissociation temperatures for χc and χb have
been obtained in Refs. [22,35]. We list the heavy quarkonium
spontaneous dissociation temperatures obtained from spectral
analyses in quenched QCD in Table I. They can be used to test
the potential models of W1( ≡ U

(1)
QQ̄

), F1, and U1.

TABLE I. Spontaneous dissociation temperatures obtained from different analyses.

Quenched QCD Full QCD (2 flavors)

States Spectral Analyses W1 F1 U1 W1 F1 U1

J/ψ, ηc 1.62–1.70Tc
a 1.62Tc 1.40Tc 2.60Tc 1.42Tc 1.21Tc 2.22Tc

χc below 1.1Tc
b unbound unbound 1.18Tc 1.05Tc unbound 1.17Tc

ψ ′, η′
c unbound unbound 1.23Tc unbound unbound 1.11Tc

ϒ, ηb 4.1Tc 3.5Tc ∼5.0Tc 3.40Tc 2.90Tc 4.18Tc

χb 1.15–1.54Tc
c 1.18Tc 1.10Tc 1.73Tc 1.22Tc 1.07Tc 1.61Tc

ϒ ′, η′
b 1.38Tc 1.19Tc 2.28Tc 1.18Tc 1.06Tc 1.47Tc

aReference [21].
bReference [22].
cReference [35].
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To evaluate the Q-Q̄ potentials in quenched QCD, we use
the free energy F1 and the internal energy U1 obtained by
Kaczmarek et al. [33] where F1 and U1 can be parametrized in
terms of a screened Coulomb potential with parameters shown
in Figs. 2 and 3 of Ref. [27]. For the ratio a(T ) from the plasma
equation of state in Eq. (55), we use the quenched equation
of state of Boyd et al. [58] for quenched QCD. The quantity
a(T ) = 3p/ε and the U1 and F1 fractions as a function of T

are shown Figs. 1(b) and 1(c) of Ref. [27], respectively. These
quantities allow the specification of the W1 ≡ U

(1)
QQ̄

potential
as a function of temperature.

Using quark masses mc = 1.41 GeV and mb = 4.3 GeV,
we can calculate the binding energies of heavy quarkonia and
their spontaneous dissociation temperatures using different
potentials in quenched QCD. As a function of temperature,
the binding energies and wave functions of charmonia have
been presented in Figs. 6 and 7 of Ref. [27], respectively.
The bounding energies of bottomia have been presented in
Figs. 8 and 9, and the wave functions in Fig. 10 of Ref. [27].
We show the root-mean-square Q-Q̄ separation

√
〈R2〉 of

L = 0 charmonium calculated with mc = 1.41 GeV in
the W1(R) potential in quenched QCD as the solid curve in
Fig. 4. As one observes, the root-mean-squared separation
RRMS is about 1 fm for T ∼ Tc, and it increases to about 4 fm
at T = 1.6Tc before it becomes unbound. The large separation
is expected for systems with a weak binding, analogous to the
halo nuclei with neutrons in weak binding observed in nuclear
physics [59]. There is the question of whether charmonium
with such a large separation between Q and Q̄ may survive in
QGP. The dissociation cross sections for these quarkonia by
collision with gluons have been calculated and found to be a
function of the gluon collision energy, as shown in Fig. 13 of
Ref. [27].

From the binding energy of a quarkonium as a function
of temperature, one can obtain the temperature at which the
quarkonium binding energy vanishes. This is the temperature
for the spontaneous dissociation of the quarkonium, as the

1 1.2 1.4 1.6 1.8
T/TC

0

1

2

3

4

5

√<
 R

2 
>

   
 (

fm
)

Quenched QCD

Full QCD (2 flavors)

FIG. 4. Root-mean-squared Q-Q̄ separation of L = 0 charmo-
nium as a function of T/Tc in quenched QCD and in full QCD with
two flavors.

quarkonium at this temperature will dissociate spontaneously.
We list in Table I the heavy quarkonium spontaneous dis-
sociation temperatures calculated with the W1 potential, F1

potential, and U1 potential, in quenched QCD.
The J/ψ and χb spontaneous dissociation temperatures

obtained with the W1 potential in quenched QCD are found
to be 1.62Tc and 1.18Tc, respectively. Spectral analyses in
quenched QCD give the spontaneous dissociation temperature
of 1.62–1.70Tc for J/ψ [21] and 1.15–1.54Tc for χb [35].
Thus, spontaneous dissociation temperatures obtained with the
W1 potential agree with those from spectral function analyses.
This indicates that the W1 potential, defined as the linear
combination of U1 and F1 in Eq. (55), may be the appropriate
Q-Q̄ potential for studying the stability of heavy quarkonia in
quark-gluon plasma.

IX. Q- Q̄ POTENTIAL FOR FULL QCD WITH TWO
FLAVORS

The interaction energy between a heavy quark and a
heavy antiquark in the color-singlet state in two-flavor full
QCD was studied by Kaczmarek and Zantow [34]. In full
QCD with two flavors, F1 and U1 can be represented by a
color-Coulomb interaction at short distances and a completely
screened, constant, potential at large distances as given in
Ref. [28], although other alternative representations have also
been presented [36,37]. The transitional behavior linking the
two different spatial regions can be described by a radius
parameter r0(T ) and a diffuseness parameter d(T ), as in the
Wood-Saxon shape potential in nuclear physics,

{F1, U1}(R, T ) = −4

3

αs(T )

R
f (R, T )

+C(T )[1 − f (R, T )], (56)

where

f (R, T ) = 1

exp{(R − r0(T ))/d(T )} + 1
. (57)

In principle, it is necessary to specify only the temperature
dependence of F1(R, T ), as the internal energy U1(R, T )
can be obtained from F1 and its derivative with respect
to T . In practice, as Kaczmarek and Zantow [34] have
obtained U1(R, T ) by a careful numerical differentiation, it
is convenient to parametrize the internal energy in the above
simple form for practical calculations.

In searching for the coupling constant αs that fits the lattice
quantities, we found that the value of αs centers around 0.3. The
fit to the lattice gauge quantities does not change significantly
whether we allow αs to vary. It is convenient to keep the value
of αs to be 0.3 so that there are only three parameters for each
temperature.

For the free energy F1(R, T ) in two-flavor QCD [34], the
set of parameters C, r0, and d are shown in Fig. 5, and the
corresponding fits to F1 are shown in Fig. 6. For the internal
energy U1(R, T ) in two-flavor QCD [34], the set of parameters
C, r0, and d are shown in Fig. 7, and the corresponding fits
to the lattice gauge internal energy U1 results are shown in
Fig. 8.
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FIG. 5. Parameters C, r0, and d for the color-singlet free energy
F1(R, T ) in two-flavor QCD as given in Eq. (56).

If the thermodynamic quantity F1 or U1 is treated as a
potential, then the quantity C(T ) is an approximate measure
of the depth of the potential measured from the flat potential
surface at large distances relative to the potential well at short
distances. For the free energy F1, the C(T ) parameter has the
value of about 1 GeV at T ∼ 0.8Tc, and it decreases to 0.5
GeV at Tc. The free energy as a potential has a well depth of
about 0.5 GeV for T close to Tc, and the well depth decreases
to about 0.1 GeV at T ∼ 2Tc.

One notes a significant change in the slopes of C(T ) at
T ∼ Tc for F1. As a consequence, the parameter C(T ) for U1

exhibits a peaks at T ∼ Tc. The transitional radius r0 for F1

decreases gradually from about 0.6 to about 0.15 fm, and the
diffuseness parameter d decreases slowly from 0.3 to about
0.15 fm, as temperatures decrease from 0.7Tc to 4Tc.

For the internal energy U1, the parameter C(T ) is quite
large, attaining the value of about 3 GeV for T close to Tc. This
indicates that if U1 is used as a potential, the potential depth at
temperatures close to the transition temperature is of order 3
GeV, which is a very deep potential indeed. The parameter

0.0 0.5 1.0 1.5 2.0 2.5

R  (fm)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
1(R

,T
) 

   
(G

eV
) 

T/Tc

0.76
0.81
0.87
0.90
0.96

1.02
1.00

1.07
1.11
1.16
1.23
1.36
1.50

4.01

1.65
1.81
1.98

FIG. 6. (Color online) Symbols represent the color-singlet free
energy, F1(R, T ), for two-flavor QCD [34]; curves are the fits using
the screened potential, Eq. (56), with parameters given in Fig. 5.
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FIG. 7. Parameters C, r0, and d for the color-singlet internal
energy U1(R, T ) as given in Eq. (56).

C(T ) decreases to about 0.8 GeV when the temperature
exceeds about 1.5Tc. The transition radius r0 is about 1 fm
for T close to 0.8Tc, and it decreases to about 0.2 fm for
T ∼ 4Tc. The diffuseness parameter d(T ) for the internal
energy decreases substantially at temperatures below Tc, but
maintains a relatively constant value of 0.1 to 0.2 fm for T

greater than Tc.
The comparison in Figs. 6 and 8 shows that the free energy

F1 and the internal energy U1 with the set of parameters in
Figs. 4 and 6, adequately describe the lattice gauge data and
can be used to calculate the eigenvalues and eigenfunctions of
heavy quarkonia.

In our description, the Q-Q̄ potential is a linear combination
of U1 and F1 with coefficients depending on the equation of
state. The equation of state in full QCD with two flavors has
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FIG. 8. (Color online) Symbols represent U1(R, T ) for two-flavor
QCD obtained by Kaczmarek et al. [34]; curves are the fits using
Eq. (56), with parameters given in Fig. 7.
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FIG. 9. Equation of state in full QCD with two flavors: (a)
quantities ε/T 4 and 3p/T 4, (b) ratio a(T ) = 3p/ε, and (c) U1

and F1 fractions in the Q-Q̄ potential U
(1)
QQ̄

.

been obtained by Karsch et al. [47]. We show their results of
ε/T 4 and 3p/T 4 in Fig. 9(a). The ratio a(T ) = 3p/ε and the
U1 and F1 fractions as a function of T are shown in Figs. 8(b)
and 8(c), respectively. Similar to the case of quenched QCD,
the F1 fraction is close to unity near Tc, and it decreases to
3/4 at large temperatures; while U1 fraction is nearly zero at
Tc, and it increases to about 1/4 at high temperatures. These
quantities, together with F1 and U1, specify the Q-Q̄ potential
for bound state calculations.

X. HEAVY QUARKONIA IN QUARK-GLUON PLASMA

In full QCD with two flavors, the transition temperature is
Tc = 202 MeV [34]. To calculate the charmonium energy
levels, we employ a quark mass mc = 1.41 and mb =
4.3 GeV.

Energy levels of charmonium states calculated with dif-
ferent potentials in full QCD with two flavors are shown in
Fig. 10 as a function of the temperature in units of Tc. The
J/ψ and ηc states are weakly bound and they dissociate at
1.21Tc in the F1 potential, at 1.42Tc in the W1 potential, and at
2.22Tc in the U1 potential. The χc state dissociates below Tc in
the F1 potential, at 1.05Tc in the W1 potential, and at 1.17Tc in
the U1 potential. At temperatures slightly greater than Tc, they
are weakly bound in the F1 potential but are strongly bound in
the U1 potential, with a binding energy of about 0.7 GeV at
1.1Tc. The binding of the states in the W1 potential lies between
these two limits.

The dissociation temperature for J/ψ and ηc in full QCD
with two flavors have been examined in the spectral function
analysis by Aarts et al. [60]. As the calculations have been
carried out only with a small lattice volume and a small
set of statistics, there are possible systematic uncertainties
which prevented a precise determination of the pseudocritical
temperature. Preliminary results indicate that the J/ψ state
may be bound up to about 2.Tc [60]. More definitive results
will await a greater lattice volume and larger statistics.
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FIG. 10. Energy levels of charmonium in the quark-gluon plasma
as a function of temperature calculated with the F1(R, T ), W1(R, T ),
and U1(R, T ) potentials in two-flavor QCD. (a) is for the J/ψ and ηc

state, (b) is for the χc state, and (c) is for the ψ ′ state.

We also carry out the analysis of bottomium 1s, 2p, and
2s states. Figure 11 gives the state energies as a function of
T/Tc for different potentials. The eigenenergies of ϒ and ηb

in two-flavor QCD are about −0.1 GeV at T = 1.1Tc in the
F1 potential, and about −1.0 GeV in the U1 potential. The
eigenenergies in the W1 lie in between those of the F1 and U1

potentials. These states dissociate spontaneously at 2.9Tc in
the F1 potential, 3.40 in the W1 potential, and about 4Tc to 5Tc

in the U1 potential.
In full QCD with two flavors, the χb state dissociates

at 1.07Tc in the F1 potential, at 1.22 in the W1 potential, and
at 1.61 in the U1 potential. The ϒ ′ and η′

b state dissociates at
1.06Tc in the F1 potential, at 1.18 in the W1 potential, and at
1.47 in the U1 potential.

1 2 3 4

T/T
c

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

F
1

W
1

U
1

1 2

T/T
c

1 2

T/T
c

ε  
(G

eV
)

Υ , η
b 

states χ
b Υ

m
b
= 4.3 GeV

(a) (b) (c)

FIG. 11. Energy levels of bottomium in the quark-gluon
plasma as a function of the temperature calculated with the
F1(R, T ), W1(R, T ), and U1(R, T ) potentials in full QCD with two
flavors. (a) is for the ϒ and ηb state, (b) is for the χb state, and (c) is
for the ϒ ′ state.
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In Table I we list the dissociation temperatures of different
quarkonia obtained in full QCD with two flavors. A com-
parison of the dissociation temperatures from the quenched
QCD and full QCD with two flavors show the effects of the
dynamical quarks. Dynamical quarks increase the degree of
screening, but at the same time, lower the phase transition
temperature. They lead to a more diffused potential with a
greater screening length. As a consequence, the binding energy
of the 1s states is lowered and the dissociation temperature
decreases. We can choose the W1 potential as the more
appropriate potential for the Q-Q̄ pair, as it gives the best
agreement with spectral function analysis in quenched QCD.
For this W1 potential, the dissociation temperature decreases
from 1.62Tc in quenched QCD to 1.42Tc in full QCD with two
flavors. The effects of the dynamical quark in full QCD leads
to a slightly weaker binding for J/ψ in the plasma. For the
χ states, the effects of the the additional quark screening does
not modify the dissociation temperature substantially. The
additional screening tends to move the centrifugal barrier for
the l = 1 state to a smaller radial distance with a slightly higher
barrier, resulting in a very slight increase in the dissociation
temperature.

XI. QUARK DRIP LINES IN QUARK-GLUON PLASMA

To examine the stability of a color-singlet Q-Q̄ pair,
we consider the quark mass mQ as a variable and evaluate
the spontaneous dissociation temperature as a function of the
reduced mass µred = mQmQ̄/(mQ + mQ̄). The quark drip
lines calculated with the F1,W1, and U1 potentials in quenched
QCD are shown in Fig. 12. A state is bound in the (T/Tc, µred)
space above a drip line and is unbound below the drip line.
Spectral function analysis gives the spontaneous dissociation
temperature of 1.62–1.70Tc for J/ψ [21,22] and 1.15–1.54Tc

for χb [22,35]. If one takes the charm quark mass to be 1.41
GeV and the bottom quark mass to be 4.3 GeV, the spectral
function results can be represented by the solid-circle symbols
in Fig. 12. They fall on the drip line curves obtained with the
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FIG. 12. Quark drip lines in quenched QCD calculated with the
F1,W1, and U1 potentials. The symbols represent results from lattice
gauge spectral function analyses.
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FIG. 13. Quark drip lines in two-flavor QCD calculated with the
W1, F1, and U1 potentials.

W1 potential, indicating that the W1 is the appropriate Q-Q̄
potential to use for bound state problems.

In quenched QCD, however, the quark-gluon plasma is
assumed to consist of gluons only. As dynamical quarks
may provide additional screening, it is necessary to consider
the case with dynamical quarks. Accordingly, we use the
F1,W1, and U1 potentials evaluated in full QCD with two
flavors [34,47] to determine the drip lines in Fig. 13. The drip
line for the U1 potential lies lower than that of the W1, which
in turn lies lower than the drip line of the F1 potential. In
comparison with quenched QCD results, the 1s drip line in
full QCD is shifted to lower temperatures, while the 1p drip
line in full QCD is only slightly modified.

We will use the results from the W1 potential in full QCD
with two flavors to discuss the question of quarkonium stability
in quark-gluon plasma, as the W1 potential has been found to
give results in agreement with spectral function analyses in
quenched QCD. For heavy quarkonia, results in Table I and
Fig. 13 obtained with the W1 potential in full QCD with two
flavors indicate that J/ψ, χc,ϒ, χb, and ϒ ′ may be bound in
the plasma up to 1.42Tc, 1.05Tc, 3.40Tc, 1.22Tc, and 1.18Tc,
respectively.

The variation of the drip lines with the reduced mass
allows us to examine the stability of quarkonia containing
quarks of various masses. We need to know the effective
masses of different quarks in the quark-gluon plasma. Because
of its strong interaction with other constituents, a light
quark becomes a dressed quasiparticle and acquires a large
quasiparticle mass. In the low temperature region where the
spontaneous chiral symmetry breaking occurs with 〈ψ̄ψ〉 
= 0,
the quasiparticle mass is mq ∼ [|g〈ψ̄ψ〉|+(current quark
mass)], where g is the strong coupling constant and 〈ψ̄ψ〉
the quark condensate [43,61,62]. This quasiparticle mass is
the origin of the constituent-quark mass in nonrelativistic
constituent quark models [43,62–64]. In the high temperature
perturbative QCD region, the quasiparticle mass is mq ∼
gT/

√
6, which is of the order of a few hundred MeV [65].

As the restoration of chiral symmetry is a second-order tran-
sition, 〈ψ̄ψ〉 decreases gradually as the temperature increases
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beyond Tc. The light quark quasiparticle mass associated with
〈ψ̄ψ〉 will likewise decrease gradually from the constituent-
quark mass value to the current-quark mass value when
the temperature increases beyond Tc. This tendency for the
quasiparticle mass to decrease will be counterbalanced by
the opposite tendency for the quasiparticle “thermal mass”
to increase with increasing temperature. As a result of these
two counterbalancing tendencies in the region of our interest,
Tc < T < 2Tc, the effective mass of the light quarks are
relatively constant. By examining the effects of the light quark
quasiparticle masses on the quark-gluon plasma equation of
state, Levai et al. [66], Szabo et al. [67], and Ivanov et al. [68]
estimate that mq is about 0.3 to 0.4 GeV at Tc < T < 2Tc. As in
the case of T = 0, where light quarks with a constituent-quark
mass of about 350 MeV mimic the effects of chiral symmetry
breaking and nonrelativistic constituent quark models have
been successfully used for light hadron spectroscopy [62,63],
so the large value of the estimated quasiparticle mass (from 0.3
to 0.4 GeV) may allow the use of a nonrelativistic potential
model as an effective tool to estimate the stability of light
quarkonia at Tc < T < 2Tc. It will be of interest to investigate
the relativistic effects [48,49] in the future.

For light quark masses of 0.3 to 0.4 GeV, we can estimate
from the results in Fig. 13 for the W1 potential that as a
quarkonium with light quarks has a reduced mass of 0.15–
0.2 GeV, it may be bound at temperatures below (1.05–1.07)Tc.
An open heavy quarkonium with a light quark and a heavy
antiquark or a light antiquark and a heavy quark have a reduced
mass of about 0.3–0.4 GeV and may be bound at temperatures
below (1.11–1.19)Tc.

Another lattice gauge calculation gives mq/T = 3.9 ± 0.2
at 1.5Tc [69], which implies that at T = 1.5Tc (or about
0.3 GeV), the quark mass will be ∼1.2 GeV for (u, d, s)
quarks. Such a “light” quark quasiparticle mass appears to
be quite large and may be uncertain, as the plasma will have
approximately equal abundances of light and charm quarks,
which is, however, not observed. There may also be difficulties
in reproducing the plasma equation of state. With this mass, a
light quarkonium will have a reduced mass of 0.6 GeV, and the
quarkonium may be bound at temperatures below ∼1.31Tc.

In either case, the drip lines of Fig. 13 for full QCD with two
flavors obtained with the W1 potential do not support bound
QQ̄ states with light quarks beyond 1.5Tc. A recent study of
baryon-strangeness correlations suggests that the quark-gluon
plasma contains essentially no bound QQ̄ component at 1.5Tc

[44].

XII. CONCLUSIONS AND DISCUSSIONS

The degree to which the constituents of a quark-gluon
plasma can combine to form composite entities is an important
property of the plasma. To study the composite nature of the
plasma, we need to examine the stability of quarkonium in
quark-gluon plasma which depends on the Q-Q̄ potential.
We seek to extract the Q-Q̄ potential from thermodynamic
quantities obtained in lattice gauge calculations. For such a
purpose, we need the relationship between the Q-Q̄ potential
and the internal energy obtained in lattice gauge calculations.
Such a relationship was derived previously in Ref. [27]. We

would like to gain additional support by examining whether
a similar relationship exists between the Q-Q̄ potential and
the internal energy in an analogous, but not identical, case of
Debye screening.

We find that in adiabatic motion of Q and Q̄ under Debye
screening, (1) the potential for the Q and Q̄ in the Schrödinger
equation contains the interactions that act on Q and Q̄, (2)
this Q-Q̄ potential under Debye screening is only part of the
total internal energy of the system, (3) the other part of the
internal energy is the internal energy of the medium particles,
and (4) many thermodynamic quantities such as the number,
entropy, and internal energy of the medium particles increases
with the separation between Q and Q̄ in the grand canonical
ensemble. Therefore, to obtain the Debye screening potential
between two static charges, it is necessary to subtract out the
internal energy of the medium particles from the total internal
energy in the grand canonical ensemble. These results support
a similar conclusion reached earlier in the analogous lattice
gauge theory [27].

We are thus led to obtain the Q-Q̄ potential in the
quark-gluon plasma by subtracting the internal energy of the
medium particles from the total internal energy in the grand
canonical ensemble. We proposed a method for subtracting
out the internal energy of the medium by making use of the
equation of state of the quark-gluon plasma obtained in an
independent lattice gauge calculation [27]. The potential can
then be represented as a linear combination of U1 and F1, with
coefficients depending on the quark-gluon plasma equation of
state. The proposed potential in the quenched approximation is
found to give dissociation temperatures that agree with those
from spectral function analyses. It can be generalized to the
case of full QCD to discuss quarkonium states in the plasma.

The knowledge of the single-particle states using potentials
extracted from lattice gauge calculations in full QCD can then
be used to examine the limit of stability of both heavy and
light quarkonia and to determine the location of the quark drip
lines.

The quark drip lines allow one to ascertain the degree of
stability of heavy and light quarkonia when the masses of the
quarks are known. J/ψ, χc,ϒ, χb, and ϒ ′ are found to be
stable in the plasma and dissociate at different temperatures.
The characteristics of the quark drip lines severely limit the
region of possible quarkonium states with light quarks to
temperatures close to the phase transition temperature. Various
estimates give a light quark mass of about 0.3–0.4 GeV
[66–68], which is not very different from the constituent quark
masses in nonrelativistic quark models of hadrons. Bound
quarkonia with light quarks may exist very near the phase
transition temperature if their effective quark mass is of the
order of 300–400 MeV and higher.
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