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In-medium full-folding model approach to quasielastic ( p, n) charge-exchange reactions
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A microscopic description of the quasielastic (p, n) charge-exchange reaction (here, charge-exchange
scattering between analog states) is presented and discussed. Emphasis is focused on the spin-isospin structure of
the projectile-target coupling. The model is a coupled-channel extension of the full-folding optical model approach
(OMP) developed for nucleon elastic scattering, where emphasis is placed on retaining the genuine off-shell
behavior of realistic effective interactions in the nuclear medium. The resulting non-local optical potentials are
applied to the calculation of (p, n) differential cross sections, with particular emphasis on small-angle Fermi
(�S = 0) cross sections to isobaric analog states. These parameter-free results provide a reasonable description
of the 14C(p, n) data at proton energies above ∼100 MeV, but deteriorate for heavier targets. These shortcomings
are analyzed and possible ways to correct them are discussed.
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I. INTRODUCTION

An issue of high current interest in nuclear research is the
physics behind systems and processes where the isovector
component of the nuclear interaction is relevant. This partic-
ular aspect is of pivotal importance in understanding a wide
variety of phenomena such as extreme isospin asymmetric
nuclear matter, nuclear systems far from stability, collisions
of radioactive beams, the asymmetry energy of nuclear
systems, and (p, n) charge-exchange processes [1–6]. A
sound understanding of these phenomena may have significant
impact on other areas of research such as the physics of
neutron stars and the formation of astrophysical objects. Our
focus here is on the study of charge-exchange reactions
at intermediate energies. This effort attempts to provide a
rigorous microscopic approach for the study of these reactions
with emphasis on a detailed account of genuine energy,
momentum, and density effects in the nucleon-nucleon (NN)
effective interaction.

The study of (p, n) charge-exchange reactions at interme-
diate energies has received considerable attention during the
past few decades. These reactions have been of great value
in understanding the isovector modes of excitation of nuclei.
At beam energies above 100 MeV, nucleon charge-exchange
reactions can be considered as a one-step process, thus
allowing a rather clean separation of the nuclear structure from
the underlying NN effective interaction. These arguments have
resulted in the usual tρ structure of the coupling to the nucleus.
Furthermore, the weak strength of the isovector component of
the interaction relative to its isoscalar counterpart has made
suitable the use of the distorted wave Born approximation
(DWBA). Despite these advantageous considerations, no
microscopic effort has been able to satisfactorily describe
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the differential cross-section data without phenomenological
adjustments a posteriori of the nucleon-nucleus (NA) coupling.
This impediment is quite significant in that it points to
a lack of understanding of the simplest process beyond
elastic collisions. Therefore, a comprehensive and consistent
reanalysis of the problem is relevant.

Studies of nucleon elastic scattering at intermediate ener-
gies (i.e., between 100 MeV and 1 GeV) have demonstrated the
importance of off-shell effects as accounted for within the full-
folding optical model approach (OMP) for (NA) scattering. In
particular, it has been shown that the tρ scheme (as most often
applied) is insufficient to satisfactorily describe intermediate
energy data. Furthermore, nuclear medium effects as included
by using nuclear matter g matrices have provided significant
improvements in the description of the elastic scattering
data [7–9]. The issue which naturally arises is whether these
improvements within the full-folding OMP to NA elastic
scattering are also important in charge-exchange processes.

Although significant advances have been made with the
introduction of full-folding optical potentials in the description
of nucleon elastic scattering, none of these improvements
have been included in charge-exchange reactions [10]. Fur-
thermore, most of the reported (p, n) reaction calculations,
which provide a reasonable description of the data, are semi-
phenomenological in the sense that well fitted potentials in
the elastic channel are used to obtain the charge-exchange
cross section by means of the DWBA [11,12]. From this
perspective, additional theoretical effort is needed to clarify the
issues that prevent us from obtaining a unified understanding
of these phenomena. Along this line, the aim of the present
work is to assess the importance of treating the intrinsic
off-shell behavior of, and medium corrections to, realistic
nuclear effective interactions in the calculation of nuclear
charge-exchange reactions. For this purpose we present the
spin-isospin formalism needed to calculate these couplings
within the non-local full-folding optical model and have
developed the required coupled-channel scattering codes to
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solve the scattering problem exactly. Our work is focused on
the �S = 0 isobaric analog state (IAS) transitions for various
targets and incident proton energies.

We organize this paper in five sections as follows. In
Sec. II we review the spin-isospin structure of the NA coupling
to display its formal structure suited for charge-exchange
reactions from a finite nucleus. In Sec. III we outline the
coupled-channel approach for studying the (p, n) charge-
exchange reactions with non-local potentials in the presence of
the Coulomb interaction. In Sec. IV we present and interpret
results for representative applications and in Sec. V we
summarize the present work and draw the main conclusions.

II. OPTICAL POTENTIAL: SPIN AND ISOSPIN
CONSIDERATIONS

For simplicity in this discussion, we use the free t matrix
as the NN effective interaction and consider nonrelativistic
kinematics. Both of these restrictions will be removed in
the following sections. Thus, the generalized optical potential
for nucleon scattering and charge-exchange reactions may be
written in momentum space as

〈k′ν ′µ′|U |kνµ〉
=

∑
m,m′,n,n′

∫ ∫
dp′dp 〈F |ψ†

1
2 m′, 1

2 n′(p
′)ψ 1

2 m, 1
2 n(p)|I 〉

× 〈p′m′n′, k′ν ′µ′|t |p mn, kνµ〉−A. (1)

Here 〈t〉
A

is the antisymmetrized NN t matrix, ν and µ denote
the initial spin and isospin projections of the projectile, and

ψ 1
2 m, 1

2 n(p) = ( − )
1
2 −m+ 1

2 −nψ 1
2 −m, 1

2 −n(p),

where ψ 1
2 −m, 1

2 −n(p) annihilates a nucleon with momentum p
and spin and isospin projections −m and −n, respectively. The
choice of the pair (µ,µ′) is determined by the reaction being
considered. In the convention in which the proton has isospin
projection + 1

2 ,

(µ,µ′) =
(

1

2
,

1

2

)
,

(
1

2
,−1

2

)
,

(
−1

2
,

1

2

)
,

(
−1

2
,−1

2

)
,

for the (p, p), (p, n), (n, p), and (n, n) reactions, respectively.
Following some recoupling to display the transferred quanta
and the NN spin and isospin, U becomes

U (St = 0, Tt = Tp)

= 1

4

∑
Sp, ,Tp

〈ν ′|S(Sp,−νp)|ν〉〈µ′|T(Tp,−nt )|µ〉

× ( − )nt

∫ ∫
dp dp′〈F |[ψ†

1
2

1
2
(p′) ⊗ ψ 1

2
1
2
(p)

]00;Tpnt

× |I 〉
∑

S,T ,M,M ′
〈SSpM − νp|SM ′〉( − )1−T

× (2T + 1)W

(
1

2

1

2

1

2

1

2
; TpT

)
〈p′k′, SM ′, T |

× t |pk, SM, T 〉A, (2)

where

[
ψ

†
1
2

1
2
(p′) ⊗ ψ 1

2
1
2
(p)

]SM;TN

=
∑

m,m′,n,n′

〈
1

2
m′ 1

2
m

∣∣∣∣SM

〉〈
1

2
n′ 1

2
n

∣∣∣∣ TN

〉

× ψ
†
1
2 m′, 1

2 n′ (p
′)ψ 1

2 m, 1
2 n(p) (3)

defines the order of coupling. Tp and Tt denote the isospin
transfers to the projectile and target, respectively. Similarly,
Sp and St denote the corresponding spin transfers. Also,

S(0, 0) = 1, S(1,−νp) = σ−νp
, T(0, 0) = 1,

T(1,−nt ) = τ−nt
,

where σ−νp
(τ−nt

) is the −νp (−nt ) spherical component of
the Pauli spin (isospin) matrix. The sum over M,M ′ projects
out that part of the t matrix which acts in the spin state S and
which is of rank Sp in spin space. In particular, we write the t

matrix as a sum over the contributing ranks (λ) in spin space,

t =
2∑

λ=0

∑
S,T

t
(λ)
ST · O

(λ)
S PT , (4)

where

O
(λ)
S = PSδλ0 + (�σ 1 + �σ 2)δS1δλ1 + (�σ 1 ⊗ �σ 2)2δS1δλ2. (5)

Here,PS andPT are the projection operators onto the NN states
of spin S and isospin T , respectively. The optical potential U

corresponding to zero spin transfer to the target and Tt = Tp

isospin transfer to the target and projectile becomes

U =
∑

Sp, ,Tp

∫∫
dp dp′ρTt

FI(p
′, p)

×〈µ′|T(Tp, µ′ − µ)|µ〉 〈ν
′|S(Sp, ν ′ − ν)|ν〉

2Sp + 1

× 1

8

∑
ST

( − )1−T (2T + 1)(2S + 1)W

(
1

2

1

2

1

2

1

2
; TtT

)

×〈p′k′|t (Sp)
ST |pk〉A. (6)

The nuclear structure is contained in the mixed transition
density defined by

ρ
Tt

FI(p
′, p) = 2〈F |[ψ†

1
2

1
2
(p′) ⊗ ψ 1

2
1
2
(p)

]00;Tt |I 〉, (7)

which is an isoscalar or isovector as Tp = Tt is 0 or 1. With
this normalization for ρ

Tt

FI,
∫

dp ρ0
II (p, p) = A , the number

of nucleons in state I . In the evaluation of the optical potential
it is useful to make explicit use of the translational invariance
characteristic of the free NN interaction (or that in infinite
nuclear matter) by writing it as

〈p′k′|t (Sp)
ST |pk〉A = δ(p + k − p′ − k′)〈κ ′|t (Sp)

ST |κ〉A,

(8)
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where the relative momenta κ and κ ′are given by

κ = p − k
2

, κ ′ = p′ − k′

2
. (9)

For brevity, it is also convenient to introduce the participating
part of the NN interaction from Eq. (6) as

〈κ ′|tSpTt |κ〉A = 1

8

∑
S,T

( − )1+T (2T + 1)(2S + 1)

×W

(
1

2

1

2

1

2

1

2
; TtT

)
〈κ ′|t (Sp)

ST |κ〉A,

(10)

where W is the usual Racah coefficient,

W

(
1

2

1

2

1

2

1

2
; TtT

)
=


 −1

2

1

2
1

2

1

6


 ,

and St = 0 for the optical potential.

A. Scattering from a Fermi gas (N � Z): An example

For elastic nucleon scattering, the transition density of
Eq. (7) becomes

ρ
Tt

FI(p
′, p) = 2δ(p′ − p)[	(pF (π ) − p)

+ ( − )Tt 	(pF (ν) − p)], (11)

where 	(x) is the Heaviside step function and pF (π ) and
pF (ν) denote the Fermi momenta for protons and neutrons,
respectively. The transition density appropriate for the excita-
tion of the analog state via the charge-exchange reaction is

ρ
Tt

FI(p
′, p) = 2

√
2

N − Z
δ(p′ − p)[	(pF (ν) − p)

−	(pF (π ) − p)], (12)

where |F 〉 satisfies

|F 〉 = 1√
N − Z

T+|I 〉.

In the Fermi gas (FG) approximation we must have from
Eqs. (8), (9), and (11), p = p′, k = k′, and, therefore,
κ = κ ′. This insures that only the Sp = 0 part of the t

matrix participates as the spin-orbit and tensor terms do not
contribute to forward scattering in the NN system. With these
observations, the optical potential for elastic scattering given
by Eq. (6) becomes

UFG = 2δµ,µ′δν,ν ′δ(k − k′)
∫

dp {	[pF (l) − p]

×〈κ |t0 + t1|κ〉A + 	[pF (u) − p)]〈κ |t0 − t1|κ〉A},
(13)

where l (u) denotes target nucleons like (unlike) the projectile;
e.g., for proton scattering, l corresponds to target protons and

u to target neutrons. Also, we have dropped the Sp = 0
superscript on the reduced t matrix tTt . Separating the isoscalar
and isovector contributions to Eq. (13) gives

UFG = 2δµ,µ′δν,ν ′δ(k − k′)
∫

dp ({	[pF (l) − p]

+	[pF (u) − p]}〈κ |t0|κ〉A + {	[pF (l) − p]

−	[pF (u) − p]}〈κ |t1|κ〉A). (14)

For the nucleon charge-exchange reaction exciting the isobaric
analog state, the Fermi gas transition potential is

UFG = −4√
N − Z

δµ′,µ−1δν,ν ′δ(k − k′)
∫

dp {	[pF (ν) − p]

−	[pF (π ) − p]}〈κ |t1|κ〉A. (15)

Some insight into the relationship of the optical model
in the Fermi gas to that in finite nuclei may be obtained by
using the Fourier representation of the momentum-conserving
δ function appearing as a factor in UFG above, e.g.,

δ(k − k′) = 1

(2π )3

∫
dr ei(k−k′)·r,

together with the assumption that the t matrix varies little over
the range of p allowed by the Fermi momentum. When this is
done, the integrals over the step functions may be done giving

4π

3
p3

F = 4π3ρ,

for protons (π ) and neutrons (ν), and the optical potential for
elastic scattering becomes

UFG = δµ,µ′δν,ν ′

∫
drei(k−k′)·r(ρl〈κ |t0 + t1|κ〉A

+ ρu〈κ |t0 − t1|κ〉A), (16)

where κ is to be evaluated at p = 0, for example. In the strict
Fermi gas model only the exponential above depends on r
and we recover the δ function δ(k − k′). When k = k′, the
integration over r gives the volume � occupied by the gas and
the product �ρi gives the number of target nucleons of type i.
Therefore,

UFG(k = k′) = δµ,µ′δν,ν ′(Nl〈κ |t0 + t1|κ〉A
+Nu〈κ |t0 − t1|κ〉A), (17)

where Nl (Nu) is the number of target nucleons like (unlike)
the projectile. Similarly, the non-vanishing diagonal element
of the optical potential for charge-exchange reactions is

UFG(k = k′) = −2
√

N − Zδµ−1,µ′δν,ν ′ 〈κ |t1|κ〉A. (18)

If in Eq. (16), we use the local density approximation for ρ[i]

by allowing it to be a function of r, then

UFG = δµ,µ′δν,ν ′(ρ̃l(q)〈κ |t0 + t1|κ〉A
+ ρ̃u(q)〈κ |t0 − t1|κ〉A), (19)
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where q = k − k′, the momentum transferred to the target,
and ρ̃i is the Fourier transform of the density of nucleons of
type i. This is an approximate form of the usual tρ approxi-
mation to the optical potential.

B. Scattering from finite nuclei

Results for finite nuclei may be obtained by expanding the
creation and annihilation operators of Eq. (3) in a (spherical)
shell-model basis. The result for arbitrary (allowed) spin and
isospin transfer is

[
ψ

†
1
2

1
2
(p′) ⊗ ψ 1

2
1
2
(p)

]SM;TN

=
∑

nlj,n′l′j ′
unlj(p)un′l′j ′ (p′)

∑
L,J

[L̂Ĵ �̂�̂′( − )l
′+L+S+J ]

×




l′
1

2
j ′

l
1

2
j

L S J




{
[Yl′(p̂

′) ⊗ Yl(p̂)]L

⊗ [
c
†
n′l′j ′; 1

2
⊗ c̄n′l′j ′; 1

2

]J ;TN}SM
, (20)

where, in this equation, L, S, J, T denote transferred quanta
Lt, Tt , etc. Also, c† and c̄ denote creation operators for
particles and holes, respectively, and unlj(p) is the radial part
of a shell-model orbital in momentum space. The symbol
in rounded parentheses is a nine-j symbol and x̂ denotes√

2x + 1. Inserting Eq. (20) into Eq. (7) gives the transition
density for a finite nucleus,

ρ
StTt

FI (p′, p)

= 2
∑

nlj,n′l′j ′
unlj(p)un′l′j ′ (p′)

×
∑
LtJt

[L̂t Ĵ t �̂�̂′( − )l
′+Lt+St+Jt ]




l′
1

2
j ′

l
1

2
j

Lt St Jt




× {[
Yl′(p̂

′) ⊗ Yl(p̂)
]Lt ⊗ 〈F |[c†

n′l′j ′; 1
2
⊗ c̄nlj; 1

2

]Jt ;TtNt

× |I 〉}StMt
. (21)

Although only the St = 0 part of the above density is required
for the usual case of calculating the optical potential, it is
useful to have the more general result for later use. For the
special case in which the transferred quanta (LtStJt ) are either
assumed or restricted to be zero, Eq. (21) becomes

ρ
Tt

FI(p
′, p) = −√

2

4π

∑
nlj

unlj(p)unlj(p
′)Pl(p̂

′ · p̂)

×
∑
µνν ′

( − )
1
2 −ν

〈
1

2

1

2
ν ′ν

∣∣∣∣ TtNt

〉

×〈F |c†
n′lj−µ; 1

2 ν ′cnlj−µ; 1
2 −ν |I 〉. (22)

For the special case of elastic scattering in which |F 〉 =
|I 〉, n = n′, and N = 0 , the mixed density reduces to

ρ
Tt=1
FI (p′, p) = 1

4π

∑
nlj

unlj(p)unlj(p
′)[Znlj + ( − )Tt Nnlj]

×Pl(p̂
′ · p̂), (23)

where Znlj and Nnlj denote the number of protons and
neutrons in the state (nlj) where it has been assumed that
the orbitals for neutrons and protons are the same. For the
(p, n) charge-exchange reaction to the isobaric analog state,
ν = ν ′ = 1

2 , Tt = Nt = 1, and the Clebsch-Gordan coefficient
is unity giving

ρ
Tt=1
FI (p′, p) = −

√
2

N − Z

1

4π

∑
nlj

unlj(p)unlj(p
′)

× [Nnlj − Znlj]Pl(p̂
′ · p̂). (24)

From Eq. (6), the optical potential for elastic scattering
associated with the transition density of Eq. (23) reduces to

U → Upp,nn = δµµ′
1

4π

∑
nlj

∫
dp unlj(p)unlj(p

′)Pl(p̂
′ · p̂)

×
∑

Sp=0,1

〈ν ′|S(Sp, ν ′ − ν)|ν〉
2Sp + 1

× (
Nl

nlj〈κ ′|tSp0 + tSp1|κ〉A + Nu
nlj

×〈κ ′|tSp0 − tSp1|κ〉A
)
, (25)

where Nl
nlj and Nu

nlj denote the number of target nucleons in
the state (nlj), which are like and unlike (isospin projection)
the projectile and p′ = p + q. Similarly, the optical potential
mediating the (p, n) reaction to the isobaric analog of the target
ground state is

U → Ux

= −δµ−1,µ′
2√

N − Z

1

4π

×
∑
nlj

∫
dp unlj(p)unlj(p

′)(Nnlj − Znlj)Pl( p̂′ · p̂)

×
∑

Sp=0,1

〈ν ′|S(Sp, ν ′ − ν)|ν〉
2Sp + 1

· 〈κ ′|tSp1|κ〉A. (26)

The above expressions can be further simplified in the case
of non-spin transfer to the projectile. Denoting the proton and
neutron mixed densities by ρp and ρn,

ρp(p′, p) =
∑
nlj

unlj(p)unlj(p
′)ZnljPl( p̂′ · p̂),

ρn(p′, p) =
∑
nlj

unlj(p)unlj(p
′)NnljPl( p̂′ · p̂),

(27)
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we are left with the following three terms to evaluate

Upp = 1

4π

∫
dp [ρp(p′, p)〈κ ′|t0 + t1|κ〉A

+ ρn(p′, p)〈κ ′|t0 − t1|κ〉A],

Ux = −1

2π
√

N − Z

∫
dp [ρn(p′, p)

− ρp(p′, p)]〈κ ′|t1|κ〉A,

Unn = 1

4π

∫
dp [ρp(p′, p)〈κ ′|t0 − t1|κ〉A

+ ρn(p′, p)〈κ |t0 + t1|κ〉A].

(28)

C. In-medium calculations

The optical potentials Upp, Unn, and Ux obtained in the
previous section require the convolution of single-particle
wave functions with a two-body effective interaction. Simpler
expressions for these potentials are obtained with the use of
the Slater approximation to the ground-state mixed density in
the case of spin-saturated targets. This approximation was ex-
amined in Ref. [13] in the context of nucleon elastic scattering
at intermediate energies, and its effects are reported to be only
noticeable at the larger scattering angles. Furthermore, this
representation of the mixed density yields a simple prescription
for including explicit medium effects by means of infinite
nuclear matter g matrices. Following the same arguments
discussed in Ref. [9] to incorporate nuclear medium effects, the
first of the potentials expressed in Eqs. (28) takes the general
form (cf. Eq. (21) of Ref. [7])

Upp(k′, k) =
∫

d Rei(k′−k)·R[ρp(R)ḡpp(k′, k)

+ ρn(R)ḡnp(k′, k)], (29)

where ρp and ρn are the local proton and neutron point
densities, respectively, and ḡNN represents off-shell Fermi-
averaged amplitudes in the appropriate NN channel. More
explicitly, in the context of infinite nuclear matter these
density-dependent amplitudes are given by

ḡNN(k′, k) = 3

4πk̂
3

∫
	(k̂ − |P |)

× gK+P (κ ′, κ ;
√

s; ρ̄)d P, (30)

where gK+P (κ ′, κ ;
√

s; ρ̄) is taken as the g matrix for
symmetric nuclear matter of density ρ̄. Here,

K = 1
2 (k + k′), P = 1

2 ( p + p′), k + p = k′ + p′, (31)

and the relativistically corrected relative momenta κ and κ ′ are
given by

κ = Wk − (1 − W )p, κ ′ = W ′k′ − (1 − W ′)p′, (32)

with W and W ′ scalar functions of the momenta of the
colliding particles with relativistic kinematics built in Ref. [7].

Additionally, the local momentum k̂ is taken from k̂
3 =

3π2ρ̄/2, with ρ̄ → [ρp(R) + ρn(R)]/2, the isoscalar local

density at radius R. Analogous expressions are obtained for
Ux and Unn.

III. COUPLED-CHANNEL CALCULATIONS

Our study focuses on quasielastic scattering to the isobaric
analog state. Considering explicitly the isospin degrees of
freedom of the scattering waves in the form of outgoing proton
and neutron wave functions, we obtain a non-local version of
the coupled-channel [14,15] equations


 K̂p + U (s)

pp + VC Ux

Ux K̂n + Unn





 �p

�n


 =


 Ep�p

En�n


 .

(33)

Here Unn and Ux are the non-local potentials given by Eqs. (25)
and (26) in the previous section. Furthermore, U (s)

pp represents
the short-range coupling between the charged projectile and
the target protons, i.e., the hadronic-plus-Coulomb contri-
bution with the point-Coulomb potential, VC = Ze2/r ,
subtracted. A formal solution to these equations is given in
the form of the Lippmann-Schwinger integral equation with
proton waves 
p in the entrance channel


 �p

�n


 =


 
p

0


 +

[
GpU (s)

pp GpUx

GnUx GnUnn

] 
 �p

�n


 , (34)

where Gp and Gn are the Green’s functions for outgoing
protons and neutrons, respectively. In coordinate space, for
partial wave l, these propagators are expressed in terms of the
Coulomb (and Bessel) spherical waves

G(+)
l (r, r ′; k) = − i

k

2ε̄

h̄2 Fl(η; kr<) [Fl(η; kr>) + iGl(η; kr>)]

≡ − i

k

2ε̄

h̄2 Fl(η; kr<)H (+)
l (η; kr>). (35)

Here η = Ze2/h̄v represents the charge parameter for the
NA coupling, with v the corresponding relative velocity, and
ε̄ the ejectile-residual nucleus reduced energy. For uncharged
particles Fl and Gl become the usual Ricatti-Bessel functions
with the following the phase conventions: Fl(0; t) = tjl(t);
j0(t) = sin t/t , and Gl(0; t) = tnl(t); n0(t) = − cos t/t .

The primary input in these equations is the optical potential
that we obtain following a current version of the full-folding
OMP to nucleon scattering [7,9]. In this scheme, the optical
potential is calculated in momentum space leading to a
general non-local structure in coordinate space, a feature that
is retained throughout. An exact treatment of the Coulomb
interaction in the presence of this non-local coupling is
performed in coordinate space by solving Eq. (34) once
the Fourier transform of the hadronic contribution has been
performed. Thus, the scattering amplitude is readily obtained
from the asymptotic behavior of the radial scattering waves
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from Eq. (34), which, schematically, has the form

[
up,l(r)

un,l(r)

]
∼




1

kp

Fl(η; kpr)

0


 +




�pp
1

kp

H
(+)
l (η; kpr)

�pn

1

kn

H
(+)
l (0; knr)


 ,

(36)

with kp and kn the momenta of the outgoing protons and
neutrons, respectively. The above result provides alternative
forms for obtaining the scattering amplitude, namely by simple
identification of the asymptotic form of the solution, or by
explicit evaluation of the matrix elements, i.e.,

�(l)
pp = 〈

U (s)
pp up,l + Uxun,l

〉 ≡ ikpf (l)
pp ,

�(l)
pn = 〈Uxup,l + Unnun,l〉 ≡ iknf

(l)
pn.

(37)

More explicitly,

〈
U (s)

pp up,l

〉 = −i
2ε̄p

h̄2

∫ ∞

0
dr

∫ ∞

0
dr ′Fl(η; kpr ′)

× [
r ′U (s)

pp (r ′, r)r
]
up,l(r). (38)

Analogous expressions hold for 〈Upnun,l〉 and 〈Unnun,l〉.
The results obtained with this procedure were compared

with DWBA results and showed almost unnoticeable differ-
ences.

IV. APPLICATIONS

The scattering calculations performed in this work differ
from most reported applications of quasielastic nucleon
exchange processes to date. Thus, it is important to spell out
the differences explicitly. The optical potential is obtained via
a convolution of the in-medium nuclear matter g matrix with
the target ground state mixed density. We have considered
six different NN potential models in the construction of
the corresponding g matrix, i.e., the Paris potential [16]; the
Nijmegen I, Nijmegen II, and Reid 93 potentials [17]; the
Argonne AV18 potential [18]; and the charge-dependent Bonn
potential [19]. The g matrix is calculated in momentum space
fully off-shell, evaluated at eight different densities and nearly
20 momentum pairs, for all allowed NN states up to J = 7, in
a square mesh of relative momenta up to 15 fm−1. The Fermi
motion integrals involving the g matrix are made following
Ref. [7], where relativistic kinematics at the NN level are
included in the folding integrals, supplemented by a proper
treatment of the deuteron pole contribution [20]. For simplicity,
and to keep our discussion focused within a single scheme, we
have restricted the use of the NN charge-dependent potential
models to their NN Tz = 0 components.

The results reported in this study are based on semi-
phenomenological densities. Proton densities were obtained
from parametrized charge densities [21], unfolding the elec-
tromagnetic proton size to obtain the corresponding point
density. Neutron densities were obtained by adding to the
proton density a harmonic oscillator orbital of the form ψ ∼
rle−a2

nr2/2. In the case of 90Zr, a 3pG charge density was used,

with the neutron excess characterized by an = 0.472 fm−1.
This construction yields a proton (neutron) root-mean-square
radius (Rrms) of 4.198 fm (4.363 fm). A similar construction
was used for the 48Ca densities, with a 3pF charge density
for the closed shells with the neutron excess characterized
by an = 0.524 fm−1. The resulting proton (neutron) Rrms is
3.374 fm (3.580 fm). In the case of 14C, the proton density was
represented by a modified harmonic oscillator. The neutron
excess was characterized with an = 0.510 fm−1. The proton
(neutron) Rrms is in this case 2.427 fm (2.611 fm). The
scattering results obtained with these densities were consistent
with a variety of choices for the neutron-excess wave functions.

A. Results for 14C( p, n)

In Fig. 1 we present the measured [22] and calculated
differential cross section for the quasielastic 14C(p, n) reaction
following the g-matrix approach described in the previous
section. The excitation energy to the IAS, Ex , is 2.31 MeV [23].

In this figure, and also in Figs. 1, 2, and 4–7, we show
results for the Paris (solid curves), CD-Bonn (dotted curves),
Nijmegen I (short-dashed curves), Nijmegen II (long-dashed
curves), Argonne AV18 (dot-dashed curves), and Reid-93
(dot-dot-dashed curves) NN potential models. Although in
some cases the overlapping of the curves prevents their
identification, this comparison allows one to visualize a
moderate sensitivity of the calculated quantities to the choice of
the NN model. Such is the case in Fig. 1, where the description
of the differential cross section for scattering angles less than
25 degrees is reasonably well described by all NN potential
models considered. A departure from the data is observed at
larger angles, suggesting missing effects.

Another quantity of particular interest is the so-called
Fermi cross section (σF ), that is to say, the forward-angle
(zero-degree) differential cross section of the quasielastic
(p, n) reaction. In Fig. 2 we present the measured and cal-
culated Fermi cross sections for 14C(p, n). The data are from
Refs. [24] and [25], and the various curves correspond to the
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FIG. 1. Measured [22] and calculated differential cross sections
for 14C(p, n) at 120 MeV. For reference to the curves, see the text.
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FIG. 2. The zero-degree Fermi cross section based on g-matrix
full-folding optical model potentials using different NN potential
models. For reference to the data see text. The dashed line at
350 MeV indicates the energy from which the calculations should
be taken as extrapolations of all NN models.

six NN models considered. A note of caution should be kept
in mind before interpreting this figure. Although the g-matrix
full-folding optical model calculations account for relativistic
kinematics, all the NN potential models have been developed
for energies below pion production threshold. Thus, the results
in Fig. 2 above 350 MeV represent extrapolations of the NN
models.

Below 150 MeV all NN models provide reasonably
good descriptions of σF , albeit all of them underestimate
the 80-MeV datum. As the energy increases, beginning at
∼150 MeV results using the Paris potential depart from the
others, being followed by those using the CD-Bonn potential
near 300 MeV. Above pion production threshold the CD-Bonn
potential exhibits a distinctive uniform growth, being followed
less strongly by the Nijmegen I and Reid-93 models. Over the
whole energy range both the Argonne AV18 and Nijmegen II
potentials yield results in closest agreement with the data.
In contrast, the Paris potential exhibits qualitative differences
from the other models, particularly the depth of its minimum
near 300 MeV.

In a broad sense, the role of medium effects has been
a subject of significant interest in the description of NA
processes. In Fig. 3, we contrast results for the Fermi cross
section as a function of the proton incident energy using the g

matrix (solid curve) and the t matrix (dashed curve). Here we
also include results based on the off-shell tρ approximation
(dotted curve), a limiting case of the full-folding approach
using the free t matrix and suppressing Fermi motion effects
in the NN interaction. In all cases the Argonne AV18 potential
is used. We observe that the differences between the g-
and t-matrix approaches become more sizable at the lower
energies. In general, the difference between the g- and t-matrix
approaches above 150 MeV does not exceed 0.2 mb/sr, a useful
upper bound of medium effects in (p, n) charge-exchange
processes. At energies below 150 MeV the Fermi cross
sections exhibit sizable differences between both approaches.
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14
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FIG. 3. The zero-degree Fermi cross section based on full-folding
OMP using the g matrix (solid curve) and t matrix (dashed curve).
Off-shell tρ results are represented with the dotted curve. All three
results use the Argonne AV18 NN potential.

B. Results for 48Ca( p, n) and 90Zr( p, n)

In addition to 14C(p, n), we have also performed calcula-
tions for quasielastic nucleon charge-exchange scattering on
48Ca (Ex = 6.67 MeV [23]) and 90Zr (Ex = 5.1 MeV [26])
using the g-matrix full-folding approach. In Figs. 4 and 5 we
present results for 48Ca(p, n) at 135 and 160 MeV (data taken
from Ref. [27]), respectively. Similarly, in Figs. 6 and 7 we
show results for 90Zr(p, n) at 120 (data taken from Ref. [26])
and 160 (data taken from Ref. [28] )MeV. The curve patterns
follow the same convention as that used in Fig. 1.

In contrast to the 14C(p, n) case, the Fermi cross sections
for these four applications are significantly underestimated
relative to the data. The calculated σF for 48Ca at 160 MeV
averages 2.6(±0.1) mb/sr, considering the six NN potential
models. At the same energy, but in the case of 90Zr, the average
is 1.7(±0.1) mb/sr. The reported measurements for 48Ca and
90Zr are 5.0 ± 0.3 mb/sr and 3.4 ± 0.4 mb/sr, respectively,
roughly twice as large as the calculated values. The measured-
to-calculated ratio of σF at the lower energies increases to 2.3
(48Ca at 135 MeV) and 3.0 (90Zr at 120 MeV).
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FIG. 4. Measured [23] and calculated differential cross sections
for 48Ca(p, n) at 135 MeV. The curve patterns follow the same
convention as that used in Fig. 2.
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FIG. 5. Measured [27] and calculated differential cross sections
for 48Ca(p, n) at 160 MeV. The curve patterns follow the same
convention as that used in Fig. 2.

The results shown in Figs. 4–7 correspond to fully consis-
tent coupled-channel results involving explicitly the diagonal
(Upp and Unn) and off-diagonal (Ux) optical potentials based
on the full-folding approach. Thus, they illustrate the degree
of consistency among the three components of the potential
within the theory. This is an important point to keep in
mind, because it is possible to improve the description of
the data with the use of the DWBA, supplemented by suitable
phenomenological potentials for the NN channel. Indeed, in
the top panel of Fig. 8 we compare the differential cross
section for proton scattering from 90Zr at 121 MeV. The elastic
scattering data are from Ref. [29], the solid curve represents
the full-folding OMP results and the sparse crosses represent
a standard Woods-Saxon (WS) parametrization. Although the
full-folding results are in superior agreement with the data
over the whole angular range, the quality of both descriptions
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FIG. 6. Measured [26] and calculated differential cross sections
for 90Zr(p, n) at 120 MeV. The curve patterns follow the same
convention as that used in Fig. 2.
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FIG. 7. Measured [28] and calculated differential cross sections
for 90Zr(p, n) at 160 MeV. The curve patterns follow the same
convention as that used in Fig. 2.

at angles below 25 degrees is comparable. A comparison at the
hadronic level alone (i.e., suppressing the Coulomb term) is
presented in the bottom panel, where we show the differential
cross section for uncharged nucleon scattering using the
full-folding Upp (solid curve), Unn (dashed curve), and the local
WS parametrization (sparse crosses). The similarity between
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FIG. 8. (Top panel) Measured [29] and calculated differential
cross sections for proton elastic scattering from 90Zr at 121 MeV.
The solid curve corresponds to g-matrix full-folding OMP results,
whereas the crosses correspond to a local WS parametrization.
(Bottom panel) The calculated uncharged nucleon differential cross
section based on Upp (solid curve), Unn (dotted curve), and the WS
parametrization (sparse crosses).
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FIG. 9. Measured [26] and calculated differential cross sections
for 90Zr(p, n) charge-exchange reaction based on full coupled-
channel (solid curve) and DWBA using the parametric WS potential
(dashed curve).

the Upp and the Unn is striking, suggesting their equivalence.
The WS result is slightly larger than the other two cases.

In a DWBA application it is customary to use, for the
scattered neutron wave, Unn := Upp. In Fig. 9 we compare
the consistent coupled-channel full-folding OMP results (solid
curve) with the corresponding DWBA results (dashed curves).
In both cases we use the same Ux based on the full-folding
OMP. However, for the DWBA application we use the
parametric WS potential already described. The significant
increase of the differential cross section over whole the angular
range is clear.

In Fig. 10 we present the scattering amplitude (f ) as
function of the angular momentum l. The upper and lower
frame are for the real and imaginary components, respectively.
The solid (open) circles correspond to exact coupled-channel
results extracted from Eqs. (37) and (38), with the solid curves
representing the sum of both contributions. The stars (∗)
represent results based on DWBA using the full-folding x and
NN couplings (DWBA-CC). The dashed curves correspond to
DWBA calculations where the NN term has been replaced by a
local WS parametrization (DWBA-WS). Clearly the imaginary
component of the amplitude (bottom panel) exhibits minor
differences among the exact coupled-channel, DWBA-CC, and
DWBA-WS results. Additionally, we observe that the total
amplitude is the result of a mutual cancellation of the Ux and
Unn contributions. In the top panel for the real components,
however, we notice major differences between DWBA-WS and
either of the two coupled-channel applications. Indeed, the real
part of of the DWBA-WS amplitude is nearly twice as large as
the other two. This difference is exclusively due to the nature
of the diagonal coupling, extracted phenomenologically from
other sources. In that sense, a phenomenological improvement
of the data is achieved at the expense of a consistent two-
channel description of the charge-exchange process.

The difficulties discussed above have been explored in the
context of the neutron-to-proton relative distribution. We have
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FIG. 10. The real (top panel) and imaginary (bottom panel)
components of the scattering amplitude f as a function of the
orbital angular momentum. The solid curves, ∗ symbols, and dashed
curves represent the exact CC, DWBA-CC, and DWBA-WS results,
respectively. The solid and empty circles represent the Ux and Unn

contributions to the total amplitude [cf. Eq. (37)].

investigated the discrepancy between the consistent coupled-
channel g-matrix OMP results and the measured quantities
by studying the sensitivity of the scattering observables to
variations in the neutron density [30]. Preliminary results
along this line suggest the presence of a neutron halo in the
nuclear periphery, that is to say, a pronounced ratio of the
neutron-to-proton density away from the nuclear surface. A
more thorough investigation of this fact is a natural extension
of the present work and should not be limited to the radial
matter distribution but should include other features of the
mixed density as well. An additional element in this discussion
is the charge dependence of the NN interaction, which in this
work, has only been included in the Tz = 0 NN sector.

C. Comparison with other results

Various microscopic studies on (p, n) charge-exchange re-
actions have been presented in the past. The most recent one by
Bauge, Delaroche, and Girod [31] consists of a Lane-consistent
semimicroscopic optical model approach where an energy-
dependent potential depth normalization factor is applied to
the isovector components. These normalization factors are
then used consistently in elastic and quasielastic scattering.
Their quasielastic charge-exchange applications between 100
and 200 MeV exhibit less pronounced discrepancies with the
data relative to the ones presented in this work. A microscopic
extraction of these scaling factors remains to be seen.

A relativistic description of (p, n) quasielastic reactions
has also been provided by Clark et al. [12]. In their case
the relativistic impulse approximation is used, where Lorentz
vector and scalar, isovector, and isoscalar NA optical potentials
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are obtained from invariant NN amplitudes. Applications at
160 MeV for 90Zr(p, n) lead to a Fermi cross section weaker
by a factor of 2 relative to the data. Their interpretation is that
the diagonal optical potential presents too much absorption.
A sizable improvement in the description of the differential
cross section is obtained with the use of phenomenological
(diagonal) potentials in conjunction with DWBA.

Although both approaches provide means by which to
improve the description of the data, they also emphasize the
limited understanding of this very simple process.

V. SUMMARY AND CONCLUSIONS

We have studied quasielastic (p, n) charge-exchange re-
actions to the IAS at proton energies between 80 and
800 MeV. The study is based on an extension of the
microscopic full-folding optical model approach for NA elastic
scattering to processes where spin and isospin excitations
become allowed. Thus, we have developed the necessary
spin-isospin recoupling to identify the off-diagonal terms
responsible for the exchange mechanism. In this particular
work we focus on isospin excitations only. The resulting
couplings, in the form of non-local optical potentials, are then
applied to quasielastic (p, n) reactions on 14C, 48Ca, and 90Zr
at intermediate proton energies. Emphasis is given to the full
consistency of the microscopic approach, without resorting to
the use of adjusting parameters of the model to describe the
data. Indeed, it has been a primary focus of this work to disclose
its limitations in its most complete current form, i.e., with an
accurate account of the Fermi motion (off-shell), and implied
non-localities in the optical potentials. Exact coupled-channel
calculations, within numerical accuracy, were performed to
obtain the scattering observables. Comparisons with the data
show a persistent deficiency of the theory to account for them
in a consistent fashion. This is particularly so in the case of the
heavier targets, where the zero-degree Fermi cross sections
are substantially underestimated. We observe, however, that
the use of phenomenological representations of the optical
potential for the elastic channel yields sizable changes of
the Fermi cross sections. However, this phenomenological
correction does not allow a clear identification of the missing
microscopic effects needed to account for the data.

The above-mentioned limitations become less dramatic in
the case of (p, n) charge-exchange reactions on 14C. In this
case the full-folding optical model approach is able to explain
reasonably well the differential cross section at 120 MeV.
Additionally, depending on the NN potential model, the Fermi
cross section is described with varying degrees of success in
the energy range 80–800 MeV. These applications represent
extrapolations of the of the underlying NN potential model
and favor the Nijmegen II and Argonne AV18 models. A
more definitive assessment of such results would require,
however, that the above-threshold inelasticities at the NN
level be accounted for, an issue to be considered in the
future.

Though this work represents the most complete micro-
scopic calculations to date, accounting for full Fermi motion
effects and implied non-localities, with an accurate treatment
of the resulting coupled-channel reaction equations, we con-
clude that the model is still unable to satisfactorily describe the
data. The discrepancies are not minor, especially in the cases
of (p, n) reactions on 48Ca and 90Zr studied here, where the
zero-degree Fermi cross section is underestimated by factors
of 2 or 3. Although the data can be described by using
distorted waves based on phenomenological optical models, or
by adjusting other parameters of the model, we have preferred
to maintain the formal structure of the theory to stress the
limitations of the microscopic model in its current form. There
are other venues for the inclusion of additional effects not
discussed here. Among the most immediate ones we mention
the role of asymmetric nuclear matter in the NN effective
interaction and the neutron distribution in the target ground
state [30]. Work toward inclusion of isospin asymmetry in the
effective interaction is underway.
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