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64Ni+132Sn fusion within the density-constrained time-dependent Hartree-Fock formalism
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We study fusion reactions of the 64Ni+132Sn system using the recently introduced density constrained
time-dependent Hartree-Fock formalism. In this formalism the fusion barriers are directly obtained from
time-dependent Hartree-Fock dynamics. In addition, we incorporate the entrance channel alignment of the
deformed (oblate) 64Ni nucleus due to dynamical Coulomb excitation. We discuss the influence of particle
transfer and other dynamical effects on the fusion cross sections. Calculated cross sections are in very good
agreement with data and other calculations.
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I. INTRODUCTION

With the increasing availability of radioactive ion beams
[1] the study of structure and reactions of exotic nuclei has
become feasible [2]. In particular, detailed investigations of
the fusion process are crucial for the prediction of heavy-
element formation and will lead to a better understanding of the
interplay among the strong, Coulomb, and weak interactions as
well as the enhanced correlations present in these many-body
systems.

Recently, particular attention has been given to the
64Ni+132Sn system, where a large sub-barrier fusion en-
hancement was observed [3,4]. For this system fusion cross
sections were measured in the energy range 142 MeV �Ec.m. �
195 MeV. In particular, it was found that fission is negligible
for Ec.m. � 160 MeV and therefore the evaporation residue
cross sections have been taken as fusion cross sections. The
enhancement of sub-barrier fusion was originally deduced
from comparison with a barrier penetration calculation, using a
phenomenological Woods-Saxon interaction potential whose
parameters were fitted to reproduce the evaporation residue
cross sections for the 64Ni+124Sn system [3,4]. Similarly, early
coupled-channel calculations, which are known to enhance
the fusion cross sections by considering coupling to various
excitation channels and neutron transfer, have significantly
underestimated the low-energy fusion cross sections for the
64Ni+132Sn system [3]. Subsequently, more sophisticated
coupled-channel calculations lead to an improvement for the
description of the lower-energy data. Finally, the inclusion
of the neutron transfer channels with positive Q value in
addition to inelastic excitations resulted in the best description
to date [5].

The theoretical analysis of the fusion data generally in-
volves determination of a phenomenological ion-ion potential
such as the Bass model [6,7], the proximity potential [8–11],
or potentials obtained via the double-folding method [12–15].
Subsequently, the actual fusion cross section is calculated by
using either barrier penetration models [7,14,16,17] or the
coupled-channel method [18–22]. The latter includes various
excitations of the target and/or projectile using the coupled-
channel formalism [20,21], as well as the inclusion of neutron
transfer, and can be consistently applied at energies above
and below the barrier [17]. Effectively, the inclusion of each

additional excitation leads to a modification of the original
inert core ion-ion potential, resulting in a series of effective
barriers. One common physical assumption used in many of
these calculations is the use of the frozen density or the sudden
approximation. In this approximation the nuclear densities are
unchanged during the computation of the ion-ion potential
as a function of the internuclear distance. Furthermore, the
effects included in channel couplings are usually based on
the static properties of the participating nuclei, which may
accurately represent the early stages of the collision process,
but are expected to change as the two ions strongly interact.
Although these methods provide a useful and productive means
for quantifying multitudinous reaction data it is desirable
to include dynamical effects and make contact with the
microscopic theories of nuclear structure and reactions.

Recently, we have developed a new approach for calculating
heavy-ion interaction potentials that incorporates all of the
dynamical entrance channel effects included in the time-
dependent Hartree-Fock (TDHF) description of the collision
process [23]. These effects include the neck formation, particle
exchange, internal excitations, and deformation effects to all
order, as well as the effect of nuclear alignment for deformed
systems. The method is based on the TDHF evolution of the
nuclear system coupled with density-constrained Hartree-Fock
calculations to obtain the ion-ion interaction potential. Prelim-
inary calculations for the 64Ni+132Sn system highlighted the
importance of dynamical deformation effects [24]. Here we
give a completed study of fusion cross sections using this
formalism.

In the next section we will summarize some theoretical
aspects of the density constrained TDHF theory along with
methods to incorporate dynamical alignment into our calcula-
tions, as well as the method used the calculate cross sections
from the resulting barriers. In Sec. III we present interesting
aspects of the reaction dynamics and compare our results with
experiment and other calculations.

II. THEORETICAL METHODS

A. Density-constrained TDHF method

In this subsection we give a qualitative description of the
density-constrained TDHF method, which is used to obtain the
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dynamical barriers for the 64Ni+132Sn system. Further details
of the method can be found in Ref. [23].

The density constraint is a novel numerical method that
was developed in the mid-1980s [25,26] and was used
to provide a microscopic description of the formation of
shape resonances in light systems [26]. In this approach the
TDHF time evolution takes place with no restrictions. At
certain times during the evolution the instantaneous density is
used to perform a static Hartree-Fock minimization while hold-
ing the total density constrained to be the instantaneous TDHF
density. In essence, this provides us with the TDHF dynamical
path in relation to the multidimensional static energy surface
of the combined nuclear system. Because we are constraining
the total density all moments are simultaneously constrained.
The numerical procedure for implementing this constraint
and the method for steering the solution to ρTDHF(r, t) is
discussed in Refs. [25,26]. The convergence property is as
good if not better than in the traditional constrained Hartree-
Fock calculations with a constraint on a single collective
degree of freedom.

In Ref. [23] we have shown that the ion-ion interaction
potential is simply given by

V (R) = EDC(R) − EA1 − EA2 , (1)

where EDC is the density-constrained energy at the instanta-
neous separation R(t), whereas EA1 and EA2 are the binding
energies of the two nuclei obtained with the same effective
interaction. We emphasize again that this procedure does
not affect the TDHF time evolution and contains no free
parameters or normalization. In practice, TDHF runs are
initialized with energies above the Coulomb barrier and in
Ref. [23] we have shown that there is no appreciable energy
dependence to the barriers obtained via the density-constrained
TDHF method. The separation coordinate R is the distance
between the centers-of-mass of the two nuclei. Initially the
nuclei are placed such that the point z = 0 in the x-y plane is
the center-of-mass. During the TDHF dynamics this distance
is obtained by constructing a dividing plane between the two
centers and calculating the center of the densities on the left
and right halves of the numerical box. The coordinate R

is then the difference between the two centers as described
at the end of Sec. III B. A detailed description of our new
three-dimensional unrestricted TDHF code has recently been
published in Ref. [27]. For the effective interaction we have
used the Skyrme SLy5 force [28], including all of the time-odd
terms.

B. Fusion with alignment

In general, the fusion cross sections depend on the in-
teraction potential and form factors in the vicinity of the
Coulomb barrier. These are expected to be modified during
the collision due to dynamical effects [29]. In addition,
experiments on sub-barrier fusion have demonstrated a strong
dependence of the total fusion cross section on nuclear
deformation [30]. The dependence on nuclear orientation
has received particular attention for the formation of heavy
and superheavy elements [31] and various entrance channel

models have been developed to predict its role in enhancing
or diminishing the probability for fusion [32,33]. Recently,
we have developed a new approach for calculating the effect
of nuclear alignment for deformed systems [33]. In essence,
the procedure for incorporating alignment into the evolution of
the heavy-ion collision dynamics is done in two separate steps:
(a) A dynamical Coulomb alignment calculation to determine
the probability that a given nuclear orientation occurs at
the distance R(t0), where the TDHF run is initialized. The
alignment generally results from multiple E2/E4 Coulomb
excitation of the ground-state rotational band. The distance
R(t0) is chosen such that the nuclei interact only via the
Coulomb interaction. (b) Next is a TDHF calculation, which
starts at this finite internuclear distance R(t0), for a fixed initial
orientation of the deformed nucleus. Because the experiments
are usually done with unpolarized beams, in a full quantum
mechanical calculation one would have to average over
discrete quantum mechanical rotational bands. In the classical
limit, this corresponds to averaging over orientation angles. A
general study of taking the classical limit of the relative nuclear
motion during a heavy-ion collision that includes inelastic
excitations of one of the heavy ions in the entrance channel
has been given in Ref. [29].

The heavy-ion interaction potential between two deformed
nuclei depends on the distance vector between their centers-
of-mass, R, and on the relative orientation of their intrinsic
principal axis systems that may be described in terms of three
Euler angles α, β, γ per nucleus, i.e., in the most general case
we have

V = V (R, α(1), β(1), γ (1), α(2), β(2), γ (2)). (2)

Explicit expressions for this interaction potential within the
double-folding method are given in Ref. [15]. The expression
for V can be simplified if the intrinsic nuclear density
distributions are axially symmetric; in this case, the potential
does not depend on the Euler angles γ (1), γ (2) which describe
rotations about the symmetry axes. If we put, for convenience,
the distance vector in the z direction, R = Rez, the potential
between two deformed axially symmetric nuclei has the
structure

V = V (R, β(1), β(2),�α). (3)

Finally, if one of the nuclei is spherical, e.g., nucleus (1), the
potential is simply given by

V = V (R, β(2)), (4)

where the Euler angle β(2) describes the direction of the nuclear
symmetry axis relative to the internuclear distance vector.

Details of the dynamic alignment formalism are presented
in Ref. [33]. We give here a brief summary: For a given
incident energy Ec.m. we carry out a semiclassical Coulomb
excitation calculation of the dominant collective levels of the
deformed nucleus. The energy levels and EL-transition matrix
elements for 64Ni are taken from experimental data [34]:
E2+ = 1.346 MeV, E4+ = 2.610 MeV, and M(E2, 0+ →
2+) = −27.0 e fm2 (oblate deformation). The Coulomb ex-
citation calculation starts at very large internuclear distances
(about 1500 fm) when both nuclei may be presumed to
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FIG. 1. Dynamic alignment due to Coulomb excitation of 64Ni.
Shown is the orientation probability as a function of the Euler angle β

in a central collision at internuclear distances R = 1500 fm (dashed
curve) and at R = 16 fm (solid curve).

be in their respective ground states and stops at the ion-
ion separation distance R(t0) (about 16 fm). The Coulomb
excitation amplitudes determine the probability distribution of
initial orientations. In Fig. 1 we show the differential alignment
probability as a function of the Euler angle β used in our
calculations.

In the case of one spherical nucleus (132Sn) and one
deformed reaction partner (64Ni), the total fusion cross section
is given by an integral over all orientation (Euler) angles, with
solid angle element d� = 2π sin βdβ

σ (Ec.m.) =
∫

d�
dP

d�
σ (Ec.m., �), (5)

where dP/d� represents the alignment probability and
σ (Ec.m., �) is the fusion cross section associated with a
particular alignment.

C. Cross section calculation

For a consistent calculation of fusion cross sections at
above and below the barrier energies we have adopted the
commonly used incoming wave boundary condition (IWBC)
method [18,35]. Once the ion-ion potential for a particular
orientation, V (R, β), is calculated the two-body Schrödinger
equation becomes[−h̄2

2µ

d2

dR2
+ L(L + 1)h̄2

2µR2
+ V (R, β) − E

]
ψL(R, β) = 0,

where µ is the reduced mass and L denotes orbital an-
gular momentum. IWBC assumes that once the minimum
of the potential is reached fusion will occur; consequently,
no imaginary part of the potential is needed. In practice,
the Schrödinger equation is integrated from the potential
minimum, Rmin, where only an incoming wave is assumed, to a
large asymptotic distance, where it is matched to incoming and
outgoing Coulomb wave functions to obtain the penetration
factor, PL(E, β), as the ratio of the incoming flux at Rmin to
the incoming Coulomb flux at large distance. The total cross

section is given by

σ (E, β) = π

k2
0

∑
L

(2L + 1)PL(E, β), (6)

with k0 = √
2µE. For the numerical implementation we have

followed the procedure for the coupled-channel code CCFUL
described in Ref. [20] and exactly reproduced their results for
an inert-core potential.

III. RESULTS

We carried out a number of TDHF calculations with accom-
panying density-constraint calculations to compute V (R, β)
given by Eq. (1). A detailed description of our new three-
dimensional unrestricted TDHF code was recently published
in Ref [27]. For the effective interaction we used the Skyrme
SLy5 force [28], including all of the time-odd terms. The code
was modified to self-consistently generate initial states for 64Ni
with different orientations. All our TDHF calculations were
done at an initial energy of Ec.m. = 168 MeV and separation
R(t0) = 16 fm. As we reported in Ref. [23] the potential
barriers obtained from the density-constrained TDHF method
are not sensitive to the initial energy (above the barrier). We
have tested this again by running a few orientations at 158 and
176 MeV and observed no appreciable difference.

A. Particle exchange

In a TDHF collision leading to fusion the relative
kinetic energy in the entrance channel is entirely converted
into internal excitations of a single well-defined compound
nucleus. In TDHF theory the dissipation of the relative kinetic
energy into internal excitations is due to the collisions of the
nucleons with the “walls” of the self-consistent mean-field
potential. TDHF studies demonstrate that the randomization
of the single-particle motion occurs through repeated exchange
of nucleons from one nucleus into the other. Consequently, the
equilibration of excitations is very slow, and it is sensitive to
the details of the shape evolution of the composite system.
This is in contrast to most classical pictures of nuclear
fusion, which generally assume near instantaneous, isotropic
equilibration.

Recently, the importance of transfer of neutrons with
positive Q value in fusion has been emphasized [5,36,37].
In TDHF this effect manifests itself as the excitation of the
pre-compound collective dipole mode, which is likely when
ions have significantly different N/Z ratio and is a reflection
of dynamical charge equilibration. In Fig. 2 we show the time
evolution of the isovector dipole and isoscalar quadrupole
moments for the head-on collision of 64Ni+132Sn system at
Ec.m. = 168 MeV and β = 90◦. The Fourier transform of these
oscillations show a 9-MeV isovector dipole peak as well as 4-
and 7-MeV isoscalar quadrupole peaks. For a time-dependent
charge distribution it is possible to calculate the γ -yield as a
function of γ energy [26], Eγ . The asymptotic yield integrated
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FIG. 2. Time-dependence of the isovector dipole and isoscalar
quadrupole moments for the head-on collision of 64Ni+132Sn system
at Ec.m. = 168 MeV and β = 90◦.

over a spherical surface is given by

dNγ

dEγ

= h̄c

8π2

1

(h̄ω)3

∑
L

(2L + 1)|a(L,h̄ω)|2, (7)

where the amplitudes a(L,h̄ω)

a(L,h̄ω) = 4π

i(2L + 1)!!

[
L + 1

L

]1/2 [
h̄ω

h̄c

]L+2

ML(h̄ω), (8)

are given in terms of the Fourier transform of the moments of
the density

ML(t) =
∫

d3rrLYL0(r̂)ρ(r, t). (9)

Computation of the yield given by Eq. (7) shows that the
dominant contribution is from the dipole mode, which is shown
in Fig. 3.

Although the above analysis provides a picture of particle
exchange dynamics over time it is also possible to examine
particle exchange during the initial stages of the collision,
namely from the well-separated nuclei to the time when the
minimum separation is reached. In Fig. 4 we show the neutron
and proton transfer to the left fragment, which in our case is
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FIG. 3. Dipole γ yield for the head-on collision of 64Ni+132Sn
system at Ec.m. = 168 MeV and β = 90◦.
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FIG. 4. (Color online) Change in neutron (blue curve) and proton
(red curve) numbers of the left fragment (originally 64Ni) as a function
of the ion-ion separation coordinate, R. The dashed lines are there to
emphasize the asymptotic values.

initially 64Ni. As we can see in Fig. 4 the number of neutrons
and protons increase for the left fragment as the ions come
into contact. As expected the transfer of neutrons starts earlier
because they are dominant in the surface region. For small R

values the increase is simply due to charge equilibration as the
two nuclei have a substantial overlap. However, at a separation
of 12 fm, which corresponds approximately to the top of the
potential barrier as discussed in the next subsection, we have
about two neutrons transferred, and at 11 fm we have as many
as six neutrons transferred. It is also interesting to observe that
the large transfers in the early stages of the collision happen
quickly, indicated by the sudden jumps in neutron number.
Naturally, the right fragment undergoes just the opposite of
these trends.

B. Dynamical potentials and mass

In this subsection we discuss the barriers obtained via
the density constrained TDHF method, and other related
quantities, such as the effective mass and the reduced mass.
We performed calculations of V (R, β) in �β = 10◦ intervals
from β = 0◦ to β = 90◦. In Fig. 5 we show all of these barriers.
The lowest barrier corresponds to β = 90◦ orientation of the
symmetry axis of the oblate 64Ni nucleus with respect to the
collision axis. Each subsequent barrier is reduced by 10◦ up
to the highest barrier at β = 0◦ orientation. For the case of
β = 0◦ orientation the calculated barrier is almost exactly
the same as the empirical barrier used in Ref. [3] without
channel couplings, having a barrier height of 155.8 MeV and
location of the barrier peak at approximately RB = 12.1 fm.
The difference for smaller R values is due to the use of the
point Coulomb interaction in the model calculation, which is
unphysical when nuclei overlap. As seen in Fig. 5 for higher
β values the barrier is lowered and the barrier peak moves
to larger R values, with the lowest barrier having a height of
150.1 MeV and peaking around RB = 13 fm. The physical
picture that emerges from these calculations is that for all
energies above 150.1 MeV, which is the peak of the lowest
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FIG. 5. (Color online) Potential barriers, V (R, β), obtained from
density-constrained TDHF calculations for the 64Ni+132Sn system.
Angle β indicates different orientations of the deformed 64Ni nucleus
in �β = 10◦ intervals.

barrier, the fusion cross section will be dominated by lower
barriers as the cross section above the barrier is substantially
larger than sub-barrier cross sections. In other words, the only
experimental data point that appears to be truly sub-barrier is
the lowest energy point at 142.6 MeV.

In addition to all of the dynamical effects included in the
potentials V (R, β) it is also possible to construct effects due
to dynamical mass. Because in the density constrained TDHF
method the potential is obtained from the TDHF evolution
by essentially extracting the internal excitation energy from
instantaneous TDHF solutions via the density constraint, the
energy conservation becomes

Ec.m. = 1
2M(R, β)Ṙ2 + V (R, β). (10)

For a particular initial orientation at asymptotic energy Ec.m.

we obtain the collective velocity Ṙ directly from the TDHF
evolution and the potential V (R, β) from the density constraint
calculations. Thus, the effective mass is given by

M(R, β) = 2[Ec.m. − V (R, β)]

Ṙ2
. (11)

In Fig. 6 we show the effective mass as a function of the
ion-ion separation coordinate R for energy Ec.m. = 168 MeV
and β = 90◦. The solid curve is the effective mass obtained
from Eq. (11) scaled with the constant reduced mass µ for
the two ions. The ratio starts from unity at large distances and
increases as R gets smaller and as the ions pass the top of
the barrier as indicated by the dotted line in Fig. 6. This is
due to the fact that the relative velocity, Ṙ, becomes small as
the ions begin to overlap substantially, whereas the numerator
of Eq. (11) remains nonzero because the energy is above the
barrier. After the initial slowdown the ions accelerate once
more before reaching the composite system for which Ṙ = 0.
A similar behavior is observed for all values of β. Traditionally,
the effective mass is obtained from constrained Hartree-Fock
(CHF) or adiabatic time-dependent Hartree-Fock (ATDHF)
calculations [38] and shows a strikingly similar behavior to
the ones obtained through our method.

In addition to the effective mass it also possible to calculate
the dynamical reduced mass. It is well known that the naive
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FIG. 6. Effective mass calculated from Eq. (11) for the head-on
collision of 64Ni+132Sn system at Ec.m. = 168 MeV and β = 90◦.

formula for reduced mass given by

µ0(R) = m
A1(R)A2(R)

A1(R) + A2(R)
(12)

does not correctly represent the dynamical behavior of this
quantity, monotonically increasing from its asymptotic value
to the predictable final value when A1 = A2 = (A1 + A2)/2,
i.e., a composite has been formed and half the mass is in the
right half and other half on the left half of the numerical box.
An alternative way to calculate the dynamical reduced mass is
given in Ref. [39]. Here the dynamical centers and momenta
for the left and right halves are calculated via

Ri = T r(r̂ρi)/T r(ρi)

Pi = T r(p̂ρi),

where the index i = 1, 2 denotes left and right halves. The left
and right masses are then calculated by

mi = Pi

dRi/dt
, (13)

leading to the dynamical reduced mass

µ(R) = m1m2

m1 + m2
, (14)
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FIG. 7. (Color online) Reduced mass calculated for the head-on
collision of 64Ni+132Sn system at Ec.m. = 168 MeV and β = 90◦.
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coupled-channel calculation [5] (red dashed curve), and our density-
constrained TDHF cross sections with dynamical effective mass
(black curve) and with constant reduced mass (blue curve).

with R = R1 − R2. This quantity is plotted in Fig. 7 along with
the naive expression, µ0(R). Although we observe interesting
structure in µ(R) the overall change in the magnitude around
the barrier region is not large enough to substantially alter
the fusion cross sections. This is also shown in Fig. 6 where
we have also plotted the ratio of the effective mass to the
dynamical reduced mass (dashed curve). Therefore, in practice
we have not included µ(R) in our cross-section calculations.

C. Cross sections

We have calculated the total fusion cross section as a
function of energy using the alignment averaged fusion
formula given in Eq. (5). The total fusion cross section using
the potential barriers obtained from density constrained TDHF
calculations directly (with constant reduced mass) is shown
by the blue curve in Fig. 8. Also shown is the the latest
coupled-channel calculation [5], including inelastic excitation
of 64Ni to first 2+ and 3− states and 132Sn to the first 2+
state, as well as two-neutron transfer (red dashed curve). We
also included the dynamical effective mass by making the
well-known coordinate scale transformation [38]

dR̄ =
[
M(R)

µ

] 1
2

dR. (15)

As a result of this transformation all of the effects of
the dynamical effective mass are transferred to the scaled
potential, whereas the reduced mass µ remains constant at its
asymptotic value. This is convenient for a number of reasons,
one being that the we can use our fusion code without any
modifications. The resulting cross sections are shown by the
black curve in Fig. 8. As we see the effect of the dynamical
mass is to raise the cross section at higher energies.

With the exception of the lowest energy data point the
calculated cross sections are in very good agreement with data
and the extended coupled-channel calculation. We emphasize
again that our density-constrained TDHF calculations contain
no adjustable parameters or normalization factors. In the
region around 160 MeV our calculations overpredict the
experimental cross section, whereas the coupled-channel one
slightly underpredicts. The agreement at lower and higher
energies are excellent. The question about the lowest energy
data point is still an open one. It is our understanding that a
new experiment is planned to measure this cross section [40].
If this enhancement is confirmed it would be a challenge
because all of the existing theories underestimate the cross
section by a few orders of magnitude. We showed in our barrier
calculations that this is the only point that is truly sub-barrier
fusion. However, such a large value for the cross section is
more consistent with an above-barrier energy or one that is
very close to the top of the barrier. This would indicate that
there is a mode of 64Ni nucleus that is not well described by the
current microscopic interactions, like the Skyrme force. One
possibility may be triaxiality because 64Ni is experimentally
found to be γ soft.

IV. CONCLUSIONS

We performed density-constrained TDHF calculations of
fusion cross sections for the 64Ni+132Sn system. Our results
agree very well with the measured data and with a state of the
art coupled-channel calculation despite having no adjustable
parameters. This indicates that many of the reaction dynamics
are included in the TDHF description of the collision. As
we investigate fusion reactions involving neutron-rich and
deformed nuclei it is apparent that an understanding of the
structure of these nuclei is crucial to the description of the
reaction dynamics. For these nuclei various effects, such as
inelastic excitations, particle transfer, and other dynamical
effects lead to substantial modification of the naive potential
barrier calculations that assume an inert core and no dynamics.
Consequently, the definition of sub-barrier fusion becomes
ambiguous because it is difficult to determine the barrier a
priori. Present calculations indicate that the lowest energy data
point may be the only one truly at a sub-barrier energy. If a
new measurement confirms this data point it would be of great
interest because none of the theories can reproduce this cross
section, thus indicating a fundamental property that is not
included in any of the calculations.
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