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Charge-exchange reaction cross sections and the Gamow-Teller strength for double β decay
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The proportionality between single charge-exchange reaction cross sections in the forward direction as found,
for example, from (p, n) and (3He,t) and from (n, p) and (d,2He) reactions, and the Gamow-Teller (GT) strength
into the same final nuclear states has been studied and/or assumed often in the past. Using the most physically
justified theory we have at our disposal and for the specific example of the 76Ge-76Se system that may undergo
double β decay, we demonstrate that the proportionality is a relatively good assumption for reactions changing
a neutron into a proton, i.e., 76Ge(p, n)76As. In this channel, the main contribution to the GT strengths comes
from the removal of a neutron from an occupied single-particle (SP) state and the placement of a proton into
an unoccupied SP state having either the same state quantum numbers or those of the spin-orbit partner. In
contrast to this, in the second leg of the double β decay, a single proton must be taken from an occupied SP state
and a neutron placed into an unoccupied one. This second process often is Pauli forbidden in medium-heavy
nuclei and can only be effected if the Fermi surface is smeared out. Such is the case for 76Se(n, p)76As. Our
results suggest that one may not always assume a proportionality between the forward-angle cross sections of the
charge-exchange reactions and the GT strength in any such medium-heavy nuclei. The discrepancy originates
from a pronounced effect of the radial dependence of the nucleon-nucleon (NN) interaction in connection with
the Pauli principle on the cross sections in the (n, p) reaction channel. Such a radial dependence is completely
absent in the GT transition operator.
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I. INTRODUCTION

In recent years, interest in the relation between charge-
exchange reactions in the forward direction and the Gamow-
Teller (GT) strength has increased because of the connection
of the GT strength with the two-neutrino double β decay [1,2].
The latter process may be a help in testing the nuclear wave
functions required in calculations of the matrix elements for the
neutrinoless double β decay. The neutrinoless double β-decay
transition probability is important since it, in conjunction with
measured data and assuming that the light neutrino exchange is
the leading contribution, defines an absolute scale for the mass
of the Majorana neutrino (for reviews see, e.g., Refs. [3–5]).
The two-neutrino double β decay matrix element M2ν is
given by a sum over all intermediate 1+ states of product
of the GT transition matrix element from the ground state of
the initial nucleus (in our example, 76Ge) to an 1+ state in
the intermediate nucleus (76As) and the GT transition matrix
elements from the intermediate state to the ground state of
the final nucleus (76Se) divided by the corresponding energy
denominator. However, a test of the two-neutrino double
β-decay calculations using the GT strengths extracted from
the measured electron capture (EC) and the single β decay
of the intermediate nucleus is only possible if the ground
state in the intermediate nucleus is a 1+ state (not the case for
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76As), and if the two-neutrino double β decay is dominated by
the transition through this state. Our interest with the mass-76
systems in part stems from the fact that for the neutrinoless
double β-decay matrix element, past evaluations gave values
ranging from 2.23 to 5 according to the chosen model of
nuclear structure [6].

Complementary to the direct measurement of the GT
strength by the EC capture in the first leg followed by a
β− transition from the lowest 1+ state of the intermediate
nucleus are single-charge transfer reactions such as (p, n)
and (3He,t) on the ground state of the initial nucleus and
(n, p) and (d,2He) to the ground state of the final nucleus, all
connecting by the intermediate 1+ states. If the forward cross
section of these charge-exchange reactions are proportional
to the corresponding GT strength, the two-neutrino double
β-decay probability calculations can be checked, although the
information about the relative phases of different contributions
cannot be extracted from the experimental B(GT). Then it
is possible to test the quality of the calculations for the
neutrinoless double β decay.

The proportionality between the forward single charge-
exchange cross section and the GT transition probabilities has
been studied extensively in the past. References [7] and [8]
are particular contributions. Taddeucci et al. [7] present an
interesting analytic study of the proportionality involving
the single charge-exchange reaction (p, n) cross section at
zero-momentum transfer which we take as quite typical of
all studies of the problem. They assumed that only angular
momentum transfer L = 0 is important at forward scattering
angles and that the eikonal approximation is valid to describe
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the relative motion wave functions of the incoming and
emergent nucleons. Under those assumptions, they obtained
an expression for the proportionality between the forward
charge-exchange reaction cross section and the GT transition
probability, both to 1+ states. However, in that study [7]
there are a number of other assumptions, many of which
are questionable. First, a single particle-hole configuration is
assumed for the structure of the nuclear transitions. They also
assume that the reaction mechanism can be taken in either a
plane or a distorted wave impulse approximation. Furthermore,
the radial wave functions for the initial neutron and for the final
proton in the (p, n) reaction are assumed identical and the
effects of antisymmetrization between the projectile and the
target nucleon is treated rather crudely. Limiting themselves
to use the impulse approximation means that they use NN
amplitudes in calculations and not a specific finite-range NN
interaction. They use expressions given by Franey and Love [9]
which were derived from the SP84 amplitudes for free NN
scattering. The nuclear medium has dramatic effects in making
the effective interactions between projectile and every bound
nucleon in the target quite different to the free NN case [10].
Similar concerns exist even with some of the limitations
removed, for example, by using the distorted wave impulse
approximation or by using phenomenology to define relative
motion wave functions in a distorted wave approximation
(DWA) approach. Such concerns we outline later in the
text.

Ejiri [6,11] has also made extensive study of the proportion-
ality link. In his review [6], the proportionality of the forward
charge-exchange cross section for (p, n) and (3He,t) are shown
in his Figs. 10 and 15 for Fermi and GT transitions, respec-
tively. The proportionality of the charge-exchange reaction
cross section to the GT strength corresponding to a (n, p)
reaction is depicted in that review by using (d,2He) in Fig. 12,
by using (t,3He) in Fig. 17, and by using (7Li, 7Be) in Fig. 18.
Ejiri found that the proportionality with the forward scattering
cross sections from single charge-exchange reactions with
type (p, n) to the GT strength was good for all nuclei to
mass A = 124. However, proportionality studies for the
charge-exchange reaction of the type (n, p) was investigated
only for masses to A = 12. Nuclei relevant for the double
β-decay proportionality of those charge-exchange reactions to
the GT strengths were not considered. Such are needed, of
course, as they are important for the two-neutrino double β

decay in the second leg where a proton changes into a neutron.
Often that change cannot be effected by the GT operator τ±σ

which can only change particle types in orbits having the same
quantum numbers or into the spin-orbit partner of that level.

There have been many previous studies seeking nuclear
matrix elements from experimental data with Ref. [12] the
most recent. Cole et al. [12] studied charge-exchange reactions
from 58Ni. This nucleus is medium mass, but it has a neutron
excess of only 2. The degree of Pauli blocking to differentiate
between isospin raising and lowering transitions then is small.
The case should be classed with those of most light mass
studies. The cases we consider on the other hand have a
sizable neutron excess and so the Pauli blocking effects in the
(n, p) reactions are much more important than in the (p, n)
cases.

We consider the proportionality question again but make
use of the best available reaction codes to evaluate cross
sections for the charge-exchange (p, n) and (n, p) reactions.
We consider specifically the very popular double β-decay
transitions 76Ge → 76As → 76Se. The nuclear structure of the
initial, intermediate, and final states in these nuclei have been
defined using the quasiparticle random phase approximation
(QRPA) with realistic forces (Bonn CD potential [13]) and with
matrix elements calculated by solving the Bethe-Goldstone
equation [14,15]. The results show that the forward charge-
exchange cross section of the type (p, n) for the first leg of the
double β decay is nicely proportional to the GT strength but
that the forward reaction cross section of type (n, p) shows
rather large deviations from this proportionality. The latter is
due to Pauli blocking since a proton from an occupied level
must be transformed into a neutron in an empty level with the
same (n, �) quantum numbers. Due to the radial dependence of
the NN interaction, the charge-exchange reaction can proceed
by transition between single-particle (SP) orbits that differ
in (n, �). Such effects violate the proportionality between the
forward charge-exchange [(n, p) (d,2He), (t,3He), (7Li,7Be),
. . .] reaction cross sections and the GT strength.

Such a violation of the proportionality between the cross
sections of forward charge-exchange reactions of the (n, p)
type and the GT strength in the second leg of the double β

decay for nuclei with a large neutron excess has to show up
also in more approximate treatments of the charge-exchange
reactions and the nuclear structure as compared to the im-
proved treatment of this work. Though the quantitative results
can depend on the details of description of many physical
effects involved such as smearing of the Fermi surface and the
Pauli blocking, in-medium modification of the NN interaction,
the antisymmetrization between projectile and target nucleons,
etc., the conclusions should not change qualitatively.

Quality of the QRPA approach for description of the GT
strengths and double β decay has a long history [3–5,14–20].
The nuclear wave functions calculated within the QRPA
have been shown to provide a good description of different
properties of giant multipole resonances and low-lying collec-
tive 2+ and 3− states. The gross structure of the GT strength
distribution as well as the position of the GT resonance in
the intermediate nuclei is correctly reproduced within the
QRPA provided that the particle-particle strength of realis-
tic nucleon-nucleon interaction is slightly renormalized by
a factor 0.8 � gpp � 1.0, depending on the model basis
size [3–5].

The nuclear shell model, which nicely describes nuclear
states in the sd shell of positive parity and where it is more re-
liable than the QRPA, is not able to describe the states relevant
for double β decay in the pf and sdg shells. The Strassbourg-
Madrid Collaboration [21] can only handle a basis consisting
of four single-particle levels (1f5/2, 2p3/2, 2p1/2, 1g9/2) for
the nuclei in the vicinity of 76Ge. Since the spin-orbit partners
1f7/2 and 1g7/2 are missing in the model space, the model-
independent Ikeda sum rule [22] is strongly violated, and the
GT strength calculations for 76Ge within the shell model are
not trustful.

The QRPA model for the nuclear wave functions is
considered in the next section, while that of charge-exchange
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reaction theory is developed in Sec. III. Then, in Sec. IV, we
present the results and give conclusions in Sec. V.

II. NUCLEAR WAVE FUNCTIONS

The majority of calculations of the two-neutrino and the
neutrinoless double β decay have been made using the QRPA
[14–17]. Although the starting points of all these studies are
very similar, matrix elements calculated for the neutrinoless
double β-decay transition probabilities differ. For example,
those obtained in Refs. [14–16] are quite different from
the ones of Ref. [17]. This is a reason to seek tests of
wave functions by deriving the two-neutrino double β-decay
probability from the GT strengths between the initial and
final nuclei to a large number of 1+ states in the intermediate
nucleus.

Herein we use wave functions obtained from QRPA calcula-
tions [14,15] in which the Brueckner reaction matrix elements
of the Bonn CD potential [13] for the NN interaction were used.
The strength of the NN matrix elements in the particle-particle
channel has been slightly adjusted, by a factor gpp, to reproduce
the experimental two-neutrino double β-decay probability. For
76Ge, this value is gpp = 0.85 for a nine-level basis ( pf and
sdg major shells). We used the unquenched values gph = 1
and gA = 1.25 for the particle-hole channel renormalization
factor and the axial coupling constant gA, respectively.

Any SP operator of the β− type can be represented in second
quantization as

β−
JM =

∑
pn,mpmn

〈pmp|bJM|nmn〉a†
pan

= Ĵ
−1∑

pn

〈p||bJ ||n〉C†(pn, JM). (1)

In this equation, Ĵ = √
2J + 1, C†(pn, JM) = [a†

p ⊗ ãn]JM ,
and bJM can be τ− (Fermi), στ− (GT), or any other operator,
including ones that have r dependence. The time-reversed
creation operator is defined as ã

†
JM = (− )j−ma

†
j−m. Edmond’s

version of the Wigner-Eckart theorem has been used. The
definition of the spherical harmonics includes a factor il in
order to ensure the above expression for the time-reversal
operation.

The reduced matrix element of such SP operators between
the ground state of a mother nucleus and an excited state of
the daughter nucleus is given by

〈Jπ ||β−
J ||0+〉 = Ĵ

−1∑
pn

〈p||bJ ||n〉�(−)(pn, J ), (2)

where the elements of the transition matrices �(−)(pn, J ) are
the reduced matrix elements,

�(−)(pn, J ) = 〈Jπ ||C†(pn, J )||0+〉. (3)

The corresponding formulas for the β+ channel are obtained
by the changes

C†(pn, J ) → C(pn, J )

�(−)(pn, J ) → �(+)(pn, J ).
(4)

In the RPA, a nuclear state having angular momentum J and
projection M , is created by applying the phonon operator Q

†
JM

to the vacuum state |0+
RPA〉 of the initial, even-even, nucleus,

i.e.,

|JM〉 = Q
†
JM|0+

RPA〉; QJM|0+
RPA〉 = 0. (5)

Introducing the quasiparticle creation and annihilation oper-
ators α+

τmτ
and ατmτ

(τ = p, n) defined by the Bogoliubov
transformation,


 α+

τmτ

α̃τmτ


 =


 uτ vτ

−vτ uτ





 a+

τmτ

ãτmτ


 , (6)

the phonon operator Q
†
JM can be written within the QRPA as

Q
†
JM =

∑
pn

[
X(J )

pn A†(pn, JM) − Y (J )
pn Ã(pn, JM)

]
, (7)

where

A†(pn, JM) = [α†
p ⊗ α†

n]JM, (8)

and the forward- and backward-going free variational ampli-
tudes X and Y satisfy the matrix equation


 A B

B A





 Xm

Ym


 = Em


 1 0

0 −1





 Xm

Ym


 . (9)

Here m identifies different roots of the QRPA equations for a
given Jπ and

A = 〈0+
RPA|[A, [H,A†]]|0+

RPA〉,
B = −〈0+

RPA|[A, [H, Ã]]|0+
RPA〉.

(10)

For a realistic residual interaction, the matrices A and B are

AJπ

pn,p′n′

= (Ep + En)δpp′δnn′ − [gpp G(pn, p′n′; J )

× (upunup′un′ + upunup′un′ ) − gph F (pn, p′n′; J )

× (upvnup′vn′ + vpunvp′un′)],

BJπ

pn,p′n′

= [gpp G(pn, p′n′; J )(upunvp′vn′ + vpvnup′un′)

− gph F (pn, p′n′; J )(upvnvp′un′ + vpunup′vn′)],

where G(pn, p′n′, J ) and F (pn, p′n′, J ) are particle-particle
and particle-hole interaction matrix elements of a G matrix,
respectively.
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Within the QRPA, one has

C†(pn, JM) = upvnA
†(pn, JM) + vpunÃ(pn, JM), (11)

and the transition matrix takes the form

�(−)(pn, J ) = Ĵ
(
upvnX

(J )
pn + vpunY

(J )
pn

)
,

�(+)(pn, J ) = Ĵ
(
vpunX

(J )
pn + upvnY

(J )
pn

)
.

(12)

Correspondingly, the B(GT ) values for the GT transitions
0+ → 1+ can be written as

B(GT (−)) =
∣∣∣∣∣〈1+|

∣∣∣∣∣
∑

a

σaτ
−
a

∣∣∣∣∣ |0+〉
∣∣∣∣∣
2

=
∣∣∣∣∣
∑
pn

〈p||σ ||n〉(upvnX
(1+)
pn + vpunY

(1+)
pn

)∣∣∣∣∣
2

,

B(GT (+)) =
∣∣∣∣∣〈1+|

∣∣∣∣∣
∑

a

σaτ
+
a

∣∣∣∣∣ |0+〉
∣∣∣∣∣
2

=
∣∣∣∣∣
∑
pn

〈n||σ ||p〉(vpunX
(1+)
pn + upvnY

(1+)
pn

)∣∣∣∣∣
2

.

(13)

In calculations, a harmonic oscillator with an oscillator length
parameter b = 2.09 fm has been used to specify the SP wave
functions for 76Ge and 76Se. Those functions are positive at
the origin.

Using N = 3 and N = 4 oscillator shells in the QRPA
calculations for transitions to 1+ states in 76As gives a set of
23 two-quasiparticle excitations per Eq. (8) to be included, via
Eqs. (7) and (5), into the QRPA phonon creation operator for
1+ states in 76As [14,15]. That set is shown in Table I. The
individual components are identified by the label ID which will
be used in the discussion of results. Of those two-quasiparticle
states, the ones labeled with ID = 5, 6, 15, 16, 21, and 22
cannot be excited by the GT operator.

In Fig. 1, a set of one-body density matrix elements, ρ(+) of
Eq. (3) (OBDME hereafter), for the excitation of five particular

TABLE I. Two-quasiparticle configurations
forming the QRPA structure of 1+ states in 76As (rel-
ative to the ground state in 76Se) and corresponding
without pairing to particle-hole states.

ID q-p q-h ID q-p q-h
n�j n�j n�j n�j

1 0f7/2 0f7/2 13 0g7/2 0g9/2

2 0f7/2 0f5/2 14 0g7/2 0g7/2

3 0f5/2 0f7/2 15 0g7/2 1d5/2

4 0f5/2 0f5/2 16 1d5/2 0g7/2

5 0f5/2 1p3/2 17 1d5/2 1d5/2

6 1p3/2 0f5/2 18 1d5/2 1d3/2

7 1p3/2 1p3/2 19 1d3/2 1d5/2

8 1p3/2 1p1/2 20 1d3/2 1d3/2

9 1p1/2 1p3/2 21 1d3/2 2s1/2

10 1p1/2 1p1/2 22 2s1/2 1d3/2

11 0g9/2 0g9/2 23 2s1/2 2s1/2

12 0g9/2 0g7/2
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FIG. 1. (Color online) One-body density matrix elements
ρ(+)(pn, 1+) of Eq. (12), in arbitrary units, for six QRPA states 4, 7, 9,
10, 12, and 13 defined in Table II, as functions of the two-quasiparticle
components labeled according to Table I.

1+ states out of the total 23 found is shown for each of the
23 components (ID). These are the states of special interest
regarding the 76Se(n, p) zero-degree and/or zero-momentum
transfer cross sections considered later; being the strongest of
the 23 charge-exchange excitations considered. Of note is that
the strongest OBDME ρ(+) of the fourth state belongs to the
two-quasiparticle state 1p3/2-0f5/2 (ID = 6). That component,

TABLE II. Differential cross sections at zero degrees scatter-
ing for the charge-exchange reactions 76Ge(p, n) and 76Se(n, p)
exciting 76As(1+, m). The projectile energy in all cases was
200 MeV. R are the ratios of each of those cross sections with
the associated dimensionless GT strength. The calculated excitation
energy Ex of the 1+ states is measured from the ground state of 76Ge.

m Ex (MeV) 76Ge(p, n)(0◦) R 76Se(n, p)(0◦) R

1 1.16 5.61 3.73 0.09 3.15
2 2.10 1.74 5.55 1 × 10−3 25.48
3 2.41 1.01 5.27 0.03 10.96
4 2.87 2.35 6.19 0.22 6.93
5 3.14 1.07 3.80 3 × 10−4 571.43
6 3.41 3.04 4.95 3 × 10−3 40.12
7 3.95 12.28 4.16 0.26 3.71
8 4.86 2.31 3.56 0.08 3.54
9 5.16 15.01 3.96 0.38 3.10

10 6.39 0.34 5.45 0.18 6.27
11 8.40 18.43 3.47 0.04 3.40
12 9.90 4.77 4.09 0.31 3.83
13 11.25 3.98 4.21 0.24 4.29
14 11.44 9.40 4.01 0.01 4.77
15 12.31 10.05 4.05 0.05 3.63
16 12.60 51.52 4.02 0.01 3.91
17 12.82 1.49 3.93 3 × 10−4 8.93
18 13.47 0.08 3.94 2 × 10−3 4.25
19 13.63 0.14 4.14 0.01 4.16
20 14.37 0.27 3.98 0.02 3.92
21 15.01 5 × 10−3 4.10 2 × 10−5 3.20
22 16.71 0.02 4.87 7 × 10−4 6.13
23 17.36 0.10 4.21 0.02 4.58
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readily excited in the charge-exchange reaction, cannot be
excited by the GT operator. Thus, one may anticipate that the
proportionality between the charge-exchange reaction cross
section and the GT strength for this state may be different
from those of others.

III. REACTION THEORY

The charge-exchange reaction is described in a DWA in
which one requires transition structure details, optical model
wave functions (the distorted waves), and a transition operator
by which the reaction is effected.

A. The optical potentials

Conventionally, distorted wave functions are the relative
motion wave functions ascertained from an optical potential
with which good fits to elastic scattering data (cross section
and spin observables) have been obtained. In many studies,
those potentials have been assumed to be local in form and
usually of Woods-Saxon type with parameters adjusted to
find a good fit to elastic scattering data. But the associated
relative motion wave functions are not guaranteed to be proper.
Only the asymptotic (large radius) properties are tested by
such data fitting, since one only requires the scattering phase
shifts which are then used in Legendre polynomial sums that
define the cross sections, etc. There are other concerns about
phenomenological model potentials to be noted. The most
serious concern is the violation of the Pauli principle. A local
potential assuming smooth parameter variations with energy
will support bound and resonance states of the compound
system, and the projectile can be captured in any. But the
set includes states that are densely occupied in the actual
target. Furthermore, the resonances are then all single particle
in nature, and it is known that all nuclei support compound
and quasicompound ones as well. For low energy scattering,
one needs a better reaction theory, such as the multichannel
algebraic scattering theory (MCAS) to do better. Studies
with that MCAS approach [23,24] have revealed that when
coupled-channel effects are important, then the effects of
violation of the Pauli principle with potential-like models are
most severe and, even worse, can lead to erroneous physics.
This is one reason why we consider energies at which specific
coupled-channel effects, such as those of virtual excitation of
the giant resonances, are minor if not negligible. Coupling
to states in the continuum [25] has been investigated, but,
without taking into account the effects of the Pauli principle
in the optical potentials, that result lacks some credibility.
No doubt such may have a marked role in reactions such as
breakup and inelastic scattering into the continuum, but we do
not consider such coupling to the continuum as the transitions
of interest are to specific isolated states of given spin-parity.
For such, we have found no case as yet for which the basic
g-folding method (described next), when defined with good
spectroscopy, requires additional reaction processes to give
reasonable results.

A more physical approach is to form optical potentials
by folding an NN interaction with the target ground state
structure. In that way, one can also ensure that the Pauli

principle is not violated. However, once the target structure
has been set, then one has to choose the NN interaction.
For some time now, it has been known that the interaction
differs from the free NN one. Medium effects lead to the
effective NN interaction being energy and density dependent
as well as complex. The current best practice, at least for
energies below 3–3 resonance excitation, is to use an effective
interaction built from the NN g matrices that are solutions of
the Bethe-Brueckner-Goldstone (BBG) equations [10]. Using
those g matrices, for both on- and off-shell values and for
32 NN angular momentum channels, leads to an effective NN
interaction in coordinate space that is a mixture of central,
two-nucleon spin-orbit and two-nucleon tensor components.
Details of that mapping are given elsewhere [10].

Of great importance is that on using such an effective NN
interaction in forming optical potentials, and when account
is taken of the Pauli principle, those optical potentials are
strongly nonlocal and partial wave dependent. Nonlocality
arises from the allowance for knockout (exchange) amplitudes
in the so-called g-folding procedure [10]. Doing so requires
more than just the densities of the nuclear ground state. One
requires the ground state OBDME

ρgs = 〈0+
gs‖[a†

j ⊗ ãj ](J=0)‖0+
gs〉. (14)

Assuredly, the relative motion wave functions will differ from
those found using phenomenological (local) potentials even
if the potentials are phase equivalent. The Perey effect is
one ramification. Exchange effects are also most important in
evaluations of nonelastic scattering, and that will be discussed
later.

In coordinate space, the g-folding optical potential can be
written as

U (r, r′; E) = δ(r−r′)
∫

ρ(s)gD(r, s; E) ds

+
∑

i

niϕ
∗
i (r)gEx(r, r′; E)ϕi(r′),

ρ(s) =
∑

i

niϕ
∗
i (s)ϕi(s). (15)

Here ρ(s) is the nucleon density for nucleons with the occu-
pancies ni . To evaluate these potentials requires specification
of three quantities. They are the single nucleon bound state
wave functions ϕi(r), the orbit occupancies ni , which more
properly are the nuclear OBDME of Eq. (14), and the NN g

matrices gD/Ex(r, s; E).

B. The effective interaction between projectile and
bound nucleons

The g matrices in the equation above are appropriate
combinations of NN interactions in the nuclear medium
for diverse NN angular momentum channels. For those NN
interactions, much success has been had using an effective
NN interaction, now commonly designated as the Melbourne
force [10], and which has the form gST

01 ≡ gST
eff (r, E; kf (R)),

where r = r0−r1 and R = 1
2 |(r0+r1)|. It is based on the g
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matrix of the Bonn B potential [26]. In the prescription, the
Fermi momenta relate to the local density in the nucleus at
distance R from the center when ri are the coordinates of the
colliding projectile and bound nucleons. {ST} are the spin and
isospin quantum numbers of the NN system.

For use in the DWBA98 program [27], these effective NN g

matrices are, specifically,

gST
eff = gST

eff (r, E; kf )

=
3∑

i=1


 4∑

j=1

S
(i)
j (E; kf )

e−µ
(i)
j r

r




[S,T ]

�i

=
3∑

i=1

g
(i)ST
eff (r, E; kf )�i, (16)

where �i are the characteristic operators for central forces
(i = 1), {1, (σ ·σ ), (τ ·τ ), (σ ·στ ·τ )}, for the tensor force (i =
2), {S12}, and for the two-body spin-orbit force (i = 3), {L ·S}.
The S

(i)
j (E; kf ) are complex, energy- and density-dependent

strengths. The properties of the g matrices are such that not
only can the ranges of the Yukawa form factors be taken as
independent of energy and density [10], but also four suffice
with this approach for energies to just below the 3–3 resonance
threshold.

The strengths (and ranges) in these effective NN interac-
tions were found by mapping their double Bessel transforms
to the NN g matrices in infinite nuclear matter (solutions of
the BBG equations). With α: {LL′JST }, this mapping is

gJST
eff;LL′(q ′, q; E) =

∑
i

〈�i〉 Ii , (17)

where the radial integrals expand to

Ii =
∫ ∞

0
r2+λjL(q ′r) g

(i)ST
eff (r, E; kf ) jL′(qr) dr

=
∑

j

S
(i)
j (ω)

∫ ∞

0
r2+λjL(q ′r)

e−µ
(i)
j r

r
jL′(qr) dr

=
∑

j

S
(i)
j (ω)τα

(
q ′, q; µ(i)

j

)
. (18)

Therein λ = 2 for the tensor force. In application, a singular
valued decomposition has been used to effect this mapping.

C. The DWA for nonelastic reaction analyses

In the DWA, amplitudes for a nonelastic scattering of
nucleons from nuclei, through a scattering angle of θ , and
between the states |Ji,Mi〉 and |Jf ,Mf 〉, are

TDWA = T
Mf Miν

′ν
Jf Ji

(θ )

= 〈χ (−)
ν ′ (k00)| 〈�Jf Mf

(1 . . . A)
∣∣

×A
∑
ST

gST
eff (r0,1, E; kf )PSPT

×A01
{|χ (+)

ν (ki0)〉 ∣∣�JiMi
(1 . . . A)

〉 }
, (19)

where ν, ν ′ are the spin quantum numbers of the nu-
cleon in the continuum, χ (±) are the distorted waves, and
gST

eff (r0,1, E; kf )PSPT is the spin-isospin Melbourne force. The
operatorA01 effects the antisymmetrization of the two-nucleon
product states.

Then, by using cofactor expansions, |�JM〉 = A−1/2∑
j,m

|ϕjm(1)〉ajm|�JM〉, the matrix elements become

T
Mf Miν

′ν
Jf Ji

=
∑

j1,j2i,S,T

〈
�Jf Mf

∣∣ a†
j2m2

aj1m1

∣∣�JiMi

〉

×〈χ (−)
ν ′ (k00)| 〈ϕj2m2 (1)

∣∣ gST
eff (r0,1, E; kf )

×PSPTA01
{|χ (+)

ν (ki0)〉 ∣∣ϕj1m1 (1)
〉 }

. (20)

The density matrix elements in the amplitudes reduce as

〈
�Jf Mf

∣∣ a†
j2m2

aj1m1

∣∣�JiMi

〉
=

∑
I (N)

( − 1)(j1−m1)〈j1, j2,m1,−m2|I,N〉

× 〈
�Jf Mf

∣∣ [a†
j2

⊗ aj1

]IN ∣∣�JiMi

〉
=

∑
I (N)

( − 1)(j1−m1)〈j1, j2,m1,−m2|I,N〉

× 〈Ji, I,Mi,N |Jf ,Mf 〉 1√
2Jf + 1

Sj1j2I , (21)

where Sj1j2I are the transition OBDME. The DWA amplitudes
are then

T
Mf Miν

′ν
Jf Ji

=
∑

ξ

( − )(j1−m1)√
2Jf + 1

Sj1,j2,I 〈j1, j2,m1,−m2|I,N〉

× 〈Ji, I,Mi,N |Jf ,Mf 〉〈χ (−)
ν ′ (k00)| 〈ϕj2m2 (1)

∣∣
× gST

eff (r0,1, E; kf )PSPTA01

× {|χ (+)
ν (ki0)〉 ∣∣ϕj1m1 (1)

〉 }
. (22)

In this, {ξ} = j1, j2,m1,m2, I (N ), S, T with j2 being the
particle and j1 the hole in a particle-hole specification of the
transition.

Thus, in our DWA evaluations of the charge-exchange
scattering of interest, namely, 76Ge(p, n) and 76Se(n, p) to 1+
states given by a QRPA model, we have used the following:

(i) SP wave functions, i.e., harmonic oscillators with
oscillator length of 2.09 fm, are used to specify both
the optical potentials and the reaction amplitudes.

(ii) Optical potentials (to give the distorted waves) are
formed with the Melbourne effective NN interaction at
the relevant incident particle energies. The occupancies
of the single-particle level are automatically given in the
QRPA due to pairing and configuration mixing and are
contained in the OBDME in Eq. (12).

(iii) The same effective interactions are used in evaluations
of the charge-exchange cross sections.

(iv) The ρ(±) of Eq. (12) are taken as the Sj1,j2,I=1 depending
upon which reaction, (p, n) or (n, p), is described.
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FIG. 2. (Color online) Ratio to Rutherford cross sections for 64.5
MeV protons scattering from 76Se. The solid line represents the
calculation result of this work.

IV. RESULTS

We have stressed the importance of using an appropriate
optical model to define the distorted wave functions in DWA
evaluations of the charge-exchange scattering. We contend that
potentials formed using the g-folding procedure are such for
incident nucleon energies in the range ∼40 to ∼300 MeV and
for nuclei for which, at the minimum, sensible models of their
ground state structures can be specified.

For the mass-76 nuclei we consider specifically, very few
nucleon scattering results have been reported. We have found
data for the scattering of 22.3 MeV protons from both 76Ge
and 76Se [28] and for 64.5 MeV proton scattering from 76Se
[29] (see Fig. 2). For nucleon scattering off of these targets,
22.3 MeV may be too low an energy to have confidence that
the reaction processes not included in the g-folding method,
e.g., coupled-channel effects, multistep processes, and the like,
may have importance. For energies 40 MeV and higher, such
extra processes have not been needed to find good replication
of elastic scattering data with g-folding model evaluations
[10,30–35], when good structure, and appropriate effective
NN interactions are used, and a proper treatment of the Pauli
principle is made.

In this study, we have chosen four incident energies at which
the transition to the lowest 1+ state in 76As is considered. Those
energies are 45, 65, 120, and 200 MeV. Subsequently, for our
investigation of transitions to all 23 1+ state excitations, we
have used just the two largest energies of 120 and 200 MeV.
Proton elastic scattering data have been taken for all four ener-
gies and from many targets. With most cases, g-folding model
analyses [10] gave good reproductions of the observations,
especially whenever good models for the structure of the target
were available. Besides the studies reviewed in Ref. [10], more
recent studies have used the g-folding method to assess the
neutron excess distributions in nuclei [36–39], to compare with
nonrelativistic and relativistic phenomenological Schrödinger
equation solutions [30,31], and to ascertain neutron halo or
neutron skin characteristics in light mass radioactive nuclei
[32,33].

It is a mantra of g-folding studies that no adjustments
to details specified are considered post facto. Consequently,
g-folding predictions invariably do not yield the quality of fit
to a data set that may be obtained by the appropriate adjustment
of parameters in current, phenomenological, optical potentials
[40]. Nonetheless, the g-folding approach does give cross
sections that compare well with observations; well enough
that, in some cases, results [32,33,36,38,39] revealed whether
a nucleus had a neutron skin or halo.

An analysis of cross sections from the elastic scattering of
65 MeV protons from 76Se is illustrative of the quality of the
g-folding potential results. That data [29], in ratio to Ruther-
ford form, are compared in Fig. 2 with the (single calculation)
result from our g-folding optical model potential of the system.
With the exception of the forward peak, our prediction com-
pares favorably with the result of the phenomenological optical
potential calculation of Ogino et al. [29]. The agreement
with data from our nonphenomenological approach suffices to
give confidence that the nonlocal, complex, optical potential
formed fully microscopically is a credible, physically justified,
one. It is important to note that there is no addition of any
phenomenological elements as used in what may be termed
semimicroscopic methods [25,41].

Differential cross sections evaluated at zero-degree scatter-
ing and the total reaction cross sections from 76Ge(p, n) and
76Se(n, p) leading to the first 1+ state in 76As are displayed
in Fig. 3. The results found at energies of 45, 65, 120, and
200 MeV are connected by solid lines (0◦ cross sections)
and by dashed lines (reaction cross sections). The results of
76Ge(p, n) to the first excited 1+ state in 76As are larger than
those of 76Se(n, p) to the same first excited 1+ state. Over these
energies, those ratios range from 25 to 65. It is intriguing that
both the zero-degree differential cross sections, which increase
with energy, and the reaction cross sections, which decrease
accordingly, have such similar ratios.

The scale factors are not simply a zero-degree phenomenon.
This is emphasized by the differential cross-section results for
the four energies displayed in Fig. 4 for a small range of
momentum transfer qc.m. from 0. The results in the top of
this figure for the four energies, as indicated, are those from
the charge-exchange (p, n) reaction. The other (smaller in
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FIG. 3. (Color online) Zero-degree differential cross sections
(filled circles) and total reaction cross sections (filled triangles) from
76Ge(p, n) and 76Se(n, p) leading to 76As(1+

1 , 0.947 MeV).
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FIG. 4. (Color online) Differential cross sections from the two
charge-exchange reactions leading to the first 1+ state in 76As for
bombarding energies of of 45 (solid curves), 65 (dashed curves), 120
(dot-dashed curves), and 200 (double dot-dashed curves) MeV.

magnitude) results are differential cross sections for the (n, p)
reaction. The scale factors are an effect of the Pauli principle.
In 76

32Ge44, the proton Fermi surface lies between the 1p3/2 and
the 0f5/2 levels, while the neutron Fermi surface lies within
the 0g9/2 single-particle state. For the (p, n) charge-exchange
reaction, one must move a neutron into a proton level. In these
nuclei, the GT transition operator τ−σ can make a nucleon
into a single-particle level with the same quantum numbers
or to the spin-orbit partner. This is possible for transitions
0f5/2 → 0f5/2, 1p1/2 → 1p1/2, and 0g9/2 → 0g9/2. But
for the inverse reaction, (n, p) on 76

34Se42, all the possible
single-particle GT transitions are strongly Pauli hindered, if
not Pauli blocked. The latter cases allow GT transitions, since
the GT operator can only move a proton into a corresponding
neutron level of the same (n�j ) orbit or the spin-orbit partner
because of the smearing of the Fermi surface which is mainly
induced by pairing correlations. For the charge-exchange
reaction (n, p), on the other hand, the finite-range character of
the transition operator and the knockout process associated
with antisymmetrization allow non-GT-type transitions to
contribute.

The energy variation in magnitudes of these results for
each reaction separately reflects the energy dependence of
the contributing terms to the charge exchange process in the
effective NN interaction. Tensorial components, which do
not contribute strongly to the charge-exchange processes we
consider herein, nonetheless vary in importance in the overall
prescription of the medium modified force [10] with energy
and with angular momentum transfer [34,35]. Above 100 MeV
these cross sections are essentially of the same magnitude, and
so we consider the two energies, 120 and 200 MeV, in the
subsequent discussions. We note that for all four energies and
for those of 120 and 200, in particular, cross sections smoothly
decrease away from the zero-momentum transfer values over
the small momentum transfer values considered. Furthermore,
while the momentum transfer values for zero-degree scattering
at these two energies are small but nonzero, evaluations of cross
sections setting energies to give a zero-momentum transfer

gave values less than a percent different from those of the
actual zero-degree calculations.

The foregoing dealt only with the excitation of the first 1+
state in 76As. We now consider the zero-degree cross sections
for all 23 possible 1+ states defined by the QRPA and their
ratios to the corresponding GT strengths. Shown in Table II,
those cross-section values for the 76Ge(p, n) and 76Se(n, p)
reactions to each of the 23 excited 1+ states are listed in
columns 2 and 4. The ratios of those with the corresponding
GT strengths are listed in columns 3 and 5.

State 16 corresponds to excitation of the GT resonance that
is reflected by the large (p, n) cross section at zero-degree
scattering being 51 mb/sr. The corresponding GT strength has
a dimensionless value of 12.8. The states 7, 9, 11, 15, and 16
have differential (p, n) cross sections at zero-degree scattering
larger than 10 mb/sr. The ratio to the GT strength for these five
states are 4.16, 3.96, 3.47, 4.05, and 4.02. The ratio for these
five leading states therefore lies between 3.47 and 4.16; and so
there is about a 20% variation relative to the mean value. The
six largest values for the 76Se(n, p) cross section at zero-degree
scattering are obtained for the states identified as 4, 7, 9, 10,
12, and 13 in the sequence. The ratios of these cross sections
to their corresponding GT strengths vary between 3.1 and 6.9.
Thus for these six largest (n, p) transitions, there is a variation
in the ratio of the zero-degree charge-exchange cross section
to the GT strength of about 80%. This is large in comparison
to the variation in the ratios involving the strongest (p, n)
reaction cross sections.

In Fig. 5, the zero-degree cross sections for 76Ge(p, n)76As
(1+,m); m = 1, . . . , 23 are shown by the filled circles
connected by dashed lines. The filled squares connected
by solid lines are the dimensionless GT strengths of the
operator of Eq. (13), B(GT(−),76Ge →76As), for transition
to each state of the QRPA given in sequence in Table II.
The charge-exchange cross-section values, connected by the
dashed lines, resulted from DWA calculations made using
the full NN interaction (Melbourne force) as the transition
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FIG. 5. (Color online) Differential cross sections at zero-degree
scattering from DWA calculations of 76Ge(p, n)76As(1+,m). Results
found with and without noncentral components in the transition
operator are depicted by the filled and open circles, respectively. The
filled squares are the values of B(GT(−)) for 76Ge →76 As(1+,m) for
each 1+ state.
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operator. The open circles are results obtained when only the
central part of that transition operator was used. Clearly, for
zero-degree scattering and the two-body spin-orbit and tensor
contributions do not affect the cross sections appreciably. The
proton incident energy for all (p, n) reactions is 200 MeV.

Clearly the zero-degree cross sections for all (p, n) transi-
tions track similarly to the GT strengths of the same states. For
the (p, n), and presumably also for the corresponding reactions
(3He, t), the proportionality between those charge-exchange
reaction cross sections in the forward direction and the GT
strengths is fulfilled quite well. As noted above, that means
a proportionality within about 20% for the five strongest
transitions.

The situation is different for the (n, p) reactions and
presumably also for the corresponding reactions (t,3He) and
(7Li,7Be). That is evident from inspection of the results in both
Table II and Fig. 6. For these transitions, most components
are Pauli forbidden so far as the GT operator is concerned.
Finite values occur only s a result of a smearing of the Fermi
surfaces. But the (n, p) reactions, while hindered similarly,
also can proceed by excitation of other components in the
wave functions.

From Fig. 6, it is evident that the (n, p) cross-section
variation over the 23 QRPA possible states still tracks the
values of the associated GT strengths. However, note that
both cross sections and GT strengths are much smaller than
their counterparts in Fig. 5, and the omission of noncentral
force elements in DWA calculations makes some greater
variation than seen with the (p, n) results. Consequently, the
proportionality “constant” of the ratio of forward direction,
(n, p) charge-exchange cross sections to the GT strengths for
the six strongest transition is very large.

Because the specifics of the Melbourne force change with
incident energy, particularly those of the noncentral compo-
nents, we have made DWA calculations at other energies.
At 120 MeV, the zero-degree cross section values and their
ratios with the associated GT strengths are listed in Table III.
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FIG. 6. (Color online) Differential cross sections at zero-degree
scattering for 76Se(n, p) to the 23 1+ states in 76As (filled circles
connected by dashed lines). The DWBA results found by restricting
the transition operator to just the central terms are depicted by the
open circles. The associated GT strengths are shown by the filled
squares connected by solid lines.

TABLE III. Zero-degree charge-exchange cross sections
and ratios R of them to the associated GT strength
for the 76Ge(p, n) 76As and 76Se(n, p) 76As reactions to
76As(1+,m). Incident energy was 120 MeV.

m 76Ge(p, n)(0◦) R 76Se(n, p)(0◦) R

1 6.51 4.33 0.10 3.58
2 2.40 7.64 9×10−3 210.10
3 1.47 7.67 0.05 17.26
4 2.98 7.85 0.28 8.80
5 1.32 4.70 6×10−4 1146.9
6 3.73 6.07 2×10−3 25.56
7 14.85 5.03 0.31 4.35
8 2.77 4.26 0.09 4.13
9 17.47 4.61 0.46 3.73
10 0.46 7.45 0.24 8.68
11 21.52 4.06 0.04 3.91
12 5.65 4.84 0.37 4.56
13 4.81 5.08 0.24 4.19
14 11.07 4.73 0.02 8.06
15 11.83 4.76 0.07 4.50
16 61.63 4.81 0.02 6.29
17 1.84 4.86 2×10−3 49.43
18 0.09 4.51 2×10−3 5.12
19 0.17 5.06 0.01 4.68
20 0.33 4.87 0.02 4.91
21 6×10−3 4.90 7×10−5 10.88
22 0.02 5.68 9×10−4 8.10
23 0.11 4.54 0.02 4.65

As with the 200 MeV results, the proportionality between
the charge-exchange cross sections calculated at zero-degree
scattering and the GT strength is fulfilled to within about 20%
for the reaction 76Ge(p, n). However, the variation is much
larger for the ratios with the cross sections for 76Se(n, p). In
fact the variation of the latter ratios is near 90% when one
considers only the strongest (n, p) transitions.

In Fig. 7, the zero-degree cross sections from our DWA
evaluations of all 76Se(n, p) reactions to the QRPA 1+ states in
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FIG. 7. (Color online) Zero-degree differential cross sections
from DWA calculations of 120 MeV 76Se(n, p) to 1+ excited states
in 76As and the associated GT strengths. Details are given in the text.
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FIG. 8. (Color online) Ratios of cross sections from 76Ge(p, n)
76As evaluated at zero degrees with the GT strengths (filled circles)
for an incident energy of 200 MeV and for 76Se(n, p) 76As displayed
for 200 MeV (open diamonds) and for 120 MeV (filled triangles).

76As are shown for an incident neutron energy of 120 MeV. As
before, those results are depicted by the filled and open circles
(connected by the dashed lines to guide the eye), with the filled
circle presenting the results when the complete Melbourne
force is used, and the open circles giving the results when only
the central force components are considered. The associated
GT strengths are depicted by the filled squares connected by
the solid lines. As with the results for 200 MeV, the (n, p) cross
section values vary across the 23 QRPA cases very similarly
to the GT strength values. But the devil is in the differences
again, and the ratio of them is far from being constant over the
set.

Finally, in Fig. 8 are shown the ratios of our calculated
zero-degree charge-exchange cross sections and GT strengths
for the transition 76Ge →76As (filled circles connected by a
solid lines) to the 23 QRPA states in 76As and for the incident
proton energy of 200 MeV. The ratios for 76Se(n, p) 76As cross
sections are displayed by the open diamonds connected by
dashed lines (200 MeV) and by the filled triangles connected
by dot-dashed lines (120 MeV). On this scale, the relative
smoothness of the ratios for all 23 QRPA cases of 76Ge
→76As is apparent. The variation, though, is ∼20%. But the
extreme variation over the set for the 76Se(n, p) 76As ratios
makes it impossible to consider forming a proportionality
constant. Even restricting consideration to the five strongest
(n, p) transitions yields a variation of ∼90%.

Even more approximate treatments of the charge-exchange
reaction cross sections and nuclear stucture have to show the

violation of the proportionality between the cross sections of
forward charge-exchange reactions of the (n, p) type and the
GT strength in the second leg of double β decay for nuclei
with an appreciable neutron excess.

V. CONCLUSIONS

In conclusion, from our analysis of excitations with the
QRPA model structure for the three mass-76 nuclei, the
proportionality between forward differential cross sections and
GT strengths is fulfilled to within about 20% for the 76Ge(p, n)
GT transitions. But this is not the case with forward differential
charge-exchange (n, p) reactions unlike the cases in light mass
nuclei. In light nuclei, where protons and neutrons fill the same
or nearly the same single-particle levels, the proportionality of
forward charge-exchange reaction cross sections and the GT
strengths seems valid for both (n, p) and (p, n) processes. For
them, the proton and neutron Fermi surfaces are similar. But
that is not so for medium-heavy nuclei such as the mass-76 set
we considered here. With them, the proton and neutron Fermi
surfaces are quite different, and the effects of Pauli blocking
(hindering for smeared surfaces) allows the proportionality to
be good (within 20%) for (p, n) processes but not for (n, p)
transitions. This arises because the charge-exchange (n, p)
transitions are sensitive to radial overlaps of single-particle
wave functions whereas the GT values are not; and for the
(n, p) processes, those in which a nucleon stays within a given
orbit but changes type are not as dominant as with the (p, n)
ones.

We anticipate that such will be the case for systems that
have sizable neutron excess. It will be interesting to apply the
approach we have taken not only to cases when relevant data
are available with which additional tests of the quality of the
nuclear structure model can be made but also to any case for
which application of theories for charge-exchange processes
initiated by composite projectiles, as comparably physically
justified, can be made.
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