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Boost-invariant mean field approximation and the nuclear Landau-Zener effect
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We investigate the relation between time-dependent Hartree-Fock (TDHF) states and the adiabatic eigenstates
by constructing a boost-invariant single-particle Hamiltonian. The method is numerically realized within a
full three-dimensional TDHF which includes all the terms of the Skyrme energy functional and without any
symmetry restrictions. The study of free translational motion of a nucleus demonstrates the validity of the
concept of boost-invariant and adiabatic TDHF states. The interpretation is further corroborated by the test case
of fusion of 16O+16 O. As a first application, we present a study of the nuclear Landau-Zener effect on a collision
of 4He +16 O.
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I. INTRODUCTION

The time-dependent Hartree-Fock (TDHF) approximation,
originally proposed by Dirac [1], has found widespread
application in nuclear dynamics for more than 30 years [2].
It provides the microscopic foundation for describing various
dynamical scenarios in the regime of large amplitude collective
motion. Soon after its introduction to nuclear physics, the
TDHF approximation was extensively applied to studies of
fusion excitation functions, fission, deep-inelastic scattering,
collective excitations, and nuclear molecular resonances.
These studies shed light on several mechanisms of heavy-ion
collisions and resonance dynamics. Reviews on these earlier
TDHF applications can be found, e.g., in Refs. [3,4].

At that time, however, limited computer capacity restricted
most calculations to axial symmetry and omission of spin-orbit
coupling. These limitations turned out to be a hindrance for
the development. For example, earlier TDHF calculations
underestimated the energy dissipation from the collective
kinetic energy into internal excitations so that the energy
window of fusion reactions was too small in comparison
with experiments. Later work demonstrated that the spin-orbit
coupling [5,6] and fully three-dimensional geometry [7–9]
enhance dissipation. None of these calculations, however, was
able to include all constituents simultaneously. With the steady
upgrade of computational power, three-dimensional TDHF
calculations employing the full Skyrme force became possible
and renewed the interest in nuclear TDHF as seen from recent
publications on resonance dynamics [10–14] and heavy-ion
collisions [15–18]. One expects that the new generation TDHF
calculations may yield more realistic features for heavy-ion
collisions at low and medium energies and for resonance
dynamics. This revives old questions that have been left
unanswered for a while, one of which is the subject of this
paper: the analysis of heavy-ion collisions as computed by
TDHF in terms of adiabatic states and level-crossing dynamics.

Nucleus-nucleus collisions present different behavior de-
pending on the delicate balance of reaction time and rearrange-
ment time of the mean field. For example, the experimentally
observed resonancelike peaks in the inelastic cross sections are
explained in terms of the well-known Landau-Zener excitation

due to a breakdown of the adiabaticity condition near an
avoided level crossing. The Landau-Zener mechanism was first
introduced into nuclear physics in Ref. [19]. The Landau-Zener
effect and its applications to heavy-ion collisions have been
discussed [20–22] in terms of the asymmetric two-center
shell model (TCSM) [23], employing the assumption that the
nucleons can be described with adiabatic “molecular” states,
i.e., the instantaneous eigenstates of the deformed mean field,
during the heavy-ion reaction. A review on Landau-Zener
dynamics and experimental data in nuclear molecules may
be found in Refs. [24,25].

TDHF calculations, however, have never been analyzed in
terms of the Landau-Zener effect because their single-particle
states and energies have no simple physical interpretation
and a construction of corresponding adiabatic states was
not readily available. There were early attempts to define
a related adiabatic basis by means of density-constrained
Hartree-Fock [26,27]. These turned out to be very promising,
lacking, however, at that time the exact treatment of the
flow contributions. Improved computing power now allows
us to revisit the case without technical restrictions. We thus
will present here a self-consistent scheme to define and
compute two useful analyzing instruments for a given TDHF
state: instantaneous single-particle energies and instantaneous
adiabatic states. The straightforward expectation values of the
single-particle Hamiltonian turn out to be blurred by trivial
flow contributions. To take into account the effect of motion on
the single-particle wave functions, we define a single-particle
Hamiltonian which is invariant under Galilei transformation,
in particular under a boost. We call that the boost-invariant
Hamiltonian. This dramatically reduces the energy variances
of the actual TDHF states, providing better-defined single-
particle energies. Moreover, the (instantaneous) eigenstates
and energies of the boost-invariant Hamiltonian provide a
well-defined adiabatic basis. For example, the single-particle
states in free translational motion are exact eigenstates of
this boost-invariant Hamiltonian and its expectation values
remain the static single-particle energies. While this property
is not exact anymore in a situation of two colliding nuclei,
we shall demonstrate that this method nevertheless allows us
to define meaningful single-particle energies and variances

0556-2813/2007/76(1)/014601(7) 014601-1 ©2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.76.014601


LU GUO, J. A. MARUHN, AND P.-G. REINHARD PHYSICAL REVIEW C 76, 014601 (2007)

thereof. Moreover, one can establish an approximate relation
of the time-dependent solutions to the adiabatic deformation-
dependent spectrum. As a first application we study the
Landau-Zener effect in heavy-ion collisions.

The paper is organized as follows: Section II briefly recalls
the Skyrme energy functional and TDHF. In Sec. III, we
construct a boost-invariant Hamiltonian and test its validity
for free translational motion of a nucleus. Section IV applies
the newly developed scheme to the analysis of level crossings
in heavy-ion collisions. Section V is devoted to the summary
and conclusions.

II. COMMENTS ON TDHF WITH SKYRME FORCES

Most nuclear TDHF calculations by far are based on the
Skyrme energy functional; for a recent extensive review,
see Ref. [28]. It is also used in the present applications.
The starting point is the Skyrme energy-density functional
ESk = E(ρ, τ, �σ , �j, �J ), which is expressed in terms of a few
local densities and currents: density ρ, kinetic density τ , spin
density �σ , current �j , and spin-orbit density �J . It includes free
kinetic energy, Skyrme interaction, Coulomb energy, and the
center-of-mass correction. The pairing energy is ignored here,
as we will deal with collisions of closed-shell nuclei. There
are various parametrizations of the Skyrme force [28]. Since
the present study is concerned with fundamental effects which
should not depend on the detailed force used, we thus chose just
one parametrization out of many, namely, the force SLy6 [29]
which is widely used and provides a reliable description of
nuclear structure and dynamics.

Using the principle of least action and varying with respect
to the single-particle state ϕ∗

α , we obtain the TDHF equations
(in the following, units with h̄ = 1 are used)

i∂tϕα = ĥ(ρ, τ, �σ , �j, �J )ϕα, (1)

where ĥ is the time-dependent mean field Hamiltonian
depending on the occupied single-particle wave functions
through densities and currents. Given the initial conditions,
{ϕα(�r, t = 0)}, the TDHF equations (1) determine the wave
functions for all later times. In the stationary limit, we obtain
the static mean field equation

ĥϕα = εαϕα, (2)

where the single-particle energies εα appear naturally as
eigenvalues of the mean field Hamiltonian ĥ. The question
is how to generalize the definition of the single-particle energy
to TDHF. The naive definition is to use the expectation value
of the instantaneous mean field ĥ(t). This, however, raises
difficulties, as we will see. Possible improvements will be
developed in the sequel.

A few words on the numerical solution are in order.
The set of nonlinear TDHF equations is solved on a three-
dimensional Cartesian coordinate-space grid employing a
Fourier representation for the derivatives. All contributions
of the full Skyrme force were included and no symmetry
restrictions imposed. The coordinate-space grid consists of
24 × 24 × 24 points with a grid spacing of 1 fm. For the

dynamical time stepping, we use a Taylor series expansion of
the unitary mean field propagator up to sixth order [8] and
a time step of 0.2 fm/c. These numerical parameters provide
good conservation of particle number and total energy during
the dynamic evolution. The static HF equations were solved
with the damped gradient iteration method [30,31].

III. SINGLE-PARTICLE ENERGIES IN A MOVING FRAME

A. Adiabatic expansion as a propaedeutic example

Adiabatic single-particle states are eigenstates of a single-
particle Hamiltonian for a given set of deformation parameters.
For a first introduction, we will discuss that concept in this
section on the grounds of a given, properly parametrized,
single-particle Hamiltonian, such as, e.g., that of the TCSM
[23]. Such a Hamiltonian usually depends on a few collective
deformation parameters which characterize the wanted reac-
tion path. For simplicity, let us just deal with internuclear
distance R as the sole such parameter and skip trivial
complications such as spin and isospin. The proper choice
of an R-dependent single-particle potential V (�r; R) and the
subsequent solution of the eigenvalue problem yield a set
of adiabatic single-particle states φk(�r; R) and corresponding
eigenenergies εk(R). Using the adiabatic single-particle states,
we expand the time-dependent (but still independent-particle)
solution as

ψj (�r, t) =
∑

k

cjk(t)φk(�r; R(t))e−i
∫ t

t ′ dt ′εk[R(t ′)]. (3)

Such an expansion underlies, e.g., the cranking model [32,33].
This expansion has the problem that it relies on a stationary
basis in which the current vanishes for all states. Any flow has
to be described through the complex expansion coefficients
cjk . This limits the ansatz (3) to extremely slow motion.

An instructive example is the uniform center-of-mass
translation of an unexcited nucleus with velocity �v = �p/m.
It is described by coherently moving single-particle states
ψk(�r, t) = φk(�r − �vt)exp(i(�k · �r − εkt)). Clearly, the trivial
plane-wave factor which produces the correct flow is missing
from the basis states in Eq. (3). It has to be reconstructed
laboriously by the expansion coefficients. A much more
efficient description could be obtained by properly extending
the scheme to a dynamic basis φk(�r; R, Ṙ) which already
accounts for collective flow. This step was found to be crucial
for the derivation of microscopic theories for collective motion
in the framework of adiabatic TDHF [34]. We will now use
the extension for the definition of adiabatic reference states in
TDHF. The example of center-of-mass motion will be used as
guidance.

B. Flow-induced variances

We will now discuss the case of self-consistent mean
fields. To simplify the formal considerations, we restrict the
discussion to one spatial dimension and think in terms of the
simplest energy functional E = E(ρ) depending only on the
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local density and producing a purely local mean field, i.e.,

ĥ[ρ] = p̂
2

2m
+ U (x, t), U (x, t) = δE

δρ(x, t)
, (4)

where U is obtained from E by functional derivation. The
ground-state wave functions {ϕ0,α} fulfill the equations

(ĥ0 − εα)ϕ0,α(x) = 0, (5)

with εα being the static single-particle energies.
As a test case, consider center-of-mass motion of the HF

ground state. The motion is initialized by a boost with total
momentum P = MV where V is the velocity of the center of
mass and M = Nm the total mass. The same boost is applied
to all single-particle wave functions

ϕ0,α → ϕα(x, t) = eiP x̂/Nϕ0,α(x − V t)e−iε̃α t , (6a)

ε̃α = εα + P 2

2M
. (6b)

The local density is then propagated with velocity V as
ρ(x, t) = ρ0(x − V t), and this, in turn, carries through to
the mean field motion as U (x, t) = U0(x − V t). The boosted
wave functions together with the similarly moving mean field
are the solution of the TDHF equations (1). The action of the
mean field on the boosted wave function can be expressed in
terms of the static solution as

ĥϕα = eiP x̂/Ne−iε̃α t

(
ε̃α + P

M
p̂

)
ϕ0,α. (7)

The expectation value is simply 〈ϕα|ĥ|ϕα〉 = ε̃α . Both
together allow evaluation of the variance of the single-particle
Hamiltonian explicitly as

〈ϕα|�ĥ
2|ϕα〉 = P 2

M2
〈ϕ0,α|p̂2|ϕ0,α〉. (8)

It is obvious that the moving wave function ϕα is not an
eigenstate of the instantaneous mean field Hamiltonian ĥ. The
variance grows quadratically with the boost momentum P , i.e.,
proportionally to the center-of-mass energy. The expectation
value ε̃α also becomes misleading. The kinetic contribution
makes the binding properties invisible. This problem was
already noticed by Thouless and Valatin [35] while they were
studying Galilean invariance of the TDHF equation.

C. Construction of a boost-invariant mean field

The above example of center-of-mass motion is instructive.
The variance of the mean field Hamiltonian grows, although
we know that the system remains intrinsically unaltered. All
that happens is a trivial kinematical effect. Thus there should
be ways to undo it equally trivially. In the center-of-mass case,
we could simply transform the single-particle momentum into
the intrinsic frame as p̂ → p̂−P/N and use that in the kinetic
energy operator. That indeed provides a reasonable boost-
invariant Hamiltonian for that particular case. A generalization
can be obtained with the concept of the local momentum
distribution p̄(x) as given by the local current j (x). This

suggests the definition of a locally boost-invariant momentum

p̂ → p̂inv = p̂ − p̄(x), p̄(x) = j (x)

ρ(x)
, (9)

which can be extended to a boost-invariant kinetic-energy
density τinv =

∑
α
|p̂invϕα|2 = τ − j 2/ρ. It is interesting to

note that this is practically the Galilean-invariant combination
τρ − j 2 of kinetic contributions in the interaction part of the
Skyrme energy functional [28,36]. This gives confidence in
the above generalization.

The idea thus is to define an “intrinsic” energy functional by
replacing the kinetic energy ∝ ∫

d3rτ by the boost-invariant
kinetic energy

Ekin,inv = 1

2m

∫
dx

(
τ − j 2

ρ

)
. (10)

The potential energy was already boost-invariant, and thus
the total functional becomes so. This functional is to be used
for the purpose of analysis only, and it plays no role for the
computation of the time evolution as such. Variation leads to
the corresponding boost-invariant mean field Hamiltonian

ĥinv = p̂
2

2m
+ U (x, t) − 1

2m

{
j (x)

ρ(x)
, p̂

}
+ j 2(x)

2mρ2(x)
, (11)

where { . . . , . . . } is the anticommutator and U (x, t) the usual
time-dependent mean field potential. The first two terms are
exactly the same as in the usual TDHF Hamiltonian, and the
last two stem from the boost-invariant kinetic energy. The
corrected Hamiltonian then defines a boost-invariant single-
particle energy

ε(inv)
α = 〈ϕα|ĥinv|ϕα〉. (12)

Next we will show that the boost-invariant Hamiltonian has
the boosted TDHF wave functions as eigenstates in the case
of free translation.

D. Test case: Free translational motion

The construction of the boost-invariant Hamiltonian (11)
was guided by the example of free center-of-mass translation,
so that the natural test case is the global center-of-mass boost
(6a). In that case, the local momentum distribution is given by

p̄(x) = j (x)

ρ(x)
= P

N
= const., (13)

while the boost-invariant Hamiltonian reduces to

ĥinv = p̂
2

2m
+ U (x, t) − P

M
p̂ + P 2

2M
, (14)

and finally the expectation value of the boost-invariant Hamil-
tonian and its variance become

〈ϕα|ĥinv|ϕα〉 = εα, (15a)

〈ϕα|�ĥ
2
inv|ϕα〉 = 0, (15b)

where εα are the static single-particle energies.
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The zero variance means that the boosted TDHF wave
function ϕα according to Eq. (6a) is an eigenstate of the
boost-invariant Hamiltonian ĥinv, and its eigenvalue remains
static solution εα as defined in Eq. (5).

These results for free translation suggest the boost-invariant
Hamiltonian ĥinv as an appropriate instrument for analyzing
the single-particle states of TDHF. The single-particle ener-
gies computed as expectation values of the boost-invariant
Hamiltonian (11) can be considered as “intrinsic” single-
particle energies representing the actual binding independent
from trivial kinematical contributions. It is to be noted that
these equations are also applicable for a nonlocal mean field
Hamiltonian such as the Skyrme force.

The practical computation of the boost-invariant Hamil-
tonian is a bit demanding because of the density in the
denominator. Nevertheless, for free translation of the nucleus
16O we achieve variances of about 0.02–0.05 MeV and
expectation values stay within 10−4 ∼ 10−5 MeV of the static
ones with the full three-dimensional TDHF which includes all
the terms of the Skyrme energy functional and without any
symmetry restrictions.

E. Adiabatic states

True intrinsic excitations in more general dynamical sit-
uations add some energy variance to the TDHF states. The
eigenstates of the instantaneous boost-invariant Hamiltonian,

ĥinvφi = ε
(adia)
i φi, (16)

then become something different. They correspond to some
extent to the adiabatic states, and we will therefore use the
expressions “adiabatic states” and “adiabatic energies” in the
following. A given TDHF state ϕα imbued with some intrinsic
excitation is distributed over the adiabatic basis {φi}. This can
be quantified through the adiabatic occupation probability

P
(occ)
i =

∑
α∈occ

|〈ϕα|φi〉|2, (17)

where the sum runs over the occupied TDHF states ϕα . That
quantity is the probability to find the state φi occupied when
expanding the actual TDHF Slater state into the adiabatic basis.
Complementarily we have the hole probability P

(unocc)
i = 1 −

P
(occ)
i . The occupation probability quantifies in its way the

amount of intrinsic excitation carried in the TDHF states. The
value of unity means no excitation at all for states of the
adiabatic basis below the Fermi level, and lowering below
unity is closely related to excitation.

IV. ANALYSIS OF HEAVY-ION COLLISIONS

A. Level schemes

For the investigation of heavy-ion collisions, the wave
functions of the two fragments are placed symmetrically
on the grid 5 fm off the center of box and then boosted
to the desired relative center-of-mass energies. This is the
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FIG. 1. Time evolution of boost-invariant and adiabatic observ-
ables for a central 16O+16O collision at 25 MeV. The dashed lines
with error bars show the boost-invariant single-particle energies ε(inv)

α

and their variances �ε(inv)
α for the lowest (1s1/2) proton states, and

solid lines the adiabatic energies ε
(adia)
i for comparison.

initial state for TDHF dynamical propagation. Besides the
calculation of the usual TDHF states {ϕα} of the colliding
system, diagonalization of the boost-invariant Hamiltonian
gives the adiabatic single-particle energies and wave functions
{φi}. It should be noted that in a collision situation, the
boost-invariant Hamiltonian cannot be expected to eliminate
the kinetic effects completely, because it depends on the local
conditions. It is hoped, however, that for the initial stages of
the interaction the behavior of the levels can still be extracted.
For the symmetric system, parity projection has been done for
the boost-invariant wave functions.

To illustrate the performance of boost-invariant and adia-
batic states, Fig. 1 shows a typical result for the splitting of an
initially highly degenerate state during a heavy-ion reaction.
The test case is a central16O+16O collision with center-of-mass
energy of 25 MeV. Shown are the two lowest levels (the proton
1s1/2 levels in the right and left collision partner). The first few
fm/c show the initial phase with nearly free c.m. motion of the
two nuclei toward each other. Boost-invariant and adiabatic
states remain identical, and the energy variance is zero within
the limit of numerical precision. The nuclei start to interact
around 30 fm/c. At this time, the initially degenerate 1s1/2

states split into two levels, as expected. The way the levels
split into the various substates is very similar to what is
expected from a two-center approach as in Ref. [23]. At the
same time, the energy variance of the boost-invariant states
grows, because the collision mixes forward with backward
flow such that we have an increasing spread of flow around its
decreasing average. It is to be noted that the variances of the
boost-invariant Hamiltonian are much smaller than those of
the usual TDHF Hamiltonian. The latter comes up to several
tens of MeV, clearly showing that the single-particle energies
from the TDHF states have no meaning at all. Furthermore,
the boost-invariant energies become slightly larger than the
adiabatic ones, which expresses the amount of true intrinsic
excitation piling up in the boost-invariant states. It is very
satisfying to see that the energy difference is proportional
to the variance of the boost-invariant states. The signals
confirm each other as measure for intrinsic excitation, and they
give credibility to both forms of energy expectation values.
Altogether, Fig. 1 clearly demonstrates the usefulness of the

014601-4



BOOST-INVARIANT MEAN FIELD APPROXIMATION AND . . . PHYSICAL REVIEW C 76, 014601 (2007)

concept and the relation between the boost-invariant states
containing local flow and the quasistationary adiabatic states.

Figure 2 shows the time evolution of the other occupied
proton states in our example of a 16O +16O collision. As
for the 1s1/2 levels above, we again see the splitting of
the asymptotically degenerate states 1p3/2 and 1p1/2 with
increasing interaction. The difference between adiabatic and
boost-invariant energies indicates the degree of internal exci-
tation. It can be very different for the different states. It is, e.g.,
somewhat surprising that the lower state (left panels) acquires
excitation rather early, while some higher states wait for
much longer. The lower panels of Fig. 2 show the occupation
probabilities (17). They start at unity as they should for a yet
unexcited state where adiabatic and boost-invariant states are
still identical. Their subsequent decrease reflects the degree of
intrinsic excitation. The two indicators for intrinsic excitation,
occupation probability and difference ε(inv) − ε(adia), agree
nicely for all states shown. The adiabatic energies in the upper
panels of Fig. 2 show the interesting phenomenon of level
crossings, quite similar to that observed in former studies using
deformed shell models [20–23]. The arrows connect these
points with the lower panels where the occupation probabilities
seem to jump. But that is merely a labeling effect when sorting
the states always according to adiabatic energy. Following
the states diabatically through the crossings would produce
smooth evolution of energies and occupation probabilities.
Such a diabatic tracking, however, is only possible if we ignore
pairing, as we do here. Inclusion of pairing would smoothen
the crossings and enforce adiabatic tracking with subsequent
“smooth jumps” in the observables.

B. Landau-Zener effect

As mentioned in the Introduction, reactions of complex
many-body systems like nuclei or molecules often produce
the Landau-Zener effect. It happens at level crossings with
only small coupling between the two energetically close levels.
There is a competition between the speed with which the levels
evolve and the time necessary for the rearrangement of the
occupations. Very slow motion leaves sufficient time such that
always the energetically lower level is fully occupied. That
is the adiabatic limit. Increased velocity causes transitions (=
diabaticity) where the occupation partially crosses over into
the then higher level, thus turning collective energy to internal
excitation. That is the much celebrated Landau-Zener effect. In
this section, we will employ the boost-invariant and adiabatic
states as analyzing tools to a study of the Landau-Zener
effect in a self-consistent mean field description of heavy-ion
collisions. For this purpose an asymmetric reaction is more
appropriate, and we select a head-on collision of 4He +16 O.

Figure 3(a) shows the rms radius of the colliding system
as a function of time. It is clear that both the collisions with
75 and 125 MeV are deep-inelastic scattering. The adiabatic
occupation probability as defined in Eq. (17) for the last
occupied neutron state labeled at initial stage as 1p1/2 is
presented in Fig. 3(b). The assignment “occ.” and “unocc.”
in Fig. 3 refers to the situation in the initial stage, while in
the colliding region the adiabatic occupation probability gives
information on the actual occupation.

The occupation probability is, of course, nearly unity
during the initial stage of nearly free translation and starts
decreasing as the two colliding nuclei approach each other.
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α (dashed) and the adiabatic energies ε
(adia)
i (full lines). The lower panels show the

corresponding adiabatic occupation probabilities. The arrows pointing from the upper panels to the lower ones indicate the level crossings
where occupation changes rapidly. The labels of the single-particle states at t = 0 are indicated near the left axis.
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It then increases again and finally returns to nearly unity, not
quite attaining it owing to the small transfer and evaporation
probabilities after the separation. The corresponding adiabatic
single-particle energies of the highest-lying occupied and the
lowest-lying unoccupied neutron states, labeled at the initial
stage as 1p1/2 and 1d5/2, respectively, are shown in Fig. 3(c).
In the initial stage of dynamic propagation, the adiabatic
single-particle energies are almost the same as those of the
static ground states (realized exactly at t = 0).

This behavior is easy to understand since the boost-invariant
and adiabatic states only reflect the excitation and interaction
of colliding nuclei. The two adiabatic states display the
feature of avoided crossing around the smallest distance of
two colliding nuclei. The same feature also appears in the
adiabatic occupation probability. The right panel with larger
bombarding energy of 125 MeV shows that the mixing of
occupied and unoccupied components in the colliding stage
becomes much stronger such that the occupied and unoccupied
states are exchanged completely. Since the two interacting
single-particle states belong to the nucleus 16O, we find that
two neutrons are excited from the uppermost occupied state
to the lowest unoccupied state. This excitation is activated
gradually with increasing incident energy. This is a clear signal
of a nuclear Landau-Zener transition in the TDHF description
of a deep inelastic collision.

V. SUMMARY

In this work, we have constructed a boost-invariant single-
particle Hamiltonian to eliminate the dynamically induced

variances coming from the local velocity field in TDHF.
For the case of free translational motion of a nucleus, the
boost-invariant Hamiltonian produces eigenstates which have
zero dynamical variances and reproduce the stationary single-
particle energies. In the case of a reaction, true intrinsic
excitations take place, and the TDHF states do not remain
eigenstates of the boost-invariant Hamiltonian anymore. Their
variances then become a measure of intrinsic excitation,
and the expectation values still remain useful measures of
single-particle energies. Moreover, the eigenstates of the
boost-invariant Hamiltonian can be considered as the (instan-
taneous) adiabatic states which contain no flow. The relation
between boost-invariant and adiabatic single-particle energies
is also related to the intrinsic excitation energy, similar to
the energy variances. As a further measure of excitation, we
introduce occupation probabilities, i.e., the probabilities to find
a given adiabatic state within the space of occupied TDHF
states. Adiabatic states and occupation probabilities serve as
analyzing tools, e.g., to investigate the nuclear Landau-Zener
effect within self-consistent mean field models. The scheme
has been implemented numerically in fully three-dimensional
TDHF without any symmetry restrictions and with all the terms
of the Skyrme energy functional included.

Two test cases of head-on collisions were considered,
fusion of the 16O+16O system at low scattering energy and
deep inelastic scattering of 4He+16O. The newly defined
boost-invariant and adiabatic single-particle energies show
the expected behaviors. For the symmetric 16O+16O system,
the splitting of the asymptotically degenerate levels in the
interaction regime is clearly seen. In both cases, one finds the
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mutually complementing signals for intrinsic excitation and,
in particular, several nicely developed level crossings with, in
the case of 4He+16O, all signatures of a nuclear Landau-Zener
effect. The trend from more adiabatic evolution at low energies
to clean diabatic transitions at high collisional energy, e.g., is
clearly apparent.

These first results are very encouraging. The boost-invariant
Hamiltonian with its single-particle energies and the corre-
sponding adiabatic basis are promising tools for analyzing
TDHF simulations of heavy-ion reactions and understanding
their relation to the other widely used time-dependent method

based on single-particle orbitals, the expansion in the adiabatic
basis.
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