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Dominant role of symplectic symmetry in ab initio no-core shell model results for light nuclei

T. Dytrych, K. D. Sviratcheva, C. Bahri, and J. P. Draayer
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

J. P. Vary
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 9 April 2007; published 31 July 2007)

The symplectic Sp(3, R) symmetry of eigenstates for the 16O ground state and the 0+
gs and lowest 2+ and

4+ configurations of 12C that are determined within the framework of the no-core shell model with the JISP16
realistic interaction is examined. These states are found to project at the 80–85% level onto a few 0-particle-0-hole
symplectic representations, including the most deformed configuration. The corresponding symplectic space
spans 0-particle-0-hole nuclear configurations together with single- and multiparticle excitations. The results are
nearly independent of the harmonic oscillator strength and whether the bare or renormalized effective interactions
are used in the analysis. The outcome points to the relevance of a symplectic no-core shell model and reaffirms
the Elliott SU(3) model on which the symplectic scheme is built.
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I. INTRODUCTION

The ab initio no-core shell model (NCSM) [1] has taken
a prominent role in the development of microscopic tools
for studying the structure of atomic nuclei. It has achieved
a good description of the low-lying states in few-nucleon
systems [2] as well as in more complex nuclei [1,3]. The
NCSM incorporates intershell and core excitations within
multishell spaces supported by complementary realistic in-
teractions. Some recently developed realistic interactions that
provide a reliable modeling of the essence of the strong
interaction include J -matrix inverse scattering potentials [4],
high-precision NN potentials derived from meson exchange
theory [5], and nuclear two- and many-body forces based on
chiral effective field theory [6].

It is the purpose of this work to present in more detail our
findings [7] that low-lying states of the deformed 12C and the
“closed-shell” 16O nuclei reflect the presence of an underlying
symplectic sp(3, R) algebraic structure.1 This is achieved
through the projection of realistic eigenstates determined in the
framework of the NCSM with the JISP16 realistic interaction
[4] onto Sp(3, R)-symmetric basis states of the symplectic
shell model that are free of spurious center-of-mass motion.

The symplectic shell model itself [8,9] is a microscopic
realization of the successful Bohr-Mottelson collective model.
It is also a multiple oscillator shell generalization of Elliott’s
SU(3) model. Symplectic algebraic approaches have achieved
a very good reproduction of low-lying energies and B(E2)
values in light nuclei [10,11] and specifically in 12C using
phenomenological interactions [12] or truncated symplectic
basis with simplistic (semi-) microscopic interactions [13,14].
Here, we establish, for the first time, the dominance of the
symplectic Sp(3, R) symmetry in nuclei as unveiled through
ab initio calculations of the NCSM type with realistic
interactions. This in turn provides a substantial insight into

1We use lowercase (capital) letters for algebras (groups).

the physics and geometry of a nuclear system. Specifically,
nuclear collective states with well-developed quadrupole
and monopole vibrations as well as collective rotations are
described naturally in terms of irreducible representations
(irreps) of Sp(3, R).

The outcome of the present study points to the possibility
of achieving convergence of higher-lying collective modes
and reaching heavier nuclei by a symplectic extension of the
ab initio NCSM. The symplectic no-core shell model (Sp-
NCSM) [7] amplifies on the NCSM concept by recognizing
that deformed configurations often dominate and these, al-
though typically described by only few collective Sp(3, R)
basis states, correspond to a special linear combination of
a large number of NCSM basis states. Hence, for high-h̄�

collective modes the NCSM basis space can be extended
beyond its current limits through Sp(3, R) basis states. Thus the
effective size of the model space can be significantly increased
to include higher h̄� values while constraining the growth in
the size of the basis to a few symplectic symmetries that in the
0h̄� space reduce to SU(3) bandhead configurations. Although
the present study focuses on the role of the 0-particle-0-hole
(0p-0h) Sp(3, R) irreps and symplectic excitations on top of
these starting state configurations, highly deformed 2p-2h,
4p-4h, . . . , np-nh Sp(3, R) starting state configurations and
symplectic excitations thereof can be readily included in
the extended Sp-NCSM model space [7,15]. In this way,
the Sp-NCSM with realistic interactions and with a multiple
Sp(3, R) irreps extension is expected to account for even higher
h̄� configurations required to realize experimentally measured
B(E2) values without an effective charge and to accommodate
deformed spatial configurations [16] dictated by, for example,
α-cluster modes in nuclei.

II. SYMPLECTIC Sp (3, R) BASIS

The symplectic model [8,9] is based on the noncompact
symplectic sp(3, R) algebra. In its classical realization, the
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symplectic symmetry underpins the dynamics of rotating
bodies. For example, the Sp(3, R) model has been used to
describe the rotation of deformed stars and galaxies [17].

The significance of the symplectic symmetry for a micro-
scopic description of a quantum many-body system of interact-
ing particles [8,9] emerges from the physical relevance of its
21 generators. Specifically, the generators are constructed as
bilinear products of the particle momentum (psα) and coordi-
nate (qsβ) operators such as

∑
s psαpsβ,

∑
s(qsαpsβ ± qsβpsα),

and
∑

s qsαqsβ with α, β = x, y, and z for the three spatial
directions and s labeling an individual nucleon. The important
observables, the many-particle kinetic energy

∑
s,α p2

sα/2m,
the mass quadrupole moment Q̂, and angular momentum
L̂ operators are elements of the sp(3, R) ⊃ su(3) ⊃ so(3)
algebraic structure. It also includes monopole and quadrupole
collective vibrations reaching beyond a single shell to higher-
lying and core configurations, as well as vorticity degrees
of freedom for a description of rotational dynamics in a
continuous range from irrotational to rigid rotor flows.

Alternatively, the elements of the sp(3, R) algebra can be
represented as bilinear products in harmonic oscillator (HO)
raising (b†) and lowering (b) operators. In this realization,
the natural set of the symplectic generators includes the HO
Hamiltonian Ĥ0, which counts the total number of oscillator
bosons, together with the eight single-shell SU(3) generators,
L̂ and C

(11)
L=2,M , as well as the six symplectic raising operators

A
(20)
LM , which raise one particle by two shells, and their adjoints,

the symplectic lowering operators B
(02)
LM . The many-particle

kinetic energy is then given by, 1
2 [H0 −

√
3
2 (A(20)

00 + B
(02)
00 )],

and the mass quadrupole moment as Q̂2M = √
3(C(11)

2M +
A

(20)
2M + B

(02)
2M ).

The symplectic basis states are labeled (in standard notation
[8,9]) according to the reduction chain

Sp(3, R) ⊃ U(3) ⊃ SU(3)
σ nρ ω κ L

(1)

and are constructed by acting with polynomials P in the
symplectic raising operator, A(20), on a set of basis states of the
symplectic bandhead, |σ 〉, which is a Sp(3, R) lowest-weight
state (B(02)|σ 〉 = 0); that is,

|σnρωκ(LS)JMJ 〉 = [Pn(A(20)) × |σ 〉]ρω

κ(LS)JMJ
, (2)

where σ ≡ Nσ (λσµσ ) labels Sp(3, R) irreps with (λσµσ )
denoting a SU(3) lowest-weight state, n ≡ Nn(λnµn), and ω ≡
Nω(λωµω). The quantum number Nω = Nσ + Nn is the total
number of oscillator quanta related to the eigenvalue, Nωh̄�, of
a HO Hamiltonian that is free of spurious modes. The (λnµn)
set gives the overall SU(3) symmetry of Nn

2 coupled raising
operators in P and (λωµω) specifies the SU(3) symmetry of
the symplectic state. Consequently, the symplectic basis states
bring forward important information about the nuclear shapes
and deformation in terms of the SU(3) labels, (λωµω), for
example, (00), (λ0) and (0µ) describe spherical, prolate and
oblate shapes, respectively.

The symplectic raising operator A
(20)
LM,L = 0, 2, is a SU(3)

tensor with (λµ) = (20) character,

A
(20)
LM = 1√

2

∑
i

[b†i × b
†
i ](20)

LM − 1√
2A

∑
s,t

[b†s × b
†
t ](20)

LM, (3)

where the sums are over all A particles of the system.
The first term raises one particle by two shells, that is it
induces 2h̄� one-particle-one-hole (1p-1h) monopole (L = 0)
or quadrupole (L = 2) excitations. The second term is included
to eliminate the spurious center-of-mass excitations in the
symplectic states (2) and introduces 2h̄� 2p-2h configurations
(two particles raised by one shell each). Both one and two
body matrix elements of the symplectic raising operator in a
three-dimensional HO (m-scheme) basis, which is the same
basis used in the NCSM, are given in Appendix A.

A symplectic state of a HO excitation energy Nω (2) can
be constructed by the action of the symplectic raising operator
A(20) on a linear combination of symplectic states of N ′

ω =
Nω − 2 excitation energy,

|σnρωκ(LS)JMj 〉 = (−1)S
√

2L + 1
∑
LM

A
(20)
LM

×
∑
n′ρ ′ω′

U[(20)(λ′
nµ

′
n)(λωµω)(λσµσ ); (λnµn)1ρ(λ′

ωµ′
ω)ρ ′1]

×
∑
κ ′L′

〈(20)L; (λ′
ωµ′

ω)κ ′L′‖(λωµω)κL〉

×
∑
J ′M ′

j

(−1)J
′+L′√

2J ′ + 1

{
L′ S J ′
J L L

}

×C
JMj

J ′M ′
j LM

δN ′
n,Nn−2δN ′

ω,Nω−2|σn′ρ ′ω′κ ′(L′S)J ′M ′
j 〉, (4)

where U [(20)(λ′
nµ

′
n)(λωµω)(λσµσ ); (λnµn)1ρ(λ′

ωµ′
ω)ρ ′1] is

a SU(3)-Racah coefficient, C
JMj

J ′M ′
j LM

and 〈(20)L; (λ′
ωµ′

ω)

κ ′L′‖(λωµω)κL〉 denote SU(2) and reduced SU(3) ⊃ SO(3)
Clebsch-Gordan coefficients, respectively, and { L′ S J ′

J L L } is a
Wigner 6j coefficient. This formula greatly facilitates the
process of generating the symplectic basis as it makes use
of the symplectic states of lower excitation energies that are
computed only once. It also makes parallel implementation of
the basis construction formula (2) rather straightforward.

The base case for the formula (4) is the m-scheme
realization of the basis states |σκ(L0S0)J0M0〉 of the sym-
plectic bandhead, |σ 〉, for n = 0(00), ρ = 1, and ω = σ .
The symplectic bandhead basis states are constructed as
SU(3)-symmetric linear combinations of all possible fermion
configurations of a given Nσ , that for 0p-0h corresponds to the
lowest HO energy of a system of A nucleons; that is,

|(γ )σκ(L0S0)J0M0〉
= [

P (λπ µπ )
Sπ

(a†
π ) × P (λνµν )

Sν
(a†

ν)
](λσ µσ )
κ(L0S0)J0M0

|0〉, (5)

where |0〉 is a vacuum state, the additional quantum number
γ is included to distinguish between different bandhead
constructions for protons and neutrons {(λπµπ )Sπ, (λνµν)Sν},
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and P (λπµπ )
Sπ

and P (λνµν )
Sν

denote polynomials of proton
(a†

π ) and neutron (a†
ν) creation operators coupled to good

SU(3) × SU(2) symmetry. This is done by recognizing that
the fermion creation operators are SU(3) × SU(2) tensors
a
†
η(l 1

2 )jmj
→ a

†
(η0)(l 1

2 )jmj
with a SU(3) character of (η0), where

η = 0, 1, 2, . . . labels a HO shell and l = η, η − 2, . . . , 0(1).
The construction described above is performed in a proton-
neutron formalism. Hence, the symplectic states used in our
analysis do not have good isospin.

III. RESULTS AND DISCUSSIONS

A. Ground-state rotational band in the 12C nucleus:
wave functions and B(E2 : 2+

1 → 0+
gs) transition rates

The lowest-lying eigenstates of 12C were calculated using
the NCSM as implemented through the many fermion dy-
namics (MFD) code [18] with an effective interaction derived
from the realistic JISP16 NN potential [4] for different h̄�

oscillator strengths. (The JISP16 interaction is a pure two-body
interaction that provides for rapid convergence in NCSM
applications, and although it does not contain three-body
(NNN ) terms, it yields results that are comparable with shell
model calculations that use realistic NN+NNN potentials.
This is achieved through off-shell variations of JISP16 which
are fitted to properties of A = 3, 6 and 16 nuclei in order
to accommodate significant NN interaction contributions.)
We are particularly interested in the J = 0+

gs and the lowest
J = 2+(≡ 2+

1 ) and J = 4+(≡ 4+
1 ) states of the ground-state

(gs) rotational band, which appear to be reasonably converged
in the Nmax = 6 NCSM basis space. In addition, calculated
binding energies and other observables, such as ground-state
proton rms radii and the 2+

1 quadrupole moment, all lie
reasonably close to the measured values. The electromagnetic
transition strengths, B(E2; 2+

1 0 → 0+
gs0), B(E2; 2+

1 1 → 0+
gs0)

and B(M1; 1+
1 1 → 0+

gs0), are still underestimated, yielding
just over 60% of the corresponding experimental strengths.
Additional contributions are expected to arise from higher
basis states producing more complete formation of the expo-
nential tails of the wave functions to which these observables
are sensitive.

For 12C there are 13 distinct 0p-0h Sp(3, R) irreps (Table I),
which are built over the symplectic bandhead basis states, |σ 〉,
with Nσ = 24.5. For each 0p-0h Sp(3, R) irrep we generated
basis states according to (2) up to Nmax = 6 (6h̄� model
space). Analysis of overlaps of the symplectic states with the
NCSM eigenstates for the 0+

gs and the lowest 2+ and 4+ states
reveals non-negligible overlaps for only 3 of the 13 0p-0h

TABLE I. 0p-0h Sp(3, R) irreps in 12C, Nσ = 24.5.

(λπµπ )Sπ ⊗ (λνµν)Sν → (λσ µσ ) S

(02)Sπ = 0 (02)Sν = 0 (04)(12) (20) S = 0
(02)Sπ = 0 (10)Sν = 1 (01)(12) S = 1
(10)Sπ = 1 (02)Sν = 0 (01)(12) S = 1
(10)Sπ = 1 (10)Sν = 1 (01)(20) S = 0, 1, 2

Sp(3, R) (Nσ = 24.5) irreps, specifically, the leading (most
deformed) representation (λσµσ ) = (04) carrying spin S = 0
together with the two S = 1(1 2) irreps in Table I. Had we
adopted the supermultiplet formalism, we would have obtained
two S = 1(1 2) irreps, one with isospin T = 0 and the other
with T = 1. In this case, only one of the two S = 1(1 2) irreps
is expected to significantly contribute (T = 0), whereas the
other state of definite isospin may only slightly mix because
of the presence of the Coulomb interaction.

The overlaps of the most dominant symplectic states with
the NCSM eigenstates for the 0+

gs, 2+
1 , and 4+

1 states in the
0, 2, 4, and 6h̄� subspaces are given for h̄� = 12 MeV
(Table II) and h̄� = 15 MeV (Table III). To speed up
the calculations, we retained only the largest amplitudes of the
NCSM states, those sufficient to account for at least 98% of the
norm, which is quoted also in the tables. The results show that
typically more than 80% of the NCSM eigenstates fall within a
subspace spanned by the 3 leading 0p-0h Sp(3, R) irreps. The
most deformed irrep (04)S = 0 is clearly dominant, its overlap
with all three NCSM eigenstates ranges from about 65% to just
under 75% with the h̄� = 12 MeV results about 5% higher
than those for h̄� = 15 MeV. This reveals the significance of
the (04)S = 0 irrep, which in the framework of the symplectic
shell model gives rise to a prominent J = 0, 2, and 4 rotational
structure and hence it is suitable for a microscopic description
of the ground-state rotational band in 12C [12]. The outcome
also demonstrates that the dominance of the three symplectic
irreps is consistent throughout the band. The mixing of the
two (12)S = 1 irreps is comparatively much smaller for all
the three 0+

gs, 2+
1 , and 4+

1 states, yet it may affect electric
quadrupole transitions from higher-lying J = 0, 2, and 4 states
toward the ground-state band.

Examination of the role of the model space truncation
specified by Nmaxh̄� reveals that the general features of all
outcomes are retained as the space is expanded from 2h̄� to
6h̄� (see, e.g., Fig. 1 for 0+

gs). This includes the dominance of
the most deformed (0 4)S = 0 irrep as well as the 0h̄� config-
urations. In addition, the same three Sp(3, R) irreps dominate
for all Nmax values with the large overlaps of the NCSM
eigenstates with the leading symplectic irreps preserved, albeit
distributed outward across higher h̄� excitations as the number
of active shells increases. In this regard, it may be interesting to
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FIG. 1. (Color online) NCSM (blue, right) and 0p-0h Sp(3, R)
(red, left) probability distribution over 0h̄� to Nmaxh̄� subspaces for
the 0+

gs of 12C for different model spaces, Nmax, with h̄� = 15 MeV.
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TABLE II. Probability distribution of NCSM eigenstates for 12C across the leading
3 0p-0h Sp(3, R) irreps, h̄� = 12 MeV.

0h̄� 2h̄� 4h̄� 6h̄� Total

J = 0
(0 4)S = 0 41.39 19.66 8.73 3.14 72.92

Sp(3, R) (1 2)S = 1 2.24 1.49 0.80 0.41 4.94
(1 2)S = 1 2.19 1.46 0.78 0.41 4.84

Total 45.82 22.61 10.31 3.96 82.70
NCSM 45.90 27.41 15.89 9.03 98.23

J = 2
(0 4)S = 0 41.20 19.34 8.44 3.06 72.04

Sp(3, R) (1 2)S = 1 2.50 1.51 0.77 0.38 5.16
(1 2)S = 1 2.42 1.47 0.75 0.37 5.01

Total 46.12 22.32 9.96 3.81 82.21
NCSM 46.19 27.10 15.76 9.25 98.30

J = 4
(0 4)S = 0 44.21 19.23 8.01 2.91 74.36

Sp(3, R) (1 2)S = 1 1.69 0.90 0.44 0.21 3.24
(1 2)S = 1 1.68 0.89 0.43 0.21 3.21

Total 47.58 21.02 8.88 3.33 80.81
NCSM 47.59 25.87 15.24 9.46 98.16

understand the importance of the latter beyond the 6h̄� model
space and their role in shaping other low-lying states in 12C
such as the second 0+, which is likely to reflect a clusterlike
behavior (e.g., see Ref. [19]). This task, albeit challenging, is
feasible for the no-core shell model with symplectic Sp(3, R)
extension and will be part of a follow-on study.

The 0+
gs and 2+

1 states, constructed in terms of the three
Sp(3, R) irreps with probability amplitudes defined by the
overlaps with the 12C NCSM wave functions, were also used to
determine B(E2) transition rates. These quantities, compared

to the energy of the lowest-lying states in light nuclei, are
typically less accurately reproduced by present-day models
with realistic interactions. The Sp(3, R)B(E2 : 2+

1 → 0+
gs)

values clearly reproduce the NCSM results, namely they
slightly increase from 101% to 107% of the corresponding
NCSM numbers with increasing h̄� (Fig. 2). In addition,
if only the leading most deformed (0 4) Sp(3, R) irrep is
considered, that is without the mixing due to both (1 2)S = 1
irreps, the B(E2 : 2+

1 → 0+
gs) values increase only by 5–12%.

In this regard, the leading (0 4) Sp(3, R) irrep, in addition

TABLE III. Probability distribution of NCSM eigenstates for 12C across the leading 3
0p-0h Sp(3, R) irreps, h̄� = 15 MeV.

0h̄� 2h̄� 4h̄� 6h̄� Total

J = 0
(0 4)S = 0 46.26 12.58 4.76 1.24 64.84

Sp(3, R) (1 2)S = 1 4.80 2.02 0.92 0.38 8.12
(1 2)S = 1 4.72 1.99 0.91 0.37 7.99

Total 55.78 16.59 6.59 1.99 80.95
NCSM 56.18 22.40 12.81 7.00 98.38

J = 2
(0 4)S = 0 46.80 12.41 4.55 1.19 64.95

Sp(3, R) (1 2)S = 1 4.84 1.77 0.78 0.30 7.69
(1 2)S = 1 4.69 1.72 0.76 0.30 7.47

Total 56.33 15.90 6.09 1.79 80.11
NCSM 56.63 21.79 12.73 7.28 98.43

J = 4
(0 4)S = 0 51.45 12.11 4.18 1.04 68.78

Sp(3, R) (1 2)S = 1 3.04 0.95 0.40 0.15 4.54
(1 2)S = 1 3.01 0.94 0.39 0.15 4.49

Total 57.50 14.00 4.97 1.34 77.81
NCSM 57.64 20.34 12.59 7.66 98.23
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FIG. 2. (Color online) NCSM and Sp(3, R)B(E2 : 2+
1 → 0+

gs)
transition rate in e2 fm4 for 12C as a function of the h̄� oscillator
strength in MeV, Nmax = 6.

to its large projection onto the realistic eigenstates, suffices
to achieve a quite good reproduction of the NCSM B(E2)
estimate.

B. Ground state in the 16O nucleus

The proper microscopic description of the low-lying states
of 16O has been a long-standing challenge for the shell model
studies [20–25]. The ground state of 16O, which is reasonably
well converged in NCSM calculations, is included in our
analysis. In the case of 16O there is only one possible 0p-0h
Sp(3, R) irrep, namely, Nσ = 34.5(λσ µσ ) = (00) and spin
S = 0, with a symplectic bandhead coinciding with the single
0h̄� NCSM Slater determinant. As in the 12C case, for the
0p-0h Sp(3, R) irrep we generated basis states according to (2)
up to Nmax = 6 (6h̄� model space). These are compared to the
results of the NCSM with the bare and effective realistic JISP16
interaction [4] as implemented through the many fermion
dynamics (MFD) code [18].

Consistent with the outcome for 12C, the projection of the
NCSM eigenstates onto the symplectic basis reveals a large
Sp(3, R)-symmetric content in the ground-state wave function
(Tables IV and V). Here again, we retained only the largest
amplitudes of the NCSM states, those sufficient to account for
at least 98% of the norm. The results show that 75–80% of the
NCSM eigenstate for 16O fall within a subspace spanned by
the single irrep (00) for 16O.

In short, the low-lying states under consideration are well
described in terms of only three 0p-0h Sp(3, R) irreps for 12C
and only one 0p-0h Sp(3, R) irrep for 16O, revealing a clear

TABLE IV. Probability distribution of the NCSM eigenstate for
the J = 0 ground state in 16O across the 0p-0h Sp(3, R) irrep, h̄� =
12 MeV.

0h̄� 2h̄� 4h̄� 6h̄� Total

Sp(3, R) (00)S = 0 38.73 23.92 11.89 5.28 79.82
NCSM 38.73 28.78 18.80 12.66 98.97

TABLE V. Probability distribution of the NCSM eigenstate for
the J = 0 ground state in 16O across the 0p-0h Sp(3, R) irrep, h̄� =
15 MeV.

0h̄� 2h̄� 4h̄� 6h̄� Total

Sp(3, R) (00)S = 0 50.53 15.87 6.32 2.30 75.02
NCSM 50.53 22.58 14.91 10.81 98.83

dominance of the leading collective configuration, the most
deformed (04)S = 0 in 12C and (00)S = 0 in 16O.

C. Large reduction of model space dimension

The typical dimension of a symplectic irrep basis in the
Nmax = 6 space is on the order of 102 as compared to 107 for
the full NCSM m-scheme basis space. Moreover, the space
spanned by a given symplectic irrep, σ , can be decomposed
to subspaces of a definite J angular momentum (see Eq. (2))
and can be further reduced to only the subspaces specified
by the J values under consideration. In the case of 12C,
these are J = 0, 2, and 4, and for 16O it is J = 0. As the
model space, Nmax, is increased the dimension of the J = 0, 2,

and 4 symplectic space built on the 13 0p-0h Sp(3, R) irreps
grows very slowly compared to the NCSM space dimension
(Table VI). The dominance of only three irreps additionally
reduces the dimensionality of the symplectic model space
(Table VI), which in the 12h̄� model space constitutes only
3.7 × 10−6% of the NCSM space size. The space reduction
is even more dramatic in the case of 16O (Table VI, last two
rows). This means that a space spanned by a set of symplectic
basis states may be computationally manageable even when
high-h̄� configurations are included. It is important to note
that 2h̄� 2p-2h (two particles raised by one shell each) and
higher rank np-nh excitations and allowed multiples thereof
can be included by building them into an expanded set of
lowest-weight Sp(3, R) starting state configurations. The same
“build-up” logic, (2), holds because by construction these
additional starting state configurations are also required to be
lowest-weight Sp(3, R) states. Note that if one were to include
all possible lowest-weight np-nh starting state configurations
(n � Nmax), and allowed multiples thereof, one would span the
entire NCSM space.

In short, the symplectic subspace for the low-lying states
in 12C and 16O that achieves large overlaps with the realistic
NCSM eigenstates and reproduction of the NCSM estimates
for the B(E2) transition rates comprises only a small fraction
of the full NCSM model space.

D. Symplectic invariance within the spin parts of
realistic eigenstates

Another striking property of the low-lying eigenstates is
revealed when the spin projections of the converged NCSM
states are examined. Specifically, the S = 0 symplectic irrep,
(0 4), accounts for around 90% of the corresponding S = 0
part of the NCSM realistic eigenstates for the 0+

gs, 2+
1 and 4+

1

in 12C that are calculated in a 6h̄� model space (Fig. 3). The
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TABLE VI. Model spaces dimension for different maximum allowed h̄� excitations, Nmax, for the NCSM and the 3 most significant 0p-0h
Sp(3, R) irreps limited to J = 0, 2, and 4 states in 12C and the only one 0p-0h Sp(3, R) irrep limited to J = 0 in 16O. For comparison, the size
of the full space of the 3 0p-0h Sp(3, R) irreps (all J values) is shown together with the J = 0, 2, and 4 model space dimension of all the 13
0p-0h Sp(3, R) irreps for 12C.

Nmax

0h̄� 2h̄� 4h̄� 6h̄� 8h̄� 10h̄� 12h̄�

12C
NCSM 51 1.77 × 104 1.12 × 106 3.26 × 107 5.94 × 108 7.83 × 109 8.08 × 1010

3 Sp(3, R) irreps, J = 0, 2, 4 13 68 216 514 1030 1828 2979
3 Sp(3, R) irreps, all J 21 127 444 1098 2414 4674 8388
13 Sp(3, R) irreps J = 0, 2, 4 30 157 495 1169 2326 4103 6651

16O
NCSM 1 1.24 × 103 3.44 × 105 2.61 × 107 9.70 × 108 2.27 × 1010 3.83 × 1011

1 Sp(3, R) irrep, J = 0 1 2 4 7 11 16 23

results are independent of the h̄� oscillator strength as well
as if the bare interaction is used. As for the S = 1 part, the
overlap with the two S = 1(1 2) symplectic irreps is around
80% for the 0+

gs and 2+
1 and around 70% for 4+

1 . The results
further reveal that, for example, for the 0+

gs state, within each
h̄� subspace on average only 1–1.5% of the NCSM 0+

gs are not
accounted for by the S = 0 (S = 1) Sp(3, R) irrep(s) under
consideration. In summary, the S = 0 plus S = 1 part of the
NCSM wave function is very well explained by only the three
Sp(3, R) collective configurations.

In the case of 16O, the leading S = 0 symplectic irrep, (00),
projects at the 90% level onto the S = 0 component of the
0+

gs eigenstate for all values of h̄� and for the bare interaction
(Fig. 3).

Clearly, as shown in Fig. 3, the Sp(3, R) symmetry of the
low-lying eigenstates and hence the geometry of the nuclear
system is described as nearly independent of the h̄� oscillator
strength. The symplectic symmetry is present with equal

strength in the spin parts of the NCSM wave functions for 12C
as well as 16O regardless of whether the bare or the effective
interactions are used. This suggests that the transformation
to an effective interaction, which compensates for the finite
space truncation by renormalization of the bare interaction,
does not affect the Sp(3, R) symmetry structure of the spatial
wave functions. Hence, the symplectic structure detected in the
present analysis for 6h̄� model space is what would emerge
in NSCM evaluations with a sufficiently large model space to
justify use of the bare interaction.

Although the spatial symmetry within a spin component
is nearly constant, the renormalization of the bare interaction
and h̄� variations influence the spin content of the eigenstates.
Comparatively strong spin mixing is related to spin-orbit
effects. For example, in 12C the S = 0 (S = 1) part of the
NCSM eigenstates under consideration decrease (increase)
toward higher h̄� frequencies (Fig. 4). This is the reason
why the projection of the NCSM wave functions onto the
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FIG. 3. (Color online) Projection of the
S = 0 (blue, left) (and S = 1 (red, right))
0p-0h Sp(3, R) irreps onto the corresponding
significant spin components of the NSCM wave
functions for (a) 0+

gs, (b) 2+
1 , and (c) 4+

1 in
12C and (d) 0+

gs in 16O, for effective interaction
for different h̄� oscillator strengths and bare
interaction. (We present only the most significant
spin values that account for around 90% of a
NCSM wave function.)
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FIG. 4. (Color online) Probability ampli-
tudes for the S = 0 (blue, left), S = 1 (red,
middle), and S = 2 (yellow, right) components
of the NCSM eigenstates for (a) 0+

gs, (b) 2+
1 , and

(c) 4+
1 in 12C and (d) 0+

gs in 16O, Nmax = 6.

symplectic space slightly changes as one varies the oscillator
strength h̄� (Fig. 5 and Tables II and III). The symplectic
structure is preserved, specifically the 3 Sp(3, R) irreps,
(0 4)S = 0 and the two (1 2)S = 1, remain dominant, only
the Sp(3, R) irrep contributions change reflecting the spin
redistribution. Likewise, for the 16O case the overlap of the
leading (0 0)S = 0 Sp(3, R) irrep with the realistic eigenstate
follows the decrease, toward large h̄� values, of the probability
amplitude of the S = 0 component in the NCSM wave function
(Fig. 5(d)).

As one varies the oscillator strength h̄� (Fig. 5), the overall
overlaps increase toward smaller h̄� HO frequencies and, for
example, for the 0+

gs it is 85% for 12C and 80% for 16O in
the Nmax = 6 and h̄� = 11 MeV case. As expected, Fig. 5

also confirms that with increasing h̄� the high h̄� excitations
contribute less as the lower-lying shell configurations become
energetically more favorable.

Although the focus here has been on demonstrating the
existence of Sp(3, R) symmetry in NCSM results for 12C
and 16O, and therefore a possible path forward for extending
the NCSM to a Sp-NCSM scheme, the results can also be
interpreted as a further strong confirmation of Elliott’s SU(3)
model because the projection of the NCSM states onto the
0h̄� space [Fig. 5, blue (right) bars] is a projection of the
NCSM results onto the SU(3) shell model. For example, for
12C the 0h̄� SU(3) symmetry ranges from just over 40% of the
NCSM 0+

gs for h̄� = 11 MeV to nearly 65% for h̄� = 18 MeV
[Fig. 5, blue (left) bars] with 80–90% of this symmetry
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FIG. 5. (Color online) Probability distribu-
tion for the (a) 0+

gs, (b) 2+
1 , and (c) 4+

1 states
in 12C and (d) 0+

gs in 16O over 0h̄� (blue,
lowest) to 6h̄� (green, highest) subspaces for
the 3 0p-0h Sp(3, R) irrep case (left) and NCSM
(right) together with the (0 4) irrep contribution
(black diamonds) in 12C as a function of the h̄�

oscillator strength in MeV for Nmax = 6.
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governed by the leading (0 4) irrep. These numbers are
consistent with what has been shown to be a dominance of the
leading SU(3) symmetry for SU(3)-based shell-model studies
with realistic interactions in 0h̄� model spaces. It seems the
simplest of Elliott’s collective states can be regarded as a
good first-order approximation in the presence of realistic
interactions, whether the latter is restricted to a 0h̄� model
space or the richer multi-h̄� NCSM model spaces.

IV. CONCLUSION

We have demonstrated that ab initio NCSM analysis
starting with the JISP16 nucleon-nucleon interaction displays a
clear symplectic symmetry structure, which moreover remains
unaltered whether the bare or effective interactions for various
h̄� strengths are used. As a “proof-of-principle” our study
focuses on the lowest 0+

gs, 2+
1 , and 4+

1 states in the deformed
12C nucleus and the 0+

gs ground state in the “closed-shell”
16O nucleus. The analysis of the results reveals that the
NCSM eigenstates project at approximately the 80% level
onto only a few 0p-0h spurious center-of-mass free symplectic
irreps with a clear dominance of the leading Sp(3, R) irrep.
Furthermore, in the case of the 12C ground-state rotational
band the three most significant 0p-0h Sp(3, R) irreps yield a
B(E2 : 2+

1 → 0+
gs) transition rate that almost exactly agrees

with the NCSM B(E2) estimates. The close reproduction
of the NCSM results is achieved by a Sp(3, R)-symmetric
subspace with a dimensionality only ≈10−3% that of the full
NCSM space.

The results confirm for the first time the validity of the
Sp(3, R) approach when realistic interactions are invoked. This
demonstrates the importance of the Sp(3, R) symmetry, which
simply matches the nuclear geometry to the many-nucleon
dynamics, as well as reaffirms the value of the simpler SU(3)
model on which it is based.

The results further suggest that a Sp-NCSM extension of the
NCSM may be a practical scheme for achieving convergence
to measured B(E2) values without the need for introducing an
effective charge and even for modeling cluster-like phenomena
as these modes can be accommodated within the general
framework of the Sp(3, R) model [16] if extended to large
model spaces (high Nmax). In addition, the Sp-NCSM scheme,
which is “structured" to take advantage of massively parallel
computing capability, holds promise to allow us to model
heavier nuclei, including neutron-deficient and N ≈ Z nuclei,
along the nucleosynthesis rp path and unstable nuclei currently
explored in radioactive beam experiments.

In short, the NCSM with a modern realistic NN potential
supports the development of collective motion in nuclei as can
be realized within the framework of the Sp-NCSM and as is
apparent in its 0h̄� Elliott model limit.
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APPENDIX A: MATRIX ELEMENTS OF THE
SYMPLECTIC RAISING OPERATOR A(20)

L M

Matrix elements of the one body part of the A
(20)
LM symplectic

generator in a m-scheme basis can be written as

〈nf lf jf mjf |A(20)
LM |nilijimji〉 = A − 1√

2A
δnf ni+2(−1)φ

×√
2L + 1

√
2ji + 1C

jf mjf

jimjiLM

{
li

1
2 ji

jf L lf

}

×
∑
nt lt

{
1 1 L

li lf lt

}
〈nf lf ||b†||nt lt 〉〈nt lt ||b†||nili〉,

where φ = 3
2 + L

2 + 2lf + ji + li and A denotes the total
number of nucleons.

An additional term introduced in the symplectic raising
generator (3) to remove the spurious center-of-mass motion is
a two-body operator. Two body matrix elements of the A

(20)
LM

symplectic generator in a m-scheme basis can be written as

〈n′
1l

′
1j

′
1m

′
j1; n′

2l
′
2j

′
2m

′
j2|A(20)

LM |n1l1j1mj1; n2l2j2mj2〉

=
√

2

A
(−1)χ 〈n′

1l
′
1‖b†‖n1l1〉〈n′

2l
′
2‖b†‖n2l2〉

×
√

(2j1 + 1)(2j2 + 1)

{
l1

1
2 j1

j ′
1 1 l′1

} {
l2

1
2 j2

j ′
2 1 l′2

}

×
∑

α,β=0,±1

C
j ′

1m
′
j1

j1mj11αCLM
1α1βC

j ′
2m

′
j2

j2mj21β

with χ = j1 + l′1 − j2 − l′2 + L/2.

APPENDIX B: MATRIX ELEMENTS OF THE ELECTRIC
QUADRUPOLE MOMENT OPERATOR Q̂2µ

The Q̂2µ electric quadrupole moment operator is an element
of the sp(3, R) ⊃ su(3) algebra and generates 0h̄� and 2h̄�

quadrupole transitions. It is a spherical tensor with orbital
angular momentum 2 and projection µ and can be expressed
as

Q2µ =
√

6[r1 × r1]2µ,

where

r1µ = 1√
2

(b†1µ + b1µ)

is the proton coordinate operator in spherical coordinates.
Matrix elements of the electric quadrupole moment operator
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in a m-scheme basis can be therefore written as

〈nf lf jf mjf |Q2µ|nilijimji〉

=
√

15

2
(−1)ϕ

√
(2ji + 1)C

jf mjf

jimji2µ

{
li

1
2 ji

jf 2 lf

}

×
∑
nt lt

{
1 1 2

li lf lt

}
〈nf lf ‖(b†1 + b1)‖nt lt 〉

× 〈nt lt‖(b†1 + b1)‖nili〉,
where ϕ = 1

2 + li + ji . These matrix elements are used to
determine B(E2 : Jf → Ji) transition rates, which in e2 fm4

units are calculated as follows,

B(E2) = 1

2Ji + 1

5

16π

(
h̄

mω

)2

|〈Jf ‖Q2‖Ji |2〉.

The reduced matrix elements of the HO ladder operators, b†

and b, given in a phase convention with the radial part of the
HO wave function positive at infinity have the form,

〈nf lf ‖b†1‖nili〉 = (−
√

li
√

ni − li + 2δlf ,li−1

+
√

li + 1
√

ni + li + 3δlf ,li+1)δnf ,ni+1

〈nf lf ‖b1‖nili〉 = (−
√

li
√

ni + li + 1δlf ,li−1

+
√

li + 1
√

ni − liδlf ,li+1)δnf ,ni−1 .
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