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Tensor part of the Skyrme energy density functional: Spherical nuclei
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We perform a systematic study of the impact of the J2 tensor term in the Skyrme energy functional on properties
of spherical nuclei. In the Skyrme energy functional, the tensor terms originate from both zero-range central
and tensor forces. We build a set of 36 parametrizations, covering a wide range of the parameter space of the
isoscalar and isovector tensor term coupling constants with a fit protocol very similar to that of the successful
SLy parametrizations. We analyze the impact of the tensor terms on a large variety of observables in spherical
mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the
evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and
known anomalies of radii. The major findings of our study are as follows: (i) Tensor terms should not be added
perturbatively to existing parametrizations; a complete refit of the entire parameter set is imperative. (ii) The
free variation of the tensor terms does not lower the χ2 within a standard Skyrme energy functional. (iii) For
certain regions of the parameter space of their coupling constants, the tensor terms lead to instabilities of the
spherical shell structure, or even to the coexistence of two configurations with different spherical shell structures.
(iv) The standard spin-orbit interaction does not scale properly with the principal quantum number, such that
single-particle states with one or several nodes have too large spin-orbit splittings, whereas those of nodeless
intruder levels are tentatively too small. Tensor terms with realistic coupling constants cannot cure this problem.
(v) Positive values of the coupling constants of proton-neutron and like-particle tensor terms allow for a qualitative
description of the evolution of spin-orbit splittings in chains of Ca, Ni, and Sn isotopes. (vi) For the same values of
the tensor term coupling constants, however, the overall agreement of the single-particle spectra in doubly-magic
nuclei is deteriorated, which can be traced back to features of the single-particle spectra that are not related to
the tensor terms. We conclude that the currently used central and spin-orbit parts of the Skyrme energy density
functional are not flexible enough to allow for the presence of large tensor terms.
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I. INTRODUCTION

The strong nuclear spin-orbit interaction in nuclei is
responsible for the observed magic numbers in heavy nuclei
[1–4]. Although a simple spin-orbit interaction allows for the
qualitative description of the global features of shell structure,
the available data suggest that single-particle energies evolve
with neutron and proton number in a manner that cannot
be related to the geometrical growth of the single-particle
potential with N and Z. Many anomalies of shell structure
have been identified that do not fit into simple experimental
systematics and that challenge any global model of nuclear
structure.

The evolution of shell structure with N and Z as a feature
of self-consistent mean-field models has been known for a
long time. To quote the pioneering study of shell structure
in a self-consistent model performed by Beiner et al. [5], the
“most striking effect is the appearance of N = 16, 34 and 56
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as neutron magic numbers for unstable nuclei, together with
a weakening of the shell closure at N = 20 and 28.” Various
mechanisms that modify the appearance of gaps in the single-
particle spectra have been discussed in detail in the literature.
The two most prominent ones, worked out by Dobaczewski
et al. [6], however, play mainly a role for weakly bound exotic
nuclei far from stability, as they are directly or indirectly related
to the physics of loosely bound single-particle states, namely
that the enhancement of the diffuseness of neutron density
distribution reduces the spin-orbit coupling in neutron-rich
nuclei on the one hand, and the interaction between bound
orbitals and the continuum results in a quenching of shell
effects in light and medium systems on the other hand. The
former effect was also extensively discussed in the framework
of relativistic models by Lalazissis et al. [7,8], and the latter
triggered a number of studies in which the potential relevance
of this “Boguliubov enhanced shell quenching” was discussed
to explain the abundance pattern from the astrophysical
r-process of nucleosynthesis [9–12].

These two effects take place in neutron-rich nuclei. In
proton-rich nuclei, the Coulomb barrier suppresses both the
diffuseness of the proton density and the coupling of bound
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proton states to the continuum. But the Coulomb interaction
itself can also modify the shell structure: For super-heavy
nuclei, it begins to destabilize the nucleus as a whole. Mean-
field models predict that it amplifies the shell oscillations of
the densities for incomplete filled oscillator shells, which leads
to strong variations of the density profile that feed back onto
the single-particle spectra [13,14].

Interestingly, most theoretical papers about the evolution
of shell structure from the past decade have contained
speculations about new effects that mainly affect neutron shells
in nuclei far from stability in the anticipation of the rare-isotope
physics that might become accessible with the next generation
of experimental facilities. The known anomalies, some of
which have been known for a long time with many more
having been identified recently, also concern proton shells
and already appear sufficiently close to stability that exotic
phenomena can be ruled out for their explanation in most
cases, to paraphrase the authors of Ref. [15]. By contrast, this
suggests that there exists a mechanism that induces a strong
evolution of single-particle spectra already in stable nuclei that
has been long overlooked.

There is a prominent ingredient of the nucleon-nucleon
interaction that has been ignored for decades in virtually
all global nuclear structure models for medium and heavy
nuclei, whether in macroscopic-microscopic approaches or
self-consistent mean-field methods. Only very recently have
the systematic discrepancies between model predictions and
experiment triggered a renaissance of the tensor force in the
description of finite medium- and heavy-mass nuclei.

The tensor force is a crucial and necessary ingredient of the
bare nucleon-nucleon interaction [16,17], and consequently
it is contained in all ab initio approaches that are available
for light, mainly p-shell nuclei [18,19]. One of the first
experimental signatures of the tensor force was the small,
but finite, quadrupole moment of the deuteron. In a boson-
exchange picture of the bare nucleon-nucleon interaction, the
tensor force originates from the exchange of pseudoscalar
pions, which have both central and tensor couplings (see, e.g.,
Sec. 2.3 in Ref. [20] or Appendix 13A of Ref. [21]). In a
nuclear many-body system, the bare tensor force induces a
strong correlation between the spatial and spin orientations in
the two-body density matrix. For two nucleons with parallel
spins, the tensor force energetically favors the configuration
where the distance vector is aligned with the spins, whereas
for antiparallel spins the tensor force favors the case when
the distance vector is perpendicular to the spins (see the
discussion of Fig. 13 in Ref. [22] and of Fig. 3 in Ref. [23]).
The authors of these papers also demonstrate very nicely the
well-known fact [24,25] that in an approach that starts from the
bare nucleon-nucleon interaction, nuclei are not bound without
taking into account the two-body correlations induced by the
tensor force.

The role of the tensor force, however, manifests itself
differently in self-consistent mean-field models, otherwise
called energy density functional (EDF) methods, the tool of
choice for medium and heavy nuclei. The latter methods use
an independent particle state as a reference state to express
the energy of the correlated nuclear ground state. Thus,
correlations are not explicitly present in the higher order

density matrices of the reference state, but rather included
under the form of a more elaborate functional of the (local
and nearly local parts of the) one-body density matrix of that
reference state. In such a scheme, most of the effect of the bare
tensor force on the binding energy is integrated out through
the renormalization of the coupling constants associated with
a central effective vertex, in a similar fashion to the tensor
part of the bare interaction being renormalized into the central
one when going from the bare nucleon-nucleon force to a
Brueckner G matrix. The tensor terms of the EDF relate to a
residual tensor vertex, which gives nothing but a correction to
the spin-orbit splittings, which for light p-shell nuclei might
be of the same order as the contribution from the genuine
spin-orbit force. The interplay of spin-orbit and tensor forces
in the mean field of medium and heavy nuclei was explored
in Refs. [26–28], where the particular role of spin-unsaturated
shells was pointed out.

There are two widely used effective interactions for nonrel-
ativistic self-consistent mean-field models [29]: the zero-range
nonlocal Skyrme interaction [30–33] and the finite-range
Gogny force [34,35].

In fact, the effective zero-range nonlocal interaction pro-
posed by Skyrme in 1956 [30–33] already contained a
zero-range tensor force. The first applications of Skyrme’s
interaction in self-consistent mean-field models that became
available around 1970, however, neglected the tensor force,
and the simplified effective Skyrme interaction used in the
seminal paper by Vautherin and Brink [36] soon became the
standard Skyrme interaction that was used in most applications
ever since. Until very recently, there was only very little
exploratory work on Skyrme’s tensor force. In their early
study, Stancu, Brink, and Flocard [37], who added the tensor
force perturbatively to the SIII parametrization, pointed out
that some spin-orbit splittings in magic nuclei can be improved
with a tensor force. A complete fit including the terms from the
tensor force that contribute in spherical nuclei was attempted
by Tondeur [38], with the relevant coupling constants of the
spin-orbit and tensor terms adjusted to selected spin-orbit
splittings in 16O, 48Ca, and 208Pb. Another complete fit of
a generalized Skyrme interaction including a tensor force was
performed by Liu et al. [39], but the authors did not investigate
the effect of the tensor force in detail, nor was the resulting
parametrization ever used in the literature thereafter.

Similarly, the seminal paper by Gogny [34] on the evalu-
ation of matrix elements of a finite-range force of Gaussian
shape in a harmonic oscillator basis contains the expressions
for a finite-range tensor force, which, however, was omitted
in the parametrizations of Gogny’s force adjusted by the
Bruyères le Châtel group [35]. Onishi and Negele [40] were
the first to publish an effective interaction that combined a
Gaussian two-body central force, a finite-range tensor force
with a zero-range spin-orbit force, and a zero-range nonlocal
three-body force, which, however, also fell into oblivion.

The role of the tensor force is slightly different in Skyrme
and Gogny interactions. In the Gogny force, the contributions
from the central and tensor parts remain explicitly distinct, al-
though, of course, this does not prevent a certain entanglement
of their physical effects. In the context of Skyrme’s functional,
however, the contribution of a zero-range tensor force to the
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spherical mean-field state of an even-even nucleus has exactly
the same form as a particular exchange term from the nonlocal
part of the central Skyrme force. When looking at spherical
nuclei only, adding Skyrme’s tensor force simply allows one
to decouple a term that is already provided by the central
force. This indeed makes the effective-interaction-restricted
functional more flexible, as the additional degrees of freedom
from the tensor force remove an interdependence among the
effective mass, the surface terms, and the “tensor terms”.
However, one must always keep in mind that both the central
and tensor part of the effective vertex contribute to the so-called
J2

t tensor terms of the functional.1

In the context of relativistic mean-field models, the equiva-
lent of the nonrelativistic tensor force appears as the exchange
term of effective fields with the quantum numbers of the pion,
which by construction do not appear in the standard relativistic
Hartree models. Only relativistic Hartree-Fock models contain
this tensor force, with the first predictive parametrizations
becoming available just recently [42].

We also mention that there is a large body of work on the
tensor force in the interacting shell model (see Ref. [43] for a
review) that concentrates on a completely different aspect of
the tensor force, namely its unique contribution to excitations
with unnatural parity.

The recent interest in the effect of the tensor force in the
context of self-consistent mean-field models was triggered by
the observed evolution of single-particle levels of one nucleon
species as dependent upon the number of other nucleon
species. Otsuka et al. [44] proposed that at least part of the
effect is caused by the proton-neutron tensor force from pion
exchange. Many groups attempt now to explain known, but so
far unresolved, anomalies of shell structure in terms of a tensor
force. A particularly popular playground is the relative shift
of the proton 1g7/2 and 1h11/2 levels in tin isotopes, which is
interpreted as the reduction of the spin-orbit splittings of both
levels with their respective partners with increasing neutron
number [45].

Otsuka et al. [46] added a Gaussian tensor force, adjusted
on the long-range part of a one-pion+ρ exchange potential,
to a standard Gogny force. After a consistent readjustment of
the parameters of its central and spin-orbit parts, they were
able to explain coherently the anomalous relative evolution
of some single-particle levels without, however, being able to
describe their absolute distance in energy. Dobaczewski [47]
has pointed out that a perturbatively added tensor interaction
with suitably chosen coupling constants in the Skyrme energy
density functional not only modifies the evolution of shell
structure but also improves the description of nuclear masses
around magic nuclei. Brown et al. [48] have fitted a Skyrme
interaction with added zero-range tensor force with emphasis

1As we will outline in the following, and as was already pointed out
in Ref. [5], this argument does not hold for deformed even-even nuclei
or any situation where intrinsic time reversal is broken, for example
odd nuclei or dynamics. There, the tensor and nonlocal central parts
of the effective Skyrme interaction give contributions to the mean
fields and the binding energy with different analytical expressions.
This will be discussed in a companion article [41].

on the reproduction of single-particle spectra. Although the au-
thors appreciate the qualitatively correctly described evolution
of relative level distances, they point out that the combination
of zero-range spin-orbit and tensor forces does not and cannot
correctly describe the � dependence of spin-orbit splittings.
Colò et al. [49] and Brink and Stancu [50] have added
Skyrme’s tensor force perturbatively to the existing standard
parametrizations SLy5 [51,52] and SIII [5], respectively. They
have investigated some single-particle energy differences—the
1h11/2 and 1g7/2 proton states in tin isotopes as well as 1i13/2

and 1h9/2 neutron states in N = 82 isotones—and propose
parameters similar to those in Ref. [48]. The effect of the
tensor force on the centroid of the GT giant resonance is also
estimated by Colò et al. using a sum-rule approach and found
to be substantial. Long et al. [53] demonstrate that the tensor
force that emerges naturally in relativistic Hartree-Fock also
improves the relative shifts of the proton 1g7/2 and 1h11/2

levels in tin isotopes.
The work on the tensor force published so far aims at an

optimal single parametrization, which establishes a best fit to
either the underlying bare tensor force [46,48] or empirical
data [38,47,49]. The published results, as well as our first
exploratory studies, however, suggest that adding a tensor
force to the existing mean-field models gives only a local
improvement of the relative change of certain single-particle
energies, but not necessarily a global improvement of single-
particle spectra or other observables. In the framework of the
Skyrme interaction, which we will employ throughout this
work, there is also the already mentioned ambiguity that the
contribution from the tensor force to spherical nuclei has the
same structure as a term from the central force. In view of this
situation, we will pursue a different strategy and investigate
the effect of the tensor terms on a multitude of observables in
nuclei though a set of Skyrme interactions with systematically
varied coupling constants of the tensor terms.

The present study was motivated by the finding that the
performance of the existing Skyrme-type effective interac-
tions for masses and spectroscopic properties is limited by
systematic deficiencies of the single-particle spectra [54–57]
that seem to be impossible to remove within the standard
Skyrme interaction. Thus far details of single-particle spectra
have resided somewhat outside the focus of self-consistent
mean-field methods because they do not correspond directly
to empirical single-particle energies (we will return to this
point in the following) and because many of the observables
that are usually calculated with self-consistent mean-field
methods are not very sensitive to the exact placement of
single-particle levels. By contrast, there is an enormous body
of work that examines the infinite and semi-infinite nuclear
matter properties of the effective interactions that are the
analog of liquid-drop and droplet parameters in great detail.
The reason is, of course, that the global trends over the whole
chart of nuclei have to be understood before one can look into
details. The past few years have seen an increasing demand
on predictive power. Moreover, beyond-mean-field approaches
of the projected generator coordinate method (GCM), or
Bohr-Hamiltonian type, have become widely used tools to
analyze and predict spectroscopic properties in medium and
heavy nuclei, employing either Gogny or Skyrme interactions.
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The underlying single-particle spectra thus now deserve more
attention, as many of the spectroscopic properties of interest
turn out to be extremely sensitive to even subtle details of
the single-particle spectra. As the tensor force is the most
obvious missing piece in all standard mean-field interactions,
it is the natural starting point for the systematic investigation
of possible generalizations with the ultimate goal of improving
the predictive power of the interactions for spectroscopy.

In the present paper, we will outline the formalism of a
Skyrme interaction with added tensor force, describe the fit
of the parametrizations, and analyze the role of the tensor
terms for single-particle spectra, masses, and radii of spherical
even-even nuclei. A second paper [41] studies the surface
and deformation properties of these Skyrme interactions for
even-even nuclei, and future work will examine the stability
of nuclear matter and the role of the time-odd terms from
the tensor force in odd and rotating nuclei. Only deformed
nuclei and, in particular, observables sensitive to the time-odd
contributions, will possibly allow us to distinguish clearly
between the nonlocal central and tensor parts of the Skyrme
force.

II. THE SKYRME INTERACTION WITH TENSOR TERMS

A. The energy density functional

The usual ansatz for the Skyrme effective interaction
[51,52] leads to an energy density functional that can be
written as the sum of a kinetic term, the Skyrme potential
energy functional that models the effective strong interaction
in the particle-hole channel, a pairing energy functional cor-
responding to a density-dependent contact pairing interaction,
the Coulomb energy functional (calculated using the Slater
approximation [58]), and correction terms to approximately
remove the excitation energy from spurious motion caused by
broken symmetries:

E = Ekin + ESkyrme + Epairing + ECoulomb + Ecorr. (1)

B. The Skyrme energy density functional

Throughout this work, we will use an effective Skyrme
energy functional that corresponds to an antisymmetrized
density-dependent two-body vertex in the particle-hole chan-
nel of the strong interaction, which can be decomposed into a
central, spin-orbit, and tensor contribution:

vSkyrme = vc + vt + vLS. (2)

Other choices for writing the Skyrme energy functional are
possible and have been made in the literature; these might
affect the form of the effective interaction, its interpretation,
and the results obtained from it. We will return to this point in
Sec. II D.

The Skyrme energy density functional is a functional of
local densities and currents,

ESkyrme =
∫

d3r HSkyrme(r), (3)

which has many technical advantages compared to finite-range
forces such as the Gogny force. All exchange terms have the
same structure as the direct terms, which greatly reduces the
number of necessary integrations during a calculation.

1. Local densities and currents

Throughout this paper we will assume that we have pure
proton and neutron states. The formal framework of the general
case including proton-neutron mixing is discussed in Ref. [59].
Without making reference to any single-particle basis, we start
from the density matrices of protons and neutrons in coordinate
space [60],

ρq(rσ, r′σ ′) = 〈â†
r ′σ ′q ârσq〉

= 1
2ρq(r, r′)δσσ ′ + 1

2 sq(r, r′) · 〈σ ′|σ̂ |σ 〉, (4)

where

ρq(r, r′) =
∑

σ

ρq(rσ, r′σ ),

sq(r, r′) =
∑
σσ ′

ρq(rσ, r′σ ′)〈σ ′|σ̂ |σ 〉.
(5)

The Skyrme energy functional up to second order in derivatives
that we will introduce in the following can be expressed in
terms of seven local densities and currents [59] that are defined
as

ρq(r) = ρq(r, r′)|r=r′ ,

sq(r) = sq(r, r′)|r=r′ ,

τq(r) = ∇ · ∇′ρq(r, r′)|r=r′ ,

Tq,µ(r) = ∇ · ∇′sq,µ(r, r′)|r=r′ ,

jq(r) = − i

2
(∇ − ∇′)ρq(r, r′)

∣∣∣∣
r=r′

,

Jq,µν(r) = − i

2
(∇µ − ∇′

µ)sq,ν(r, r′)
∣∣∣∣
r=r′

,

Fq,µ(r) = 1

2

z∑
ν=x

(∇µ∇′
ν + ∇′

µ∇ν)sq,ν(r, r′)

∣∣∣∣∣
r=r′

,

(6)

which are the density ρq(r), the kinetic density τq(r), the
current (vector) density jq(r), the spin (pseudovector) density
sq(r), the spin kinetic (pseudovector) density Tq(r), the spin-
current (pseudotensor) density Jq,µν(r), and the tensor-kinetic
(pseudovector) density Fq(r). The terms ρq(r), τq(r), and
Jq,µν(r) are time-even, whereas sq(r), Tq (r), jq(r), and Fq(r)
are time-odd. For a detailed discussion of their symmetries see
Ref. [60]. There are other local densities up to second order in
derivatives that can be constructed, but when constructing an
energy functional they either cannot be combined with others
to terms with proper symmetries or they lead to terms that are
not independent from the others [61].

The Cartesian spin-current pseudotensor density Jµν can
be decomposed into pseudoscalar, (antisymmetric) vector, and
(symmetric) traceless pseudotensor parts, all of which have
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well-defined transformation properties under rotations:

Jµν(r) = 1

3
δµνJ

(0)(r) + 1

2

z∑
κ=x

εµνκJ
(1)
κ (r) + J (2)

µν (r), (7)

where δµν is the Kronecker symbol and εµνκ is the Levi-
Civita tensor. The pseudoscalar, vector, and pseudotensor parts
expressed in terms of the Cartesian tensor are given by

J (0)(r) =
z∑

µ=x

Jµµ(r),

J (1)
κ (r) =

z∑
µ,ν=x

εκµνJµν(r),

J (2)
µν (r) = 1

2
[Jµν(r) + Jνµ(r)] − 1

3
δµν

z∑
κ=x

Jκκ (r).

(8)

The vector spin current density J(1)(r) ≡ J(r) is often called
spin-orbit current, as it enters the spin-orbit energy density.2

For the formal discussion of the physical content of the
Skyrme energy functional it is advantageous to recouple
the proton and neutron densities to isoscalar and isovector
densities, for example,

ρ0(r) = ρn(r) + ρp(r),

ρ1(r) = ρn(r) − ρp(r),
(9)

and so on. Because we assume pure proton and neutron states,
only the Tz = 0 component of the isovector density is nonzero,
which we exploit to drop the index Tz from the isovector
densities ρ1Tz

(r) etc.

2. Skyrme’s central force

We will use the standard density-dependent central Skyrme
force

vc(R, r) = t0(1 + x0P̂ σ )δ(r)

+ 1
6 t3(1 + x3P̂ σ )ρα(R)δ(r)

+ 1
2 t1(1 + x1P̂ σ )[k̂

′2
δ(r)

+ δ(r)k̂
2
] + t2(1 + x2P̂ σ )k̂

′ · δ(r)k̂, (10)

where we use the shorthand notation

r = r1 − r2,

R = 1
2 (r1 + r2),

(11)

with k̂ the usual operator for relative momenta,

k̂ = − i
2 (∇1 − ∇2), (12)

and k̂
′
its complex conjugated acting on the left. Finally, P̂ σ is

the spin exchange operator that controls the relative strength of

2Some authors call J(r) spin density, which is ambiguous and
confusing when discussing the complete energy density functional
including terms that contain the time-odd s(r).

the S = 0 and S = 1 channels for a given term in the two-body
interaction:

P̂ σ = 1
2 (1 + σ̂ 1 · σ̂ 2). (13)

As already stated, we restrict ourselves to a parametrization
of the Skyrme energy functional as obtained from the average
value of an effective two-body vertex in the reference Slater
determinant. We decompose the isoscalar and isovector parts
of the resulting energy density functional Hc into a part Hc,even

t

that is composed entirely of time-even densities and currents
and a part Hc,odd

t that contains terms that are bilinear in time-
odd densities and currents and vanishes in intrinsically time-
reversal invariant systems. Thus

Hc(r) =
∑
t=0,1

[
Hc,even

t (r) + Hc,odd
t (r)

]
. (14)

Both Hc,even
t and Hc,odd

t are of course constructed such that
they are time-even; they are given by [59,62]

Hc,even
t = A

ρ
t [ρ0]ρ2

t + A
�ρ
t ρt�ρt + Aτ

t ρt τt

−AT
t

z∑
µ,ν=x

Jt,µνJt,µν,

Hc,odd
t = As

t [ρ0]s2
t − Aτ

t j2
t

+A�s
t st · �st + AT

t st · Tt ,

(15)

where A
ρ
t [ρ0] and As

t [ρ0] are density-dependent coupling
constants that depend on the total (isoscalar) density. The
detailed relations between the coupling constants of the
functional and the central Skyrme force are given in
Appendix A. The notation reflects that two pairs of terms
in Hc,even

t and Hc,odd
t are connected by the requirement of local

gauge invariance of the Skyrme energy functional [63].

3. A zero-range spin-orbit force

The spin-orbit force used with most standard Skyrme
interactions,

vLS(r) = iW0(σ̂ 1 + σ̂ 2) · k̂
′ × δ(r)k̂, (16)

is a special case of the one proposed by Bell and Skyrme
[32,33]. Again, the corresponding energy functional [59,62]
can be separated into a time-even and a time-odd term as
follows:

HLS(r) =
∑
t=0,1

[
HLS,even

t (r) + HLS,odd
t (r)

]
, (17)

where

HLS,even
t = A∇·J

t ρt∇ · Jt ,

HLS,odd
t = A∇·J

t st · ∇ × jt ,
(18)

which share the same coupling constant as again both terms are
linked by the local gauge invariance of the energy functional.
The relation between the A∇·J

t and the one coupling constant
of the two-body spin-orbit force W0 is given in Appendix A.

014312-5



LESINSKI, BENDER, BENNACEUR, DUGUET, AND MEYER PHYSICAL REVIEW C 76, 014312 (2007)

4. Skyrme’s tensor force

By convention, the tensor operator in the tensor force is
constructed by using the unit vectors in the direction of the
relative coordinate er = r/|r| and subtracting σ̂ 1 · σ̂ 2, that is,

Ŝ12 = 3(σ̂ 1 · er )(σ̂ 2 · er ) − σ̂ 1 · σ̂ 2, (19)

such that its mean value vanishes for a relative S state, which
decouples the central and tensor channels of the interaction.
The operator Ŝ12 commutes with the total spin, [Ŝ12, Ŝ2] = 0;
therefore it does not mix partial waves with different spin (i.e.,
spin-singlet and spin-triplet states). In particular, it does not act
in spin singlet states at all, as Ŝ12P̂ S=0 = 0 (see Sec. 13.6 of
Ref. [21]). As a consequence, there is no point in multiplying a
tensor force with an exchange operator (1 + xt P̂ σ ) as done for
the central force, as this will only lead to an overall rescaling
of its strength.

The derivation of the general energy functional from a
zero-range two-body tensor force is discussed in detail in
Refs. [59,64]. We repeat here the details relevant for our
discussion, starting from the two zero-range tensor forces
proposed by Skyrme [30,31]:

vt(r) = 1
2 te{[3(σ 1 · k′)(σ 2 · k′) − (σ 1 · σ 2)k′2]

× δ(r) + δ(r)[3(σ 1 · k)(σ 2 · k) − (σ 1 · σ 2)k2]}
+to[3(σ 1 · k′)δ(r)(σ 2 · k) − (σ 1 · σ 2)k′ · δ(r)k],

(20)

where r, k̂, and k̂
′

are defined as in Eqs. (11) and (12).
The corresponding energy density functional can again be
decomposed into time-even and time-odd parts:

Ht(r) =
∑
t=0,1

[
Ht,even

t (r) + Ht,odd
t (r)

]
, (21)

with [59]

Ht,even
t = −BT

t

z∑
µ,ν=x

Jt,µνJt,µν − 1

2
BF

t

(
z∑

µ=x

Jt,µµ

)2

−1

2
BF

t

z∑
µ,ν=x

Jt,µνJt,νµ,

Ht,odd
t = BT

t st · Tt + BF
t st · Ft

+B�s
t st · �st + B∇s

t (∇ · st )
2,

(22)

where we already used the local gauge invariance of the energy
functional [59] for the expressions of the coupling constants.
The actual expressions for the coupling constants expressed
in terms of the two coupling constants te and to of the tensor
forces are given in Appendix A.

The “even” term proportional to te in the two-body tensor
force [Eq. (20)] mixes relative S and D waves, whereas the
“odd” term proportional to to mixes relative P and F waves.
Thus, because both act in spin-triplet states only, antisym-
metrization implies that the former acts in isospin-singlet states
(and hence contributes to the neutron-proton interaction only)
and the latter in isospin-triplet states (contributing both to the

like-particle and neutron-proton interactions). The central and
spin-orbit interactions as we use them, however, do not contain
D or F wave interactions. From this point of view, one might
suspect a mismatch when combining the various interaction
terms. From the point of view of the energy functional
[Eq. (22)], however, all contributions from the zero-range
tensor force are of the same second order in derivatives as
the contributions from the nonlocal part of the central Skyrme
force [Eq. (15)] and from the spin-orbit force [Eq. (18)].

In the time-even part of the energy functional Ht,even
t ,

there appear three different combinations of the Cartesian
components of the spin current tensor. The term proportional
to BT

t contains the symmetric combination JµνJµν as it
already appeared in the energy functional from the central
Skyrme interaction [Eq. (15)], whereas the term proportional
to BF

t contains two different terms, namely the antisymmetric
combination JµνJνµ and the square of the trace of Jνµ.

5. Combining central and tensor interactions

The Skyrme energy functional representing central, tensor,
and spin-orbit interactions is given by

ESkyrme = Ec + ELS + Et

=
∫

d3r
∑
t=0,1

{
C

ρ
t [ρ0]ρ2

t + Cs
t [ρ0]s2

t + C
�ρ
t ρt�ρt

+C∇s
t (∇ · st )

2 + C�s
t st · �st + Cτ

t

(
ρtτt − j2

t

)
+CT

t

(
st · Tt −

z∑
µ,ν=x

Jt,µνJt,µν

)

+CF
t

[
st · Ft − 1

2

(
z∑

µ=x

Jt,µµ

)2

− 1

2

z∑
µ,ν=x

Jt,µνJt,νµ

]
+ C∇·J

t

× (ρt∇ · Jt + st · ∇ × jt )

}
. (23)

This functional contains all possible bilinear terms up to
second order in the derivatives that can be constructed from
local densities and that are invariant under spatial and time
inversion, rotations, and local gauge transformations [59].

Some of the coupling constants are completely defined by
the standard central Skyrme force, that is, C

ρ
t = A

ρ
t , C

s
t =

As
t , C

τ
t = Aτ

t , and C
�ρ
t = A

�ρ
t , two by the spin-orbit force,

C∇J
t = A∇J

t , others by the tensor force, CF
t = BF

t and C∇s
t =

B∇s
t , whereas some are the sum of coupling constants from

both central and tensor forces, CT
t = AT

t + BT
t and C�s

t =
A�s

t + B�s
t .

The three terms bilinear in Jµν can be recoupled into
terms bilinear in its pseudoscalar, vector, and pseudotensor
components J (0), J (1), and J (2), Eq. (8), which is preferred by
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some authors [59]:

z∑
µ,ν=x

Jt,µνJt,µν

= 1

3

(
J

(0)
t

)2 + 1

2
J2

t +
z∑

µ,ν=x

J
(2)
t,µνJ

(2)
t,µν, (24)

1

2

[(
z∑

µ=x

Jt,µµ

)2

+
z∑

µ,ν=x

Jt,µνJt,νµ

]

= 2

3

(
J

(0)
t

)2 − 1

4
J2

t + 1

2

z∑
µ,ν=x

J
(2)
t,µνJ

(2)
t,µν . (25)

After combining Eq. (23) with the kinetic, Coulomb, pairing,
and other contributions from Eq. (1), the mean-field equations
are obtained by standard functional derivative techniques from
the total energy functional [29,59].

The complete Skyrme energy functional [Eq. (23)] has
quite a complicated structure, and in the most general case
it leads to seven distinct mean fields in the single-particle
Hamiltonian [59]. As already mentioned, we want to divide
the examination of those terms that contain two derivatives and
two Pauli matrices in the complete functional—that is, those
terms from the central Skyrme force that are often neglected
and all the terms from the tensor Skyrme force—into three
distinct steps. First, in the present paper, we enforce spherical
symmetry, which removes all time-odd densities and all but
one out of the nine components of the spin current tensor Jµν ,
as will be outlined in the following section. A subsequent
paper [41] will discuss deformed even-even nuclei where
the complete spin current tensor Jµν is present, and future
work will address the time-odd part of the energy functional
[Eq. (23)].

C. The Skyrme energy functional in spherical symmetry

For the rest of this paper, we will concentrate on spherical
nuclei, enforcing spherical symmetry of the N -body wave
functions. As a consequence, the canonical single-particle
wave functions �i [65] can be labeled by ji, �i , and mi .
The index ni labels the different states with same ji and �i . The
functions �i separate into a radial part ψ and an angular and
spin part, represented by a tensor spherical harmonic �j�m:

�nj�m(r) = 1

r
ψnj�(r)�j�m(θ, φ). (26)

Spherical symmetry also enforces that all magnetic substates
of �nj�m have the same occupation probability v2

nj�m ≡ v2
nj�

for all −j � m � j . For a static spherical state, all time-odd
densities are zero [sq(r) = Tq(r) = jq(r) = Fq(r) = 0],
as are the corresponding mean fields in the single-particle
Hamiltonian.

Enforcing spherical symmetry also greatly simplifies the
spin-current tensor, as both the pseudoscalar and pseudotensor
parts of Jµν vanish. From the vector spin-orbit current, only

the radial component is nonzero, which is given by [36]

Jq(r) = 1

4πr3

∑
n,j,�

(2j + 1)v2
nj�

×
[
j (j + 1) − �(� + 1) − 3

4

]
ψ2

nj�(r), (27)

so that there is only one out of the nine components of the
spin-current tensor density that contributes in spherical nuclei.
Unlike the total density ρ and the kinetic density τ , which
are bulk properties of the nucleus and grow with the size of
the nucleus, the spin-orbit current is a shell effect that shows
strong fluctuations. Assume two shells with the same n and
� are split by the spin-orbit interaction, one coupled with the
spin to j = � + 1

2 , the other to j = � − 1
2 . It is easy to

verify that their contributions to Jq(r) are equal but of opposite
signs such that they cancel when (i) both shells are completely
filled and (ii) their radial wave functions are identical (i.e.,
ψn,�+1/2,� = ψn,�−1/2,�). Although the latter condition is never
exactly fulfilled, this demonstrates that the spin-orbit current is
not a bulk property but is a shell effect that strongly fluctuates
with N and Z. It nearly vanishes in spin-saturated nuclei,
where all spin-orbit partners are either completely occupied or
empty, and it might be quite large when only the j = � + 1/2
level out of one or even several pairs of spin-orbit partners is
filled.

Altogether, the Skyrme part of the energy density functional
in spherical nuclei is reduced to

HSkyrme =
∑
t=0,1

{
C

ρ
t [ρ0]ρ2

t + C
�ρ
t ρt�ρt + Cτ

t ρt τt

+1

2
CJ

t J2
t + C∇·J

t ρt∇ · Jt

}
, (28)

where we have introduced an effective coupling constant CJ
t

of the J2
t tensor terms at sphericity, such that the corresponding

contribution to the energy functional is given by

Ht =
∑
t=0,1

1

2
CJ

t J2
t =

∑
t=0,1

(
−1

2
CT

t + 1

4
CF

t

)
J2

t . (29)

The effective coupling constants can be separated back into
contributions from the nonlocal central and tensor forces,

CJ
t = AJ

t + BJ
t , (30)

which are given by

AJ
0 = 1

8 t1
(

1
2 − x1

) − 1
8 t2

(
1
2 + x2

)
,

AJ
1 = 1

16 t1 − 1
16 t2,

BJ
0 = 5

16 (te + 3to) = 5
48 (T + 3U ),

BJ
1 = 5

16 (to − te) = 5
48 (U − T ),

(31)

where we also give the expressions using the notation T = 3te
and U = 3to employed in Refs. [37,49,64].

For the following discussion it will be also illuminating to
recouple this expression to a representation that uses proton
and neutron densities, where we use the notation introduced
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in Ref. [37],

Ht = 1
2α

(
J2

n + J2
p

) + βJn · Jp, (32)

with

α = CJ
0 + CJ

1 , β = CJ
0 − CJ

1 ,

CJ
0 = 1

2 (α + β), CJ
1 = 1

2 (α − β).

(33)

The proton-neutron coupling constants α = αC + αT and
β = βC + βT can again be separated into contributions from
central and tensor forces:

αC = 1
8 (t1 − t2) − 1

8 (t1x1 + t2x2),

βC = − 1
8 (t1x1 + t2x2),

αT = 5
4 to = 5

12U,

βT = 5
8 (te + to) = 5

24 (T + U ).

(34)

As could be expected, the isospin-singlet tensor force con-
tributes only to the proton-neutron term, whereas the isospin-
triplet tensor force contributes to both.

The spin-orbit potential of the neutrons is given by

Wn(r) = δE
δJn(r)

· er

= W0

2

(
2∇ρn + ∇ρp

) + αJn + βJp. (35)

The expression for the protons is obtained by exchanging the
indices for protons and neutrons. In spherical symmetry, the
tensor force gives a contribution to the spin-orbit potential,
but it does not alter the structure of the spin-orbit terms in the
single-particle Hamiltonian as such. This will be different in
the case of deformed mean fields [41,59].

The dependence of the spin-orbit potential Wq(r) on the
spin-orbit current Jq(r) through the tensor terms is the source
of a potential instability. When the spin-orbit splitting becomes
larger than the splitting of the centroids of single-particle states
with different orbital angular momentum �, the reordering of
levels might increase the number of spin-unsaturated levels,
which increases the spin-orbit current Jn and feeds back on
the spin-orbit potential by increasing it even further, which
ultimately leads to an unphysical shell structure. An example
will be given in Appendix B.

D. A brief history of tensor terms
in the central Skyrme energy functional

For the interpretation of the parametrizations we will now
describe it is important to point out that within our choice of the
effective Skyrme interaction as an antisymmetrized vertex the
two coupling constants of the contribution from the central
force to HT , Eq. (29), either represented through AJ

0 , AJ
1

or through αC, βC , are not independent from the coupling
constants Aτ

0, A
τ
1, A

�ρ

0 , and A
�ρ

1 that appear in Eq. (28).
Through the expressions given in Appendix A, all six are
determined by the four coupling constants t1, x1, t2, and x2

from the central Skyrme force, Eq. (10). As a consequence, a
tensor force is absolutely necessary to decouple the values of
the CJ

t from those of the Cτ
t and C

�ρ
t , which determine the

isoscalar and isovector effective masses and give the dominant
contribution to the surface and surface asymmetry coefficients,
respectively.

This interpretation of the Skyrme interaction is, however, far
from being common practice and is a source of confusion and
potential inconsistencies in the literature. Many authors have
used parametrizations of the central and spin-orbit Skyrme
energy functional with coupling constants that in one way or
the other do not exactly correspond to the functional obtained
from Eqs. (10) and (16), which, depending on the point of
view, can be seen as an approximation to or a generalization
of the original Skyrme interaction. As the most popular
modification concerns the tensor terms, a few comments on
the subject are in order. Again, the practice goes back to
the seminal paper by Vautherin and Brink [36], who state that
“the contribution of this term to [the spin-orbit potential] is
quite small. Since it is difficult to include such a term in the case
of deformed nuclei, it has been neglected.” This choice was
further motivated by the interpretation of the effective Skyrme
interaction as a density-matrix expansion (DME) [25,66–68].
All early parametrizations such as SI and SII [36], SIII-SVI [5],
SkM [69], and SkM∗ [70] followed this example and did not
contain the J2 terms. Beiner et al. [5] weakened the case for J2

terms further by pointing out that they might lead to unphysical
single-particle spectra. During the 1980s and later, however, it
became more popular to include them, for example in SkP [65],
in the parametrizations T1–T9 by Tondeur et al. [71], and
in Eσ and Zσ by Friedrich and Reinhard [72]. Some of the
recent parametrizations come in pairs, where variants without
and with J2 terms are fitted within the same fit protocol, for
example (SLy4, SLy5) and (SLy6, SLy7) in Ref. [52] or (SkO,
SkO′) in Ref. [73].

Interestingly, all but one parametrization of the central
Skyrme interaction found in the literature set the coupling
constants of the J2 terms either to their Skyrme force value
(A1) or strictly to zero. The exception is Tondeur’s [38], where
an independent fit of the coupling constants of the J2 terms was
attempted, making explicit reference to a DME interpretation
of the energy functional.

Setting the coupling constants of a term to zero when one
does not know how to adjust its parameters is of course an
acceptable practice when permitted by the chosen framework.
For Skyrme interactions fitted without the J2 terms, the
situation becomes confusing when one looks at deformed
nuclei and any situation that breaks time-reversal invariance.
First, Galilean invariance of the energy functional dictates that
the coupling constant of the s · T terms is also set to zero, as
already indicated by the presentation of the energy functional
in Eq. (23). Second, using a DME interpretation of the Skyrme
energy functional in one place, but the interrelations from
the two-body Skyrme force in all others, is not entirely
satisfactory. Many authors who drop the J2 terms rarely
show scruples to keep most of the time-odd terms in the
Skyrme energy functional [Eq. (23)] with coupling constants
As

t and A�s
t from Eq. (A1), although they are not at all

constrained in the common fit protocols employing properties
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of even-even nuclei and spin-saturated nuclear matter. For a
list of exceptions see Sec. II.A.2.d of Ref. [29]. An alternative
is to set up a hierarchy of terms, as was attempted by Bonche,
Flocard, and Heenen in their mean-field and beyond codes,
which set A�s

t = 0 in addition to the coupling constant of the
J2 terms, as all three terms have in common that they couple
two Pauli matrices with two derivatives in different manners
(see the footnote on page 129 of Ref. [74]).

There are also inconsistent applications of parametrizations
without J2 − s · T terms to be found in the literature. For
example, almost all applications of Skyrme interactions to the
Landau parameters g� and g′

� and the properties of polarized
nuclear matter include the contribution from the s · T terms,
although it should be dropped for parametrizations fitted
without J2 terms. Similarly, most RPA and QRPA codes
include them for simplicity (see the discussion in Refs.
[75–77]).

Because it is relevant for the subject of the present paper, we
also mention another generalization of the Skyrme interaction
that invokes the interpretation of the Skyrme energy functional
in a DME framework. The spin-orbit force [Eq. (16)] fixes
the isospin mix of the corresponding terms in the Skyrme
energy functional [Eq. (23)] such that A∇J

0 = 3A∇J
1 [Eq. (A2)].

There are a few parametrizations such as MSkA [78], SkI3 and
SkI4 [79], SkO and SkO′ [73], and SLy10 [52] that liberate
the isospin degree of freedom in the spin-orbit functional. A
DME interpretation of the energy functional is mandatory for
this generalization. It is motivated by the better performance
of standard relativistic mean-field models for the kink of the
charge radii in Pb isotopes. Note that the standard RMF models
are effective Hartree theories without exchange terms and that
the standard Lagrangians have very limited isovector degrees
of freedom [29], both of which suppress a strong isospin
dependence of the spin-orbit interaction. It is interesting to
note that the existing fits of Skyrme energy functionals with
generalized spin-orbit interaction do not improve spin-orbit
splittings [14].

III. THE FITS

A. General remarks

To study the effect of the J2 terms, we have built a
set of 36 effective interactions that systematically cover
the region of coupling constants CJ

0 and CJ
1 that give a

reasonable description of finite nuclei in connection with the
standard central and spin-orbit Skyrme forces. At variance
with the perturbative approach used in Refs. [37,49], each of
these parametrizations has been fitted separately, following a
procedure nearly identical to that used for the construction
of the SLy parametrizations [51,52], so that we can keep
the connection between the new fits with parametrizations
that have been applied to a large variety of observables and
phenomena. The Saclay-Lyon fit protocol focuses on the
simultaneous reproduction of nuclear bulk properties such as
binding energies and radii of finite nuclei and the empirical
characteristics of infinite nuclear matter (i.e., symmetric and
pure neutron matter). The latter establishes an important,
though highly idealized, limiting case as it permits us to
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FIG. 1. Values of CJ
0 and CJ

1 for our set of parametrizations
(circles). Diagonal lines indicate α = CJ

0 + CJ
1 = 0 (pure neutron-

proton coupling) and β = CJ
0 −CJ

1 = 0 (pure like-particle coupling).
Values for classical parameter sets are also indicated (dots), with
SLy4 representing all parametrizations for which J2 terms have been
omitted in the fit. Recent parametrizations with tensor terms are
indicated by squares.

confront the energy functional with calculations from first
principles using the bare nucleon-nucleon force [80].

The region of effective coupling constants (CJ
0 , CJ

1 ) of the
J2 terms acting in spherical nuclei, as defined in Eq. (28), that
we will explore is shown in Fig. 1. The parametrizations are
labeled TIJ, where indices I and J refer to the proton-neutron
(β) and like-particle (α) coupling constants in Eq. (32) such
that

α = 60(J − 2) MeV fm5,

β = 60(I − 2) MeV fm5.

(36)

The corresponding values of CJ
t can be obtained through

Eq. (33) or from Fig. 1. On the one hand, we cover the
positions of the most popular existing Skyrme interactions that
take the J2 terms from the central force into account, which
are SLy5 [52], SkP [65], Zσ [72], T6 [71], SkO′ [73], and
BSk9 [81]. On the other hand, among recent parametrizations
including a tensor term (i.e., Skxta [48], Skxtb [48,82] and
those published by Colò et al. [49] and Brink and Stancu [50]),
most fall in a region of negative CJ

1 and vanishing CJ
0 , that

is, to the lower left of Fig. 1. Parametrizations of this region,
which also includes a part of the triangle advocated in the
perturbative study of Stancu et al. [37], gave unsatisfactory
results for many observables. Moreover, when attempting to
fit parametrizations with large negative coupling constants,
we sometimes obtained unrealistic single-particle spectra or
even ran into the instabilities already mentioned and outlined
in Appendix B. Parametrizations further to the lower and
upper right also have unrealistic deformations properties. The
contribution from the J2 terms vanishes for T22, which will
serve as the reference point. For the parametrizations T2J , only
the proton-proton and neutron-neutron terms inHt are nonzero
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(β = 0), but for the parametrizations TI2, only the proton-
neutron term in Ht contributes (α = 0). Note that the earlier
parametrizations T6 and Zσ have a pure like-particle J2 terms
as a consequence of the constraint x1 = x2 = 0 employed
for both (and most other early parametrizations of Skyrme’s
interaction).

B. The fit protocol and procedure

The list of observables used to construct the cost function
χ2 minimized during the fit (see Eq. (4.1) in Ref. [51]) reads
as follows: binding energies and charge radii of 40Ca, 48Ca,
56Ni, 90Zr, 132Sn, and 208Pb; the binding energy of 100Sn;
the spin-orbit splitting of the neutron 3p state in 208Pb; the
empirical energy per particle and density at the saturation
point of symmetric nuclear matter; and the equation of state of
neutron matter as predicted by Wiringa et al. [16].

Furthermore, some properties of infinite nuclear matter
are constrained through analytic relations between coupling
constants in the same manner as they were in Refs. [51,52]:
The incompressibility modulus K∞ is kept at 230 MeV,
and the volume symmetry energy coefficient aτ is set to
32 MeV. The isovector effective mass, expressed through
the Thomas-Reiche-Kuhn sum rule enhancement factor κv ,
is taken such that κv = 0.25.

When using a single density-dependent term in the central
Skyrme force [Eq. (10)], the isoscalar effective mass m∗

0 cannot
be chosen independently from the incompressibility modulus
for a given exponent α of ρ0. We follow here the prescription
used for the SLy parametrizations [51,52] and use α = 1/6,
which leads to an isoscalar effective mass close to 0.7 in units
of the bare nucleon mass for all TIJ parametrizations. This
value allows for a correct description of dynamical properties,
as for example the energy of the giant quadrupole resonance
[83]. Using such a protocol we cannot reproduce the isovector
effective mass consistent with recent ab initio predictions [84].
Regarding the present exploratory study of the tensor terms this
is not a critical limitation, in particular as the influence of this
quantity on static properties of finite nuclei turns out to be
small.

There are three modifications of the fit protocol compared
to that of Refs. [51,52]. The obvious one is that the values
for CJ

0 and CJ
1 are fixed beforehand as the parameters that

will later on label and classify the fits. The second is that
we have added the binding energies of 90Zr and 100Sn to
the set of data. Indeed, we observed that the latter nucleus
is usually significantly overbound when not included in the fit.
The third is that we have dropped the constraint x2 = −1 that
was imposed on the SLy parametrizations [51,52] to ensure
the stability of infinite homogeneous neutron matter against
a transition into a ferromagnetic state. This stability criterion
is completely determined by the coupling constants of the
time-odd terms in the energy functional [76], which we do
not want to constrain here, accepting that the parametrizations
might be of limited use beyond the present study. However, the
tensor force brings many new contributions to the energy per
particle of polarized nuclear matter that lead to a much more
complex stability criterion. We postpone the entire discussion
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FIG. 2. Values of the cost function χ 2 as defined in the fit
procedure, for the set of parametrizations TIJ. The label “T11”
indicates the position of this parametrization in the (α, β) plane as
obtained from Eqs. (36). Contour lines are drawn at χ 2 = 11, 12, 15,
20, 25, and 30. The minimum value is found for T21 (χ2 = 10.05),
and the maximum for T61 (χ 2 = 37.11).

concerning the stability in polarized systems in the presence of
a tensor force to future work that will also address finite-size
instabilities [84]. It also has to be stressed that the actual
stability criterion, as with all properties of the time-odd part
of the Skyrme energy functional, depends on the choices
made for the interpretation of its coupling constants (i.e.,
antisymmetrized vertex or density functional [76]).

The properties of the finite nuclei entering the fit are
computed by using a Slater determinant without taking pairing
into account. The cost function χ2 was minimized by using
a simulated annealing algorithm. The annealing schedule
was an exponential one, with a characteristic time of 200
iterations (also referred to as “simulated quenching”). Thus,
assuming a reasonably smooth cost function, we strive to
obtain satisfactory convergence to its absolute minimum
in a single run, allowing a systematic and straightforward
production of a large series of forces. The coupling constants
for all 36 parametrizations can be found in the Physical Review
archive [85].

Figure 2 displays the value of χ2 after minimization as a
function of the recoupled coupling constants α and β. The first
striking feature is the existence of a “valley” at β = 0, that is,
a pure like-particle tensor term ∼ (J2

n +J2
p). The abrupt rise of

χ2 around this value can be attributed to the term depending
on nuclear binding energies, as sharp variations of energy
residuals can be seen between neighboring magic nuclei with
functionals of the T6J series (β = 240). For example, 48Ca
and 90Zr tend to be significantly overbound in this case. We
will return later to a discussion of the implications for the
quality of the functionals.

C. General properties of the fits

The coupling constants of the energy functional for spher-
ical nuclei [Eq. (28)] obtained for T22 are very similar to
those of SLy4, except for a slight readjustment coming from
the inclusion of the binding energies of 90Zr and 100Sn in the
fit as well as the abandoned constraint on x2. With its value
of −0.945, the x2 obtained for T22 still stays close to the
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value −1 enforced for SLy4, which confirms that this is not
too severe a constraint for parametrizations without effective
J2 terms at sphericity. Upon increasing the effective tensor
term coupling constants CJ

t , however, the values for x2 start
to deviate strongly from the region around −1, which to a
large extent results from the feedback from the contribution
of the J2 terms to the surface and surface symmetry energy
coefficients in the presence of constraints on isoscalar and
isovector effective masses, all of which also depend on x2. A
more detailed discussion of the contribution of the J2 terms to
the surface energy coefficients will be given elsewhere [41].

From the constrained coupling constants CJ
0 and CJ

1 , the
respective contributions BJ

0 and BJ
1 from the tensor force

can be deduced afterward by using the expressions given in
Sec. II C. Their values, shown in Fig. 3, are less regularly
distributed, which is a consequence of the the nonlinear
interdependence of all coupling constants. Still, a general
trend can be observed: All parametrizations are shifted toward
the “southwest” compared to Fig. 1. In turn, this indicates
that the contribution from the central Skyrme force always
stays in the small region outlined by SkP, SLy5, Zσ , etc. in
Fig. 1, with values that range between 28 and 104 MeV fm5

for AJ
0 and between 38 to 62 MeV fm5 for AJ

1 , respectively.
This justifies a posteriori the use of the tensor force as a
motivation to decouple the J2

t terms from the central part
of the effective Skyrme vertex. We note in passing that
all our parametrizations TI4 correspond to an almost pure
proton-neutron or isospin-singlet tensor force, that is, the term
∝ te in Eq. (20), as they are all located close to the αT =
0 line.

We also find a particularly strong and systematic variation
of the coupling constant W0 of the spin-orbit force, which
varies from W0 = 103.7 MeV fm5 for T11 to W0 =
195.3 MeV fm5 for T66 (see Fig. 4). This variation is of
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FIG. 4. Value of spin-orbit coupling constant W0 for each of the
parametrizations TIJ vs indices I and J . [The “(T11)” label indicates
the position of this parametrization in the (α, β) plane.] The contour
lines differ by 20 MeV fm5. The values plotted here range from
103.7 MeV fm5 (T11) to 195.3 MeV fm5 (T66).

course correlated to the strength of the tensor force. As
already shown, the tensor force has the tendency to reduce the
spin-orbit splittings in spin-unsaturated nuclei. To maintain
a given spin-orbit splitting in such a nucleus, the spin-orbit
coupling constant W0 has to be increased.

IV. RESULTS AND DISCUSSION

The calculations presented in the following include open-
shell nuclei treated in the Hartree-Fock-Bogoliubov (HFB)
framework. In the particle-particle channel, we use a zero-
range interaction with a mixed surface/volume form factor
(called DFTM pairing in Ref. [86]). The HFB equations were
regularized with a cutoff at 60 MeV in the quasiparticle
equivalent spectrum [87]. The pairing strength was adjusted in
120Sn with the particle-hole mean field calculated by using the
parameter set T33. The resulting strength was kept at the same
value for all parametrizations, which is justified by the fact
that the effective mass parameters are the same. Moreover, we
thus avoid including, in the adjustment of the pairing strength,
local effects linked with changes in details of the single-particle
spectrum.

A. Spin-orbit currents and potentials

As a first step in the analysis of the role of the tensor terms
and their interplay with the spin-orbit interaction in spherical
nuclei, we analyze the spin-orbit current density and its relative
contribution to the spin-orbit potential. We choose the chain
of nickel isotopes, Z = 28, as it covers the largest number
of spherical neutron shells and subshells (N = 20, 28, 40,
and 50) of any isotopic chain, two of which are spin saturated
(N = 20 and 40), whereas the other two are not. Figure 5
displays the radial component of the neutron spin-orbit current
Jn for isotopes from the proton to the neutron drip lines. The
calculations are performed with T44, but the spin-orbit current
is fairly independent of the parametrization. Starting from N =
20, which corresponds to a completely filled and spin-saturated
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FIG. 5. (Color online) Radial component of the neutron spin-orbit
current for the chain of Ni isotopes, plotted against radius and neutron
number N . The solid line on the base plot indicates the radius where
the total density has half its saturation value.

sd shell, one reaches the next magic number at N = 28 by
filling the 1f7/2 shell, which leads to the steeply rising bump
in the plot of Jn in the foreground, peaked around r 
 3.5 fm.
Then, from N = 28 to N = 40 the rest of the fp shell is
filled, which first produces the small bump at small radii that
corresponds to the filling of the 2p3/2 shell, but ultimately leads
to a vanishing spin-orbit current when the 1f and 2p levels are
completely filled for the N = 40 isostope, visible as the deep
valley in Fig. 5. Upon adding more neutrons, the filling of the
1g9/2 shell leads again to a strong neutron spin-orbit current
at N = 50. For the remaining isotopes up to the neutron drip
line, the evolution of Jn is slower with the filling of the 2d and
3s orbitals.

A few further comments are in order. First, the spin-orbit
current clearly reflects the spatial probability distribution of the
single-particle wave function in pairs of unsaturated spin-orbit
partners. Within a given shell, the high-� states contribute
at the surface, represented by the solid line on the base of
Fig. 5, whereas low-� states contribute at the interior. The
peak from the high-� orbitals, however, is always located on
the inside of the nuclear surface, as defined by the radius
of half-saturation density. Second, within a given shell, the
largest contributions to the spin-orbit current density obviously
come from the levels with largest �, as they have the largest
degeneracy factors in Eq. (27), and because they do not have
nodes, which leads to a single, sharply peaked contribution.
Third, the spin-orbit current is not exactly zero for nominally
“spin-saturated” nuclei, exemplified by the N = 20 and N =
40 isotopes in Fig. 5, because the radial single-particle wave
functions are not exactly identical for all pairs of spin-orbit
partners, which is a necessary requirement to obtain Jn = 0 at
all radii (cf. the example of the ν 2d states in 132Sn in Fig. 16).
Fourth, pairing and other correlations will always smooth the
fluctuations of the spin-orbit current with nucleon numbers,
because levels in the vicinity of the Fermi energy will never
be completely filled or empty.

Next, we compare the contributions from the tensor terms
and from the spin-orbit force to the spin-orbit potentials of
protons and neutrons, Eq. (35). The contributions from the
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FIG. 6. (Color online) Contribution from the tensor terms to the
neutron spin-orbit potential for the chain of Ni isotopes as obtained
with the parametrization T44. The solid line on the base plot indicates
the radius where the isoscalar density ρ0 crosses half its saturation
value.

tensor force to the spin-orbit potential are proportional to
the spin-orbit currents of protons and neutrons. For the Ni
isotopes, the proton spin-orbit current is very similar to that
of the neutrons at N = 28 displayed in Fig. 5. For the
parametrization T44 we use here as an example, we have
contributions from both proton and neutron spin-orbit currents,
which come with equal weights. Their combined contribution
to the spin-orbit potential of the neutron Wn might be as
large as 4 MeV (see Fig. 6). This is more than a third of the
maximum contribution from the spin-orbit force to Wn (see
Fig. 7). The latter is proportional to a combination of the
gradients of the proton and neutron densities, 2∇ρn(r) +
∇ρp(r) [see Eq. (35)]. As a consequence, it has a smooth
behavior as a function of particle number, with slowly
and monotonically varying width, depth, and position. Only
limited local variations can be seen on the interior owing to
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FIG. 7. (Color online) Contribution from the spin-orbit force to
the neutron spin-orbit potential for the chain of Ni isotopes as obtained
with the parametrization T44. The solid line on the base plot indicates
the radius where the isoscalar density ρ0 crosses half its saturation
value.
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FIG. 8. (Color online) Total neutron spin-orbit potential for the
chain of Ni isotopes as obtained with the parametrization T44. The
solid line on the base plot indicates the radius where the isoscalar
density ρ0 crosses half its saturation value.

small variations of the density profile originating from the
successive filling of different orbits. Furthermore, one can
easily verify that the contribution from the spin-orbit force
is peaked at the surface of the nucleus (the solid line on the
base plot). The strongest variation of the depth of this potential
occurs just before the neutron drip line at N = 62, where it
becomes wider and shallower owing to the development of a
diffuse neutron skin, which reduces the gradient of the neutron
density [6–8].

If one adds the contributions from the proton and neutron
tensor terms to that from the spin-orbit force, one gets the total
neutron spin-orbit potential for neutrons in Ni isotopes shown
in Fig. 8. For the parametrization T44 used here (and most
others in the sample of parametrizations used in this study)
the dominating contributions from the spin-orbit and tensor
forces to the spin-orbit potential are of opposite sign. For
Ni isotopes, Jp is always quite large, whereas Jn varies as
shown in Fig. 5. Notably, both are peaked inside the surface.
When examining the combined contribution from the spin-
orbit and tensor forces to the spin-orbit potential [Eq. (35)],
one must keep in mind that they are peaked at different radii.
Moreover, the variation of tensor-term coupling constants
among a set of parametrizations implies a rearrangement of
the spin-orbit term strength, as will be discussed later. As a
consequence, taking into account the tensor force modifies the
width and localization of the spin-orbit potential Wq(r) much
more than it modifies its depth through the variation of the
spin-orbit currents.

Our observations also confirm the finding of Otsuka et al.
[46] that the spin-orbit splittings might be more strongly
modified by the tensor force than they are by neutron skins
in neutron-rich nuclei through the reduction of the gradient of
the density.

Figure 9 shows the spin-orbit potential of the protons for the
chain of Ni isotopes. Here, the contribution from the spin-orbit
force has a larger contribution coming from the gradient of the
proton density that just grows with the mass number, without
being subject to varying shell fluctuations. The same holds for
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FIG. 9. (Color online) Total proton spin-orbit potential for the
chain of Ni isotopes as obtained with the parametrization T44. The
solid line on the base plot indicates the radius where the isoscalar
density ρ0 crosses half its saturation value.

the proton contribution from the tensor terms. Only the neutron
contribution from the tensor terms varies rapidly, proportional
to Jn as displayed in Fig. 5; however, it has a very limited
effect on the total spin-orbit potential.

We can now examine how the tensor terms affect the
evolution of single-particle spectra. To that end, Fig. 10 shows
the single-particle energies of protons and neutrons along the
chain of Ni isotopes for the parametrization T22 with vanishing
combined tensor terms, which will serve as a reference;
Fig. 11 shows the same for the parametrization T44 with
proton-neutron and like-particle tensor terms of equal strength.
For the latter, the variation of the neutron spin-orbit current
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FIG. 10. (Color online) Single-particle spectra of neutrons (upper
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obtained with the parametrization T22 with vanishing combined J2
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for neutrons.
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FIG. 11. (Color online) The same as Fig. 10, obtained with T44
with proton-neutron and like-particle tensor terms of equal strength.

with N influences both neutron and proton single-particle
spectra. The effect of the tensor terms is subtle but clearly
visible: For T22, the major change of the single-particle
energies is their compression with increasing mass number,
whereas for T44 the level distances oscillate on top of
this background correlated to the neutron shell and subshell
closures at N = 20, 28, 40, and 50. As previously shown,
the neutron spin-orbit current vanishes for N = 20, where
it consequently has no effect on the spin-orbit potentials and
splittings. By contrast, the neutron spin-orbit current is large
for N = 28 and 50, where its contribution to the spin-orbit
potential reduces the splittings from the spin-orbit force.

The strong variation of the spin-orbit current with nucleon
number is typical for light nuclei up to about mass 100. For
heavier nuclei, its variation becomes much smaller. This is
exemplified in Fig. 12 for the neutron spin-orbit current in the
chain of Pb isotopes. There remain the fast fluctuations at small
radii, which reflect the subsequent filling of low-� levels with
many nodes as we already saw for the Ni isotopes but which
have a very limited impact on the spin-orbit splittings when
fed into the spin-orbit potential. The dominating peak of the
spin-orbit current, just beneath the surface, shows only small
fluctuations, as the overlapping spin-orbit splittings of levels
with different � never give rise to a spin-saturated configuration
in heavy nuclei.

Note that both the spin-orbit current J and the spin-orbit
potential are exactly zero at r = 0 because they are vectors
with negative parity.

B. Single-particle energies

As a next step, we analyze the modifications that the
presence of J2 terms brings to single-particle energies in detail.
Before we do so, a few general comments on the definition and
interpretation of single-particle energies are in order. From an
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FIG. 12. (Color online) Radial component of the neutron spin-
orbit current for the chain of Pb isotopes plotted in the same manner
as in Fig. 5.

experimental point of view, empirical single-particle energies
in a doubly-magic nucleus are determined as the separation
energies between the even-even doubly magic nucleus and
low-lying states in the adjacent odd-A nuclei (i.e., they are
differences of binding energies). In nuclear models, however,
it is customary to discuss shell structure and single-particle
energies in terms of the spectrum of eigenvalues εi of the
Hartree-Fock mean-field Hamiltonian (in even-even nuclei),
as we have done already in Figs. 10 and 11:

ĥ�i = εi�i. (37)

In the nuclear EDF approach without pairing, the reference
state is directly constructed as a Slater determinant of
eigenstates of ĥ; hence, the corresponding eigenvalues are
directly connected to the fundamental building blocks of the
theory and reflect the mean field in the nucleus. The density
of single-particle levels around the Fermi surface drives the
magnitude of pairing correlations; the relative distance of
single-particle levels at sphericity and their quantum numbers
determine to a large extent the detailed structure of the
deformation energy landscape, which in turn determines the
collective spectroscopy. The spectroscopic properties of even-
even nuclei, in particular when they exhibit shape coexistence,
provide valuable benchmarks for the underlying single-particle
spectrum [56]. The link between the spectrum of single-
particle energies on the one hand and the collective excitation
spectrum on the other hand, however, always remains indirect.

Nonetheless, “single-particle” states near the Fermi level
of a magic nucleus can be observed by adding or removing a
particle in one of these states, thus yielding the corresponding
ground and excited states of the neighboring odd-mass nuclei.
By assuming an infinitely stiff magic core, which is subject
neither to any rearrangement or polarization nor to any
collective excitations following the addition (or removal) of
a nucleon, the separation energies with the states in the
odd-mass neighbors are equal to the single-particle energies
as defined through Eq. (37). This highly idealized situation is
modified by static [88] and dynamic [89,90] correlations, often
called “core polarization” (see Chapter 7 of Ref. [91]) and
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“particle-vibration coupling” (see Sec. 9.3.3 of Ref. [92]) in
the literature, that alter the separation energies. The main effect
of the correlations is that they compress the spectrum, pulling
down the levels from above the Fermi energy and pushing
up those from below. The gross features (i.e., the ordering
and relative placement of single-particle states), however, are
more weakly affected by correlations. The particle-vibration
coupling, however, is also responsible for the fractionization
of the single-particle strength. When the latter is too large,
the naive comparison between the calculated εi given by
Eq. (37) and the energy of the lowest experimental state with
the same quantum numbers is no longer even qualitatively
meaningful [48].

We mention that a part of the static correlations originates
from the nonvanishing time-odd densities in the mean-field
ground state of an odd-A nucleus, which also cannot be truly
spherical, so that the complete energy functional from Eq. (23)
should be considered in a fully self-consistent calculation of
the separation energies.

The effective single-particle energies that are used to
characterize the underlying shell structure in the interacting
shell model [93] have a slightly different meaning. Their defi-
nition usually renormalizes polarization and particle-vibration
coupling effects around a doubly-magic nucleus whereas their
evolution is discussed in terms of monopole shifts [94].
A collection of effective single-particle energies and their
evolution was made by Grawe et al. [95,96]. Note that the SkX
parametrization of the Skyrme energy functional by Brown and
its variants [48,97] were constructed by aiming at a description
of effective single-particle energies along these lines.

It should be kept in mind that the obvious, coarse discrep-
ancies between the calculated spectra of εµ and the empirical
single-particle energies are often larger than the uncertainties
coming from the missing correlations, as long as one observes
some elementary precautions. We took care to ensure that the
states used in our analysis were one-quasiparticle states weakly
coupled to core phonons. First, we checked that the even-even
nucleus of interest could be described as spherical, indicated
by a sufficiently high-lying 2+ state. Second, we avoided all
levels that were obviously correlated with the energies of
2+ states in the adjacent semi-magic series, as this indicates
strong coupling with core excitations. Finally, we carefully
examined states lying above the 2+ energy and/or twice the
pairing gap of adjacent semi-magic nuclei to eliminate those
more accurately described as an elementary core excitation
coupled to one or more quasiparticles, which generally appear
as a multiplet of states. We did not attempt to use energy
centroids calculated with use of spectroscopic factors, as these
are not systematically available. Indeed, our requirement is
that, if some collectivity is present, it should be similar among
all nuclei considered to be easily subtracted out. The empirical
single-particle levels shown in the following are determined
from the lowest states having given quantum numbers in an
odd-mass nucleus.

1. Spin-orbit splittings

The primary effect one expects from a tensor term is that it
affects spin-orbit splittings by altering the strength of the spin-

orbit field in spin-unsaturated nuclei, according to Eq. (35).
One should remember, though, that the spin-orbit coupling
itself is readjusted for each pair of coupling constants CJ

0 ,
and CJ

1 . The effect of this readjustment is generally opposite
to that of the variation of the isoscalar tensor term coupling
constant. It should thus be stressed that the effects described
result from the balance between the variation of tensor and
spin-orbit terms, which for most of our parametrizations pull
in opposite directions.

Common wisdom states that the energy spacing between
levels that are both above or both below the magic gap are
not much affected by correlations, even when their absolute
energy changes; hence it is common practice to confront only
the spin-orbit splittings between pairs of particle or hole states
with calculated single-particle energies from the spherical
mean field. Figure 13 shows the relative error of single-particle
splitting of such levels for doubly-magic nuclei throughout
the chart of nuclei. The calculated values are typically 20% to
60% larger than the experimental ones, with the exception of
16O, where the splittings of the neutron and proton 1p states are
acceptably reproduced at least for the parametrizations T22,
T24, and T42 (i.e., those with the weakest tensor terms in the
sample).

It is noteworthy that the calculated splittings depend much
more sensitively on the tensor terms for light nuclei with spin-
saturated shells (protons and neutrons in 16O and protons in
90Zr) than for the heavy doubly-magic 132Sn and 208Pb, which
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FIG. 13. (Color online) Relative error of the spin-orbit splittings
in doubly-magic nuclei for � � 2 levels.
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are quite robust against a variation of the tensor terms. The
reason will become clear later in our discussion.

2. Connection between tensor and spin-orbit terms

The finding that our parametrizations systematically over-
estimate the spin-orbit splittings deserves an explanation.
Earlier it was already noted that all standard Skyrme inter-
actions, including the SLy parametrizations that share our
fit protocol, have an unresolved trend that overestimates
the spin-orbit splittings in heavy nuclei [14,29,98]. Adding
the tensor terms, however, further deteriorates the overall
description of spin-orbit splittings, instead of improving it.
It is particularly disturbing that the spin-orbit splitting of the
3p level in 208Pb that was used to constrain W0 in the fit
is overestimated by 30% to 40%, which is larger than the
relative tolerance of 20% included in the fit protocol. In fact,
it turns out that the coupling constant W0 of the spin-orbit
force is more tightly constrained by the binding energies of
light nuclei than by this or any other spin-orbit splitting. In
the HF approach used during the fit, the structure of 40Ca,
48Ca, and 56Ni differs by the occupation of the neutron and
proton 1f7/2 levels. First, we have to note that the terms in
the energy functional that contain the spin-orbit current play
an important role for the energy difference between 40Ca and
56Ni. The combined contribution from the tensor and spin-orbit
terms varies from a near-zero value in the spin-saturated
40Ca to about −60 MeV in 56Ni for all our parametrizations,
which is a large fraction of the −142 MeV difference in total
binding energy between both nuclei. The Z = 40 subshell
and Z = 50 shell provide another example of abrupt variation
of the spin-orbit current with the filling of the 1g9/2 level,
which strongly affects the relative binding energy of N = 50
isotones 90Zr and 100Sn. Second, the fit to phenomenological
data can take advantage of the large relative variation of these
terms to mock up missing physics in the energy functional
that should contribute to the energy difference but is absent
in it. The consequence will be a spurious increase of the
spin-orbit and tensor term coupling constants. The resulting
energy functional will correctly describe the mass difference,
but not the physics of the spin-orbit and tensor terms.

To test this interpretation, we performed a refit of selected
TIJ parametrizations without taking into account the masses
of 40Ca, 48Ca, 56Ni, and 90Zr in the fit procedure. In the
resulting parametrizations, the spin-orbit coefficient W0 is typ-
ically 20% lower than in the original ones. As a consequence,
the empirical value for the spin-orbit splitting of the neutron
3p level in 208Pb is met well within tolerance, at the price of
binding energy residuals in light nuclei being unacceptably
large (i.e., 56Ni being underbound by 5 MeV while 40Ca
and 90Zr are overbound by up to 10 MeV). Although the
global trend of the spin-orbit splittings shown in Fig. 13
is enormously improved with these fits, in particular for
heavy nuclei, the overall agreement of the single-particle
spectra with experiment is not, so that we had to discard
these parametrizations. This finding hints at a deeply rooted
deficiency of the Skyrme energy functional. The spin-orbit
and, when present, tensor terms indeed do simulate missing
physics of the energy functional at the price of unrealistic

spin-orbit splittings. This also hints as to why perturbative
studies, such as those performed in Refs. [37,49], give much
more promising results than what we will find in the following
with our complete refits. We will discuss mass residuals in
more detail in Sec. IV C1.

During the fit, not only do the masses of light nuclei
compromise the spin-orbit splittings, they also establish a
correlation between W0 and CJ

0 in all our parametrizations.
The combined spin-orbit and spin-current energy of a given
spherical nucleus (N,Z) is given by

E
spin
0 (N,Z) = C∇J

0 I∇J
0 (N,Z) + CJ

0 IJ
0 (N,Z) (38)

(where we keep only the isoscalar part since we shall focus on
the N = Z nuclei 40Ca and 56Ni), with

I∇J
0 (N,Z) =

∫
d3r ρ0∇ · J0, (39)

IJ
0 (N,Z) =

∫
d3r J2

0. (40)

The difference of E
spin
0 between 56Ni and 40Ca,

E
spin
0 (56Ni) − E

spin
0 (40Ca) = �Espin, (41)

turns out to be fairly independent of the parametrization.
Averaged over all 36 parametrizations TIJ used here, �Espin

has a value of −58.991 MeV with a standard deviation as small
as 3.202 MeV, or 5.4%.

The integrals in Eqs. (39) and (40) are fairly independent
of the actual parametrization. For a rough estimate, we can
replace them in Eq. (38) by their average values. Plugged into
Eq. (41) this yields

C∇J
0 = �Espin − CJ

0

〈
IJ

0 (56Ni) − IJ
0 (40Ca)

〉
〈
I∇J

0 (56Ni) − I∇J
0 (40Ca)

〉 . (42)

Figure 14 compares the values of C∇J
0 as obtained through

Eq. (42) with the values for the actual parametrizations. The
estimate works very well, which demonstrates that C∇J

0 =
− 3

4W0 and CJ
0 are indeed correlated and cannot be varied

independently within a high- quality fit of the energy functional
[Eq. (28)]. Because the combined strength of the spin-orbit and
tensor terms in the energy functional is mainly determined by
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FIG. 14. Correlation between the values of spin-orbit coupling
constant C∇J

0 and the isoscalar spherical effective spin-current cou-
pling constant CJ

0 . Dots indicate values for the actual parametrizations
TIJ; the solid line is the trend estimated through Eq. (42) (see text).
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the mass difference of the two N = Z nuclei 40Ca and 56Ni, the
spin-orbit coupling constant W0 depends more or less linearly
on the isoscalar tensor coupling constant CJ

0 , whereas for all
practical purposes it is independent of the isovector one (see
also Fig. 4).

3. Splitting of high-� states and the role of the radial form factor

As already stated, it is common practice to confront only
the spin-orbit splittings between pairs of particle or hole states
with calculated single-particle energies from the spherical
mean field. The spin-orbit splitting of intruder states is rarely
examined. Figure 15 displays the relative deviation of the
spin-orbit splittings of the intruder states with � � 3 that
span across major shell closures and are thus given by the
energy difference of a particle and a hole state. These splittings
are not “safe” (i.e., they can be expected to be strongly
decreased by polarization and correlation effects) [88–90]. To
leave room for this effect, a mean-field calculation should
overestimate the empirical spin-orbit splittings. We observe,
however, that mean-field calculations done here give values
that are quite close to the experimental ones, or even smaller for
parametrizations with large positive isoscalar tensor coupling
(cf. the evolution from T22 to T66).
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FIG. 15. (Color online) Spin-orbit splittings of high-� levels in
magic nuclei across the Fermi energy. The calculated values are less
robust against correlation effects than those shown in Fig. 13 and
have to be interpreted with caution (see text).

This means that the spin-orbit splittings are not too large
in general, as might be concluded from Fig. 13, but that there
is a wrong trend of the splittings with � with the strength
of the spin-orbit potential establishing a compromise between
the in-shell splittings of small � orbits that are too large and
the across-shell splittings of the intruders that are tentatively
too small. In fact, the levels in Fig. 15 obviously have in
common that their radial wave functions do not have nodes,
but the levels in Fig. 13 have one or two nodes, with the notable
exception of the 1p levels in 16O, for which we also find smaller
deviations of the spin-orbit splittings than for the other levels in
Fig. 13.

Underestimating the spin-orbit splittings of intruder levels
has immediate and obvious consequences for the performance
of an effective interaction, as this closes the magic gaps in
the single-particle spectra and compromises the predictions
for doubly-magic nuclei, as we will demonstrate in detail
in the following. By contrast, the spin-orbit splittings of the
low-� states within the major shells have no obvious direct
impact on bulk properties. Their deviation from empirical data
is less dramatic, as the typical bulk observables discussed with
mean-field approaches are not very sensitive to them. Only
in applications to spectroscopy do their deficiencies become
evident. It is noteworthy that the parametrization T22 without
effective tensor terms at sphericity provides a reasonable
compromise between the tentatively underestimated splittings
of the intruder levels shown in Fig. 15 and the tentatively
overestimated splittings of the levels within major shells shown
in Fig. 13, whereas for parametrizations with tensor terms this
balance is lost.

There clearly is a proton-neutron staggering in Figs. 13 and
15, such that calculated proton splittings are relatively smaller
than the neutron ones. The effect appears both when comparing
proton and neutron levels with different � in the same nucleus
and when comparing proton and neutron levels with the same
� in the same or different nuclei (see the 1h levels in 132Sn and
208Pb). The staggering for the intruder levels is even amplified
for parametrizations with a large proton-neutron tensor term,
such as T62, T64, or T66. The effect is particularly prominent
for the heavy 132Sn and 208Pb nuclei with their large proton-
to-neutron ratio N/Z, which might hint at unresolved isospin
dependence of the spin-orbit interaction, although alternative
explanations that involve how single-particle states in different
shells should interact through tensor and spin-orbit forces are
possible as well.

Note that the spin-orbit splittings of the low-� levels shown
in Fig. 13 also exhibit a staggering, although of smaller
amplitude. It has been pointed out by Skalski [99] that an
exact treatment of the Coulomb exchange term (compared to
the Slater approximation used here and in nearly all existing
literature) does indeed slightly increase the spin-orbit splittings
of protons across major shells. This effect might give a clue to
the staggering observed for the N = Z nucleus 56Ni, but the
magnitude of the effect reported by Skalski [99] is too small
to explain the large staggering we find for the heavier N �= Z

nuclei.
Next, we use the example of 132Sn to demonstrate why

the spin-orbit splittings of nodeless high-� states are more
sensitive to the tensor terms than are low-� states with one or
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FIG. 16. (Color online) Neutron spin-orbit potential (top) and the
radial wave function of selected orbitals (bottom) in 132Sn.

several nodes (see Fig. 16). The lower panel shows the neutron
spin-orbit potential in 132Sn for four different parametrizations;
the upper panel shows selected radial single-particle wave
functions. The ν 1h11/2 and π 1g9/2 levels give the main
contribution to the neutron and proton spin-orbit currents in
this nucleus, and consequently to the tensor contribution to the
spin-orbit potential. Indeed, the largest differences between
the spin-orbit potentials from the chosen parametrizations are
caused by the varying contribution from the tensor terms and
appear for the region between 3 and 6 fm, where the wave
functions of the 1g and 1h states are peaked. This region
corresponds to the inner flank of the spin-orbit potential well,
whereas the outer flank is much less affected. Although the
1g and 1h wave functions are peaked at the inner flank,
the 2d orbitals have their node in this region. Consequently, the
splittings of the 1g and 1h levels are strongly modified by the
tensor terms, but those of the 2d orbitals are quite insensitive.

As a rule of thumb, the tensor contribution to the spin-
orbit potential in doubly-magic nuclei comes mainly from the
nodeless intruder states, which, when present, in turn mainly

affect their own spin-orbit splittings, leaving the splittings of
the low-� states with one or more nodes nearly unchanged for
reasons of geometrical overlap.

We note in passing that the slightly different radial wave
functions of the 2d orbitals demonstrate nicely that their con-
tribution to the spin-orbit current, Eq. (27), cannot completely
cancel.

In fact, more specifically, for the evolution of the spin-orbit
potential between the parametrizations T22 and T66, it is
striking that for T66 it is essentially narrowed and its minimum
slightly pushed toward larger radii, whereas its depth remains
unaltered. Recalling that T66 shows a pathological behavior of
too weak a spin-orbit splitting of the intruder states, it appears
that a correct � dependence of spin-orbit splittings might
require modification of the radial dependence of the spin-orbit
potential such that it becomes wider toward smaller radii. This
uncalled-for modification of the shape of the spin-orbit field
has previously been put forward by Brown et al. [48] as an
argument for a negative like-particle J2 coupling constant α.
However, as will be discussed in Sec. IV B6, the evolution of
single-particle levels along isotopic chains calls for α > 0 (see
also Ref. [48]). Additionally, as we will show in Appendix B,
large negative values of α pose the risk of instabilities toward
the transition to states with unphysical shell structure.

4. Single-particle spectra of doubly-magic nuclei

After our examination of the predictions for spin-orbit
splittings, we will now turn to the overall quality of the
single-particle spectra of doubly-magic nuclei. Figure 17
shows the single-particle spectrum of 132Sn. It is evident that
as a consequence of the underestimated spin-orbit splittings
of the intruder levels that we discussed in the last section, the
spectrum deteriorates for large positive isoscalar tensor term
coupling constants CJ

0 (see T66), as seen, for example, in the
decrease of the spin-orbit splitting of the neutron 1h shell that
pushes the 1h11/2 further up, closing the N = 82 gap. As a
consequence, the presence of the tensor terms cannot remove
the problem shared by all standard mean-field methods that
always wrongly put the neutron 1h11/2 level above the 2d3/2

and 3s1/2 levels [29], which compromises the description of the
entire mass region. For the same reason, the proton spectrum of
132Sn also excludes interactions with large positive CJ

0 , which
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FIG. 18. Same as Fig. 17 for 208Pb.

reduces the Z = 50 gap between the 1g levels to unacceptable
small values.

Figure 17 also shows the energy centroids of the ν 1h and
π 1g levels, defined as

εcent
qn� = � + 1

2� + 1
εqn�,j=�+1/2 + �

2� + 1
εqn�,j=�−1/2. (43)

The position of the centroid is fairly independent of the
parametrization. Assuming that the calculated energy of the
centroid of an intruder state is more robust against corrections
from core polarization and particle-vibration coupling that its
spin-orbit splitting, we see that the ν, 1h centroid is clearly
too high in energy by about 1 MeV. In combination with its
tentatively too-small spin-orbit splitting (see Fig. 15), this
offers an explanation for the notorious wrong positioning
of the ν 1h11/2, 2d3/2, and 3s1/2 levels in 132Sn [29]. The
near degeneracy of the ν 2d3/2 and 3s1/2 levels is always
well reproduced, whereas the 1h11/2 comes out much too
high. Because the 1h11/2 is the last occupied neutron level,
self-consistency puts it close to the Fermi energy, which,
in turn, pushes the 2d3/2 and 3s1/2 levels down in the
spectrum.

The overall situation is similar for 208Pb (see Fig. 18).
Again, the high-� intruder states move too close to the Z = 82
and N = 126 gaps for large positive CJ

0 . The effect is less
obvious than for 132Sn as the intruders and their spin-orbit
partners are further away from the gaps. Still, the level ordering
and the size of the Z = 82 gap become unacceptable for
parametrizations with large tensor coupling constants. For
strong tensor term coupling constants (both like-particle and

proton-neutron), a Z = 92 gap opens in the single-particle
spectrum of the protons that is also frequently predicted by
relativistic mean-field models [14,88] but absent in experiment
[100].

The single-particle spectra for the light doubly-magic nuclei
40Ca (Fig. 19), 48Ca (Fig. 20), 56Ni (Fig. 21), 68Ni (Fig. 22), and
90Zr (Fig. 23) all have in common that the relative impact of the
J2 terms on the ordering and relative distance of single-particle
levels is even stronger than for the heavy nuclei just discussed.
But not all of the strong dependence on the coupling constants
of the J2 terms that we see in the figures is due to the actual
contribution of the tensor terms to the spin-orbit potential.
This is most obvious for 40Ca, where protons and neutrons
are spin saturated such that the J2 terms do not contribute
to the spin-orbit potentials. Still, increasing their coupling
constants increases the spin-orbit splittings, which manifests
the readjustment of the spin-orbit force to a given set of CJ

0 and
CJ

1 (see Fig. 4). The evolution of the spin-orbit splittings in
40Ca visible in Fig. 19 is the background that we have to keep in
mind when discussing the impact of the tensor terms on nuclei
with nonvanishing spin-orbit currents. Note that the spin-orbit
coupling constant W0 is correlated with the isoscalar tensor
coupling constant CJ

0 , such that the single-particle spectra
obtained with T24 and T42 are very similar, as they are for
T26, T44, and T62.

For 48Ca (Fig. 20), the protons are still spin saturated with
vanishing proton spin-orbit current Jp, but for neutrons we
have a large Jn. Depending on the nature of the tensor terms in
the energy functional (i.e., like-particle or proton-neutron or a
mixture of both), the spin-orbit current will contribute to the
spin-orbit potential of the neutrons or to that of the protons or to
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FIG. 19. Same as Fig. 17 for 40Ca.
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FIG. 20. Same as Fig. 17 for 48Ca.

both [see Eq. (35)]. For the parametrizations with a dominating
like-particle J2 term, for example T24 and T26, the situation
for the protons is the same as for 40Ca: There is no contribution
from the tensor terms to the proton spin-orbit splittings, but
compared to T22 the proton Z = 20 gap is reduced through the
readjustment of the spin-orbit force, leading to values that are
too small. For the same parametrizations, the large contribution
from Jn to Wn opens up the N = 20 gap to values that
are tentatively too large, as it reduces the neutron spin-orbit
splittings and thereby compensates, even overcompensates,
the effect from the readjustment of the spin-orbit force. At the
same time the N = 28 gap is reduced. The opposite effect is
seen for parametrizations with a large proton-neutron tensor
term, for example T42 or T62. For those, the proton spin-orbit
splitting is reduced, opening up the Z = 20 gap compared to
T22, whereas the neutron spin-orbit splittings are increased by
the background effect from the readjusted spin-orbit force.

For 56Ni (Fig. 21), we have large Jn and Jp. In this
N = Z nucleus, the like-particle or proton-neutron parts of the
tensor terms cannot be distinguished. The spectra depend only
on the overall coupling constant of the isoscalar tensor term
CJ

0 , directly through the contribution of the tensor terms to the
spin-orbit potentials and through the background readjustment
of W0, which is correlated to CJ

0 as well. As already mentioned,
results for T24 and T42, as well as for T26, T44, and T62,
are very similar. All parametrizations have in common that the
proton and neutron gaps at 28 are too small. The variation of the
single-particle spectra among the parametrizations is smaller
than for 40Ca, mainly because the tensor terms compensate the
background drift from the readjustment of W0.

The slightly neutron-rich 68Ni combines a spin-saturated
subshell closure N = 40 that gives a vanishing neutron
spin-orbit current with the magic Z = 28 that gives a
strong proton spin-orbit current. The dependence of the single-
particle spectra on the coupling constants of the tensor terms is
similar to those of 48Ca, with the roles of protons and neutrons
exchanged.

The nucleus 90Zr combines the spin-saturated proton
subshell closure Z = 40 with the major neutron shell closure
N = 50. The high degeneracy of the occupied ν 1g9/2 level
leads to a very strong neutron spin-orbit current, whereas
the proton spin-orbit current is zero. Even in the absence
of a tensor term contributing to their spin-orbit potential
for parametrizations with pure like-particle tensor terms, the
proton single-particle spectra are dramatically changed by
the feedback effect from the readjusted spin-orbit force; see
the evolution from T22 to T26. The π 1g9/2 comes down
and closes the Z = 40 subshell gap. For parametrizations
with a pure proton-neutron tensor term, one has the opposite
effect, this time because the contribution from the tensor terms
overcompensates the background effect from the spin-orbit
force. The effect of the tensor terms on the neutron spin-orbit
splittings is less dramatic but still might be sizable.

We have to point out that the calculations displayed in
Fig. 23 were performed without taking pairing into account,
as the HFB scheme breaks down in the weak pairing regime
of doubly-magic nuclei. For some extreme (and unrealistic)
parametrizations, however, the gaps disappear, which, in turn,
would lead to strong pairing correlations if the calculations
were performed within the HFB scheme. This happens, for
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FIG. 21. Same as Fig. 17 for 56Ni.
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FIG. 22. Same as Fig. 17 for 68Ni.

example, for neutrons in 90Zr when using T26 and T46.
Interestingly, the pairing correlations for neutrons break the
spin saturation, which leads to a substantial neutron spin-orbit
current Jn. Because these parametrizations use values of the
like-particle coupling constant significantly larger than the
neutron-proton one, Jn feeds back onto the neutron spin-orbit
potential only [Eq. (35)]. Because the corresponding coupling
constant α is positive for T26 and T46, the contribution from
the tensor terms reduces the spin-orbit splittings, in particular
those of 1g9/2 and 1f5/2. As a result, this counteracts the
reduction of the N = 40 gap predicted by T26 and T46 in
calculations without pairing.

5. Evolution along isotopic chains: np coupling

In the preceding sections, we have analyzed characteristics
of the single-particle spectra for isolated doubly-magic nuclei.
We found that larger tensor terms do not lead to an overall
improvement of the single-particle spectra. However, we also
argued that this might be essentially due to deficiencies of
the central (and possibly spin-orbit) interactions and that it
should not be used to discard the tensor terms as such. In
any case, the results gathered so far on single-particle spectra
of doubly-magic nuclei do not permit us to narrow down a
region of meaningful coupling constants of the tensor terms.
The analysis must be complemented by looking at other
observables. A better suited observable is provided by the
evolution of spin-orbit splittings along an isotopic or isotonic
chain, which ideally reflects the nucleon-number-dependent
contribution from the J2 terms to the spin-orbit potentials.
Unfortunately, safe experimental data for the evolution of

spin-orbit partners are scarce; hence, one has to content oneself
to the evolution of the energy distance of levels with different
�, assuming that the effect is primarily caused by the evolution
of the spin-orbit splittings of each level with its respective
partner. A popular playground for such studies is the chain
of Sn isotopes, where two such pairs of levels have gained
attention: the π 2d5/2 and π 1g7/2 and the π 1g7/2 and π

1h11/2. Figure 24 shows these two sets of results for a selection
of our parametrizations. Experimentally, the 2d5/2 and 1g7/2

levels cross between N = 70 and 72, such that the 2d5/2 level
provides the ground state of light odd-A Sb isotopes and 1g7/2

that of the heavy ones (see. e.g., Ref. [101]). The crossing as
such is predicted by many mean-field interactions and most of
the parametrizations of the Skyrme interaction we use here.
It has also been studied in detail with the standard Gogny
force (without any tensor term) by using elaborate blocking
calculations of the odd-A nuclei [102]. The crossing, however,
is never predicted at the right neutron number (see Fig. 24). As
we have learned here, we should not assume that the absolute
distance of the two levels will be correctly described by any of
our parametrizations (as the centroids of the � shells will not
have the proper distance and the spin-orbit splittings have the
wrong � dependence within a given shell). Hence, the neutron
number where the crossing takes place cannot and should not
be used as a quality criterion. What does characterize the
tensor terms is the bend of the curves in Fig. 24, as ideally
it reflects how the spin-orbit splittings of both levels change
in the presence of the tensor terms. Similar caution has to be
exercised in the analysis of the unusual relative evolution of
the proton 1g7/2 and 1h11/2 levels that was brought to attention
by Schiffer et al. [45]. Their spacing has been investigated
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in terms of the tensor force before [44,46,48,49]. Again, we
pay attention to the qualitative nature of the bend without
focusing too much on the precise value by which the splitting
changes when going from N ≈ 58 to N = 82. Indeed, the
matching of the lowest proton fragment with quantum number
1h11/2 seen experimentally with the corresponding empirical
single-particle energy is unsafe because of the fractionization
of the strength, as discussed in Ref. [48].

For both pairs of levels, the evolution of their distance
can be attributed to the tensor coupling between the proton
levels and neutrons filling the 1h11/2 level below the N =
82 gap. Unfortunately, this introduces an additional source of
uncertainty: As can be seen in Fig. 17, the ordering of the
neutron levels in 132Sn is not properly reproduced by any of
our parametrizations, with the 1h11/2 level being predicted
above the 2d3/2 level, whereas it is the other way round in
experiment. Thus, in the calculations, the contribution from
the 1h11/2 level to the neutron spin-orbit current builds up
at larger N than what can be expected in experiment. As a
consequence, the prediction for the relative evolution of the
levels might be shifted by up to four mass units to the right
compared to experiment for both pairs of levels we examine
here.

In the end, the trend of both splittings is best reproduced
when using a positive value of the neutron-proton Jn · Jp

coupling constant β such that the filling of the neutron 1h11/2
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FIG. 25. (Color online) Distance of the proton 1f5/2 and 2p3/2 in
the chain of Ni isotopes.

shell decreases the spin-orbit splittings of the proton shells.
The parametrizations from the T4J and T6J series indeed do
reproduce the bend of empirical data, with, however, a clear
shift in the neutron number where it occurs, as expected from
the previous discussion. A value of β = 120 MeV fm5, which
corresponds to the series of T4J parametrizations, matches its
magnitude best (see, e.g., T44).

A similar analysis can be performed for the proton 1f5/2 and
2p3/2 levels in the chain of Ni isotopes (see Fig. 25). This case
is interesting as no distinctive feature can be observed in the
empirical spectra, yet the standard parametrizations without
tensor terms such as T22 do not reproduce them. In fact, to keep
the 1f5/2 and 2p3/2 levels at a constant distance, two competing
effects have to cancel. First, the increasing diffuseness of the
neutron density with increasing neutron number diminishes
the proton spin-orbit splittings through its reduced gradient in
the expression for the proton spin-orbit potential when going
from N = 32 to N = 40. Second, the filling of the neutron
1f5/2 state reduces the neutron spin-orbit current, which in
turn increases the proton spin-orbit splittings for interactions
with sizable proton-neutron tensor contribution to the proton
spin-orbit potential when going from N = 32 to N = 40.
The former effect can be clearly seen for parametrizations
T2J with vanishing proton-neutron tensor term (β = 0).
Again, parametrizations of the T4J series seem to be the most
appropriate way to describe the evolution of these levels.

The evolution of single-particle levels is the tool of choice
to determine the sign and magnitude of the proton-neutron
tensor coupling constant. The value we favor, as a result of
our semiqualitative analysis, is β = 120 MeV fm5. This value
is only slightly larger than the value of 94 to 96 MeV fm5

advocated by Brown et al. [48], which was adjusted to
theoretical level shifts in the chain of tin isotopes obtained from
a G-matrix interaction. We can consider this as a reasonable
agreement.

Let us defer the discussion of this value to the end of this
section and study in the next paragraph the like-particle tensor
term coupling constant α.

6. Evolution along isotopic chains: nn coupling

To narrow down an empirical value for the neutron-neutron
tensor coupling constant, the ideal observable would be the

014312-22



TENSOR PART OF THE SKYRME ENERGY DENSITY . . . PHYSICAL REVIEW C 76, 014312 (2007)

evolution of neutron single-particle levels along an isotopic
chain. Unfortunately, these are only accessible at the respective
shell closures. We shall therefore compare neutron single-
particle spectra of pairs of doubly-magic nuclei belonging to
the same isotopic chain. Again, the necessity of extracting pure
single-particle effects calls for precautions. We choose pairs of
particle or hole levels that are close enough in energy that their
absolute spacing is affected very little by particle-vibration
coupling. Of course, one also has to be careful if both states
appear at relatively high excitation energy in the neighboring
odd isotope because the fractionization of their strength could
again interfere with the analysis. In the following, we choose
pairs of orbitals that are as safe as possible.

To remove the uncertainties from the deficiencies of the
central and spin-orbit parts of the effective interaction that we
have identified, we will look at a double difference, where we
first construct the energy difference between the neutron 1d3/2

and 2s1/2 levels separately for 40Ca and 48Ca and then compare
the value of this difference in both nuclei. This difference is
given by

δCa = (
ε

48Ca
1d3/2

− ε
48Ca
2s1/2

) − (
ε

40Ca
1d3/2

− ε
40Ca
2s1/2

)
. (44)

Assuming that the problems from the central and spin-orbit
forces discussed in Secs. IV B1 and IV B4 have the same effect
in both nuclei, they will cancel out in δCa.

The interesting feature of this pair of states is that they are
separated by more than 2 MeV in 40Ca, whereas they are nearly
degenerate in 48Ca (see Figs. 19 and 20). Such a shift can only
be reproduced with a positive (140–180 MeV fm5) value of α,
which decreases the splitting of the neutron 1d shell when the
neutron 1f7/2 level is filled.

A similar analysis can be performed for the 1f5/2 and 2p1/2

neutron states in the Ni isotopes 56Ni and 68Ni, giving

δNi = (
ε

68Ni
1f5/2

− ε
68Ni
2p1/2

) − (
ε

56Ni
1f5/2

− ε
56Ni
2p1/2

)
. (45)

Upon going from 56Ni to 68Ni, the neutron 1f5/2 level
comes further down in energy than the 2p1/2 level for
parametrizations without tensor terms (T22) (see Figs. 21 and
22). The reason for this trend is the geometrical growth of
the nucleus, which on the one hand lowers the centroid of the
1f levels in the widening potential well and on the other hand
pushes the spin-orbit field to larger radii, which has opposite
effects on the splittings of 2p and 1f states. The like-particle
tensor terms can compensate this trend through a reduction
of the spin-orbit splitting of the 1f levels. The observed
downward shift by 0.3 MeV can be recovered with a value
of α around 120 MeV fm5 (see Fig. 26). It is also gratifying to
see that the analysis of Ca and Ni isotopes suggests nearly
the same value for the like-particle tensor-term coupling
constant α.

C. Binding energies

Our ultimate goal, although far beyond the scope of the
present paper, is the construction of a universal nuclear
energy density functional that simultaneously describes bulk
properties such as masses and radii, giant resonances, and
low-energy spectroscopy, such as quasiparticle configurations
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2s1/2 levels when going from 40Ca to 48Ca, Eq. (44) (top), and of
the neutron 1f5/2 and 2p1/2 levels when going from 56Ni and 68Ni,
Eq. (45) (bottom).

and collective rotational and vibrational states. To cross-check
how our findings on single-particle spectra and spin-orbit
splittings translate into bulk properties, we will now analyze
the evolution of mass residuals and charge radii along isotopic
and isotonic chains. It has been repeatedly noted in the
literature that the mass residuals from mean-field calculations
show characteristic arches [29,52,54,65,72,103–105], where
heavy midshell nuclei are usually underbound compared to
the doubly-magic ones that are located at the bottom of deep
ravines. For light nuclei, the patterns are often less obvious.
Part of this effect can be explained and removed by taking
large-amplitude correlations from collective shape degrees
of freedom into account through suitable beyond-mean-field
methods. In turn, this means that the mass residuals should
leave room for the extra binding of midshell nuclei from
correlations. However, it turns out that for typical effective
interactions the amplitude of the arches is larger than what is
brought by correlations [54]. Furthermore, this effect seems
not to be of the same size for isotopic and isotonic chains,
which altogether hints at deficiencies of the current effective
interactions.

Recently, Dobaczewski [47] pointed out that the strongly
fluctuating contribution brought by the J2 terms to the total
binding energy could remove at least some of the ravines
found in the mass residuals around magic numbers. The
hypothesis was motivated by calculations that evaluate the
tensor terms either perturbatively or self-consistently, using in
this case an existing standard parametrization without tensor
terms for the rest of the energy functional. Our set of refitted
parametrizations with varied coupling constants of the tensor
terms gives us a tool to check how much of the argument
persists to a full fit.

1. Semi-magic series

Figure 27 displays binding energy residuals along various
isotopic and isotonic chains of semi-magic nuclei for a
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FIG. 27. (Color online) Mass residuals Eth −Eexp along selected isotopic and isotonic chains of semi-magic nuclei for the parametrizations
as indicated. Positive values of Eth − Eexp denote underbound nuclei and negative values overbound nuclei.

selection of our parametrizations: T22 is the reference with
vanishing J2 terms at sphericity; T24 has a substantial like-
particle coupling constant α and vanishing proton-neutron
coupling constant β, which is similar to most of the published
parametrizations that take the J2 terms from the central
Skyrme force into account; T42 and T62 are parametrizations
with substantial proton-neutron coupling constant β and
vanishing like-particle coupling constant; T44 has a mixture
of like-particle and proton-neutron tensor terms that is close
to what we already found preferable for the evolution of
spin-orbit splittings; T46 is a parametrization that gives the
best root-mean-square (r.m.s.) residual of binding energies for
spherical nuclei, as we will see in the following; and T66
is a parametrization with large and equal proton-neutron and
like-particle tensor-term coupling constants.

The tensor terms have opposite effects in light and heavy
nuclei: The curves obtained with T22, the parametrization
without a J2 term contribution at sphericity, are relatively flat
for the light isotopic and isotonic chains, but they show very
pronounced arches with an amplitude of 5 MeV or more for the
heavy Sn and Pb isotopic chains. By contrast, the most striking
effect of the J2 terms is that they induce large fluctuations of

the mass residuals in light nuclei, whereas they flatten the
curves in the heavy ones.

The strong variation between the parameter sets for light
nuclei are of course the direct consequence of the strong
variation of the spin-orbit current J that enters the spin-orbit
and tensor terms when one goes back and forth between
nuclei where the configuration of at least one nucleon species
is spin saturated. The variations seen are a result of the
modifications of tensor term coupling constants and the
associated readjustment of the spin-orbit strength W0. For
example, 48Ca is overbound with respect to 40Ca and 56Ni
for parametrizations with a proton-neutron coupling constant
β > 0, whereas the like-particle coupling constant α has
a more limited effect. Since only the neutron core is spin
unsaturated in this nucleus, this must be attributed to the
increase in the readjusted spin-orbit strength W0 [correlated
with CJ

0 = 1
2 (α + β)], which dominates when β is increased

and α kept at zero, and counterbalances the effect of α when
the latter varies. See the parameter sets T62 and T66 in
Figs. 27 and 28. The large overbinding of nuclei around
90Zr (Z = 40, N = 50) for parametrizations with large
proton-neutron tensor coupling constant has the same origin.
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For a given parametrization and a given nucleus, the energy
gain from the spin-orbit term seems to be almost always larger
than the energy loss from the J2 one (see Fig. 28 for Ca isotopes
and Fig. 29 for Sn isotopes). Of course other terms in the energy
functional compensate for a part of the gain from the spin-orbit
term, but the overall trends of the mass residuals suggest that
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FIG. 29. (Color online) Same as Fig. 28 for tin isotopes (Z = 50).

the spin-orbit energy has a much larger contribution to the
differences between the parametrizations visible in Fig. 27
than do the J2 terms.

We note that the spin-orbit current does not completely
vanish for the nominally proton and neutron spin-saturated
40Ca for parametrizations with large coupling constants of
the J2 terms. For those, the gap at 20 is strongly (and
nonphysically) reduced (see Fig. 19). The small gap at 20 no
longer suppresses pairing correlations in our HFB approach.
The resulting scattering of particles from the sd shell to the
fp shell breaks the spin saturation, such that there is a finite,
in some cases quite sizable, contribution from the spin-orbit
term to the total binding energy. Owing to the compensation
among all contributions, the total energy gain compared to
a HF calculation without pairing is usually small and rests
on the order of 200 keV for the parametrizations shown in
Fig. 27.

It is also important to note that some of the light chains
in Fig. 27 are sufficiently close to or even cross the N = Z

line and that they are subject to the Wigner energy, which still
lacks a satisfying explanation, not to mention a description
in the framework of mean-field methods [106]. The Wigner
energy is not taken into account in our fits, but it turned out to
be a crucial ingredient of any HFB [107–109] or other mass
formula. In fact, as shown in Fig. 14 of Ref. [54], the missing
Wigner energy clearly sticks out from the mass residuals for
SLy4 (which is very similar to T22) when they are plotted for
isobaric chains. This local trend around N = Z is, however,
overlaced with a global trend with mass number, such that
the missing Wigner energy can no longer be spotted when
looking at the mass residuals for the isotopic chain of Ca
isotopes, similar to what is seen for T22 in Fig. 27. Within
our fit protocol, the correlation among the masses of 40Ca,
48Ca, and 56Ni, which is brought by the spin-orbit force (see
Sec. IV B2), does not tolerate a correction for the Wigner
energy for standard central and spin-orbit Skyrme forces, as
this will lead to an unacceptable underbinding of 48Ca. This,
however, might change when the J2 terms are added. Indeed,
Fig. 27 suggests that adding a phenomenological Wigner term
around 40Ca and 56Ni to a parameter set such as T44, which is
consistent with the evolution of single-particle levels, would
flatten the curves for the mass residuals in the Ca, Ni, and
N = 28 chains. The mass residuals for the chain of oxygen
isotopes that are not shown here would be improved in a similar
manner. However, extreme caution should be exercised before
jumping to premature conclusions, as the spin-orbit splittings
and level distances in light nuclei are far from realistic for
all our parametrizations; as a consequence it is difficult to
judge whether the room we find for the Wigner energy is
fortuitous or indeed a feature of well-tuned J2 terms. Note that
the HFB mass formulas that do include a correction for the
Wigner energy side by side with the J2 terms from the central
Skyrme force give satisfying mass residuals for light nuclei
[107–109] but have nuclear matter properties that are quite
different from ours (cf. BSk1 and BSk6 with SLy4 in Table I
of Ref. [110]). Our constraints on the empirical nuclear matter
properties, which are the same as those on SLy4 but are absent
in these HFB mass fits, might be the deeper reason for this
conflict.
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Large tensor term coupling constants straighten the arches
in the mass residuals in the heavy Sn and Pb isotopic chains,
but the improvements are not completely satisfactory. Large,
combined proton-neutron and like-particle coupling constants
tend to transform the arch for the tin isotopic chain into a an
S-shaped curve, which is not very realistic from the standpoint
of expected corrections through collective effects. It can again
be assumed that the deficiencies of the single-particle spectra
pointed out in Fig. 17 are responsible, where the ν 1h11/2 and
π 1g9/2 are placed too high above the rest of the single-particle
spectra in heavy Sn isotopes. For Pb isotopes, large values
of the tensor terms tend to overbind the neutron-deficient
isotopes. It is noteworthy that the tensor terms seem to have
little effect on the mass residuals of the heavy Pb isotopes
above N = 126, which are on the flank of a very deep ravine
that becomes visible when going toward heavier elements (cf.
the SLy4 results in Ref. [54]).

It has been often noted that effective interactions that
give a similar satisfying description of masses close to the
valley of stability give diverging predictions when extrapolated
to exotic nuclei. The standard example is the two-neutron
separation energy S2n(N,Z) = E(N,Z − 2) − E(N,Z) for
the chain of Sn isotopes. Results obtained with a subset of
our parametrizations are shown in Fig. 30. Note that the
differences for neutron-rich nuclei beyond N = 82 are not
larger than those for the isotopes closer to stability. Around
the valley of stability, increasing the coupling constants of
tensor terms, in particular the like-particle ones, tilts the curve,
pushing it up for light isotopes and pulling it down it for
heavy ones, which reflects of course the position of the ν

1h11/2 level that is pushed into the N = 82 gap (see Fig. 17).
For the neutron-rich isotopes, small differences appear around
N = 90, which reflects the change of level structure above the
ν 2f7/2 level and at the drip line, but they are much smaller
than the differences seen among parametrizations obtained
with different fit protocols (see Fig. 5 of Ref. [29]).
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2. Systematics

In the preceding section we showed how the J2 terms in the
energy functional modify the trends of mass residuals along
isotopic and isotonic chains, in particular the amplitude of
the arches between doubly-magic nuclei. In this section, we
want to examine how this translates into quality criteria for the
overall performance of the parametrizations for masses.

Figure 31 displays the r.m.s. deviation of the mass resid-
uals for all our 36 parametrizations, evaluated for a set of
134 nuclei predicted to have spherical mean-field ground
states when calculated with the parametrizations SLy4 [54].
One observes a clear minimum around T46, that is, (α, β) =
(240, 120), with (Eth − Eexp)r.m.s. = 1.96 MeV, compared
with 3.44 MeV for T22 (α = β = 0). We found even slightly
better values with even more repulsive isoscalar and isovector
coupling constants, but the single-particle spectra of these
interactions turn out to be quite unrealistic (cf. Sec. IV B1).
This already demonstrates that in the presence of the J2 terms
a good fit of masses does not necessarily lead to satisfactory
single-particle spectra.

Figure 32 demonstrates how the distribution of the mass
residuals Eth − Eexp affects the evolution of their r.m.s. value
for a subset of 9 parametrizations. For T22 (α = β = 0),
the distribution is centered at positive mass residuals, with
only very few nuclei being overbound. Increasing β to
120 MeV fm5 (T42) or even 240 MeV fm5 (T62) shifts the
median of the distribution to smaller values, which yields
more and more overbound nuclei. For large values of β,
the distribution spreads out more, which diminishes the
improvement from centering the distribution closer to zero.
For given β, increasing α mainly shifts the median of the
distribution without spreading out its overall shape, which is
preferable to optimize the r.m.s. value.

These considerations, however, have to be taken with
caution. As already stated, we aim at a model where certain
correlations beyond the mean-field ones are treated explicitly,
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which means that a distribution of mean-field mass residuals
with an asymmetric distribution toward positive mass resid-
uals and a width that is similar to the difference between
the maximum and minimum correlation energies must be
found.

D. Radii

The evolution of nuclear charge radii along isotopic chains
reflects how the mean field of the protons changes when
neutrons are added in the system. In the simplistic liquid-drop
model, it just follows the geometrical growth of the nucleus,
∼A1/3, but data show that there are many local deviations from
this global trend. On the one hand, radii are of course subject to
correlations beyond the mean field [54,111–114]. On the other
hand, they are also sensitive to the detailed shell structure,
which, in turn, might be influenced by tensor terms. We will
concentrate here on two anomalies of the evolution of charge
radii, both of which are influenced very little by collective
correlations beyond the mean field (at least in calculations
with the Skyrme interaction SLy4) [54]: (i) that the r.m.s.
charge radius of 48Ca is almost the same as the one of the
lighter 40Ca or possibly slightly smaller and (ii) the kink
in the isotopic shifts of mean-square (m.s.) charge radii in
the Pb isotopes, where Pb isotopes above 208Pb are larger
than what could be expected from liquid-drop systematics.
In both cases it is plausible that shell effects are the deter-
mining factor, although alternative explanations that involve
pairing effects have been put forward for the latter case as
well [115,116].

Charge radii have been calculated with the approximation
used in Ref. [51]3 and derived from Ref. [117]:

r2
ch = 〈r2〉p + r2

p + N

Z
r2
n + 1

Z

(
h̄

mc

)2 ∑
i

v2
i µqi

〈σ · �〉i ,

(46)

where the m.s. radius of the point-proton distribution 〈r2〉p is
corrected by three terms: The first two estimate the effects of
the intrinsic charge distribution of the free proton and neutron
(with m.s. radii r2

p and r2
n) and the third adds a correction from

the magnetic moments of the nucleons. Since we will consider
the shift of charge radii for different isotopes of the same series,
the actual value of r2

p cancels out. For the second correction
term, which is independent of the interaction, we take r2

n =
−0.117 fm2 [29]. Finally, the magnetic correction can only
depend weakly on the details of the interaction through the
occupation factors v2

i when nonmagic nuclei are considered.
The same expressions had been used during the fit of our
parametrizations.

We begin with the Ca isotopes. Most parametrizations
of Skyrme’s interaction are unable to reproduce that the
charge radius of 48Ca has about the same size as that of
40Ca (see Fig. 11 in Ref. [29]). The middle panel of Fig.
33 shows the difference in the dependence of the the m.s.
radii of 48Ca and 40Ca on the tensor term coupling constants
α and β. First, this difference is almost independent of α, the
strength of the like-particle tensor terms. Second, it is strongly
correlated with β, the strength of the proton-neutron tensor
term, with large positive values of β bringing the difference
of radii into the domain of experimentally acceptable values
[118] or even below, with a best match obtained for β =
80 MeV fm5. This effect can be explained by looking at
the proton single-particle spectra of 40Ca (Fig. 19) and 48Ca
(Fig. 20). Indeed, one observes that a positive neutron-proton
tensor coupling constant decreases the strength of the proton
spin-orbit field in 48Ca, which in turn lowers the π 1d3/2 level
in 48Ca (compare the parametrizations TIJ in Fig. 20 with
increasing I for given J ). As a consequence, the m.s. radius
of this state decreases as it sinks deeper into the potential well
of 48Ca. At the same time, this level is raised in 40Ca, which
slightly increases the contribution of this state to the charge
m.s. radius of this nucleus. This effect is demonstrated in the
top panel of Fig. 33, which displays the degeneracy-weighted
and normalized change of the m.s. radii of proton hole states
between 40Ca and 48Ca as a function of the proton-neutron
tensor term coupling constant β for forces with a like-particle
tensor term coupling constant α = 120 MeV fm5. Indeed,
the decreasing contribution from the π1d3/2 state to the m.s.
radius significantly decreases the isotopic shift between both
Ca isotopes. It has to be noted that the m.s. value of the
charge radii of 40Ca and 48Ca are almost independent of α

3There is a typographical error in Eq. (4.2) in Ref. [51], which
was copied to Eq. (110) in Ref. [29]: The h̄/mc factor should be
squared, as is trivially found by dimensional analysis and confirmed
by Ref. [117].
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FIG. 33. (Color online) Top panel: Contribution of the single-
particle proton states to the difference of the charge radii [mean-
square radius of the point proton distribution; see Eq. (46)]. Middle
panel: Difference of mean-square charge radii between 40Ca and 48Ca
as a function of the proton-neutron tensor term coupling constant β

for three values of α. The experimental value (with error bar) is
represented by the two horizontal black lines. Bottom panel: Root-
mean-square charge radii of 40Ca and 48Ca.

and that their absolute values are not reproduced for any of our
parametrizations.

The latter study demonstrates the correlation between the
isotopic shift of m.s. charge radius between 40Ca and 48Ca
and the absolute single-particle energy of the proton 1d3/2

state. This level can be moved around within the single-particle
spectrum with the J2 terms. However, the agreement of the
calculated single-particle energy of the proton 1d3/2 state in
both nuclei with experiment is not necessarily improved for
the parametrizations that reproduce the isotopic shift of the
m.s. charge radius. Furthermore, a good reproduction of the
isotopic shift does not guarantee that the absolute values of
the charge radii are well reproduced (see the bottom panel
in Fig. 33). In fact, they are predicted to be too large for all
of our parametrizations, which again points to deficiencies
of the central field. Altogether, this suggests that in spite of
its sensitivity to the coupling constants of the J2 terms, the
isotopic shift of m.s. charge radius between 40Ca and 48Ca

should not be used to constrain them before one has gained
sufficient control over the central interaction.

A few further words of caution are in order. The charge
radii of all light nuclei are significantly increased by dynamical
quadrupole correlations (see Fig. 23 of Ref. [54]). Correlations
beyond the static self-consistent mean field are also at the
origin of the arch of the m.s. charge radii between 40Ca and
48Ca that is reproduced neither by any pure mean-field model
(see again Fig. 11 in Ref. [29]) nor by the beyond-mean-field
calculations with SLy4 of Ref. [54], whereas the shell model
allows for a satisfactory description [119].

Many explanations have been put forward to explain the
kink in the isotopic shifts of Pb radii. Because it qualita-
tively appears in relativistic mean-field models, but not in
nonrelativistic ones using the standard spin-orbit interaction
[Eq. (16)], it has been used as a motivation to generalize
the isospin mix of the standard spin-orbit energy density
functional, Eq. (18), to simulate the isospin dependence
of the relativistic Hartree models [78,79]. The resulting
parametrizations are not completely satisfactory, as the price
for the improvement of the radii is a further deterioration of
spin-orbit splittings [14], whereas the relativistic mean field
gives a satisfactory description of both. Some standard Skyrme
interactions that take the tensor terms from the central Skyrme
force into account also give a kink, but it is by far too small to
reproduce the experimental values [52].

Plotting the m.s. radii along the chain of Pb isotopes as
a function of N give slopes that are nearly linear when we
look separately at the isotopes below and above 208Pb. We
will concentrate on the change in the slope at 208Pb that is
brought by the tensor terms, which can be quantified through
the second finite difference of the m.s. radii at 208Pb:

�2
〈
r2

ch

〉
(208Pb) = 1

2

[
r2

ch(206Pb) − 2r2
ch(208Pb) + r2

ch(210Pb)
]
.

(47)

There are two conflicting values to be found in the literature:
46.4 ± 1.4 fm2 [118] and the significantly larger 59 ± 3 fm2

[120]. Figure 34 shows the change of slope around 208Pb as
defined through Eq. (47) as a function of the like-particle tensor
coupling constant α and for three different values of β. It is
striking to see that this quantity is almost independent of the
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FIG. 34. Change of slope in the m.s. charge radii �2r2
ch around

208Pb, Eq. (47), in fm2 as a function of α for three values of β. The
experimental value is about one and a half times as large as the largest
theoretical value shown here (see text).
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neutron-proton tensor coupling constant β, so the change is
mainly induced by the tensor interaction between particles of
the same kind. It has been noted before that the kink in the
isotopic shift of the charge radii in Pb isotopes is correlated
to the single-particle spectrum of neutrons above N = 126,
in particular the position of the 1i11/2 level. (This has to be
contrasted with the Ca isotopic chain discussed here, where
the difference of charge radii between 40Ca and 48Ca appears
to be particularly sensitive to the single-particle spectrum of
the protons.) The closer the 1i11/2 level is to the 2g9/2 level
that is filled above N = 126, the more the 1i11/2 becomes
occupied through pairing correlations. Through the shape of
its radial wave function, the partial filling of the nodeless 1i11/2

increases the neutron radius faster than filling only the 2g9/2,
and in particular faster than for the isotopes below N = 126.
As the protons follow the density distribution of the neutrons,
the charge radius grows rapidly beyond N = 126. This offers
an explanation why the kink increases with the like-particle
tensor term coupling constant α: For large values of the weight
α of the neutron spin-orbit current in the neutron spin-orbit
potential, Eq. (35), the spin-orbit splitting of the ν 1i levels is
reduced such that the 1i11/2 approaches the 2g9/2 level in 208Pb
(see Fig. 18).

Although the kink is clearly sensitive to the tensor terms,
they cannot be responsible for the entire effect, as even for
extreme parametrizations that give unrealistic single-particle
spectra the calculated kink hardly reaches about three-quarters
of its experimental value.

V. SUMMARY AND CONCLUSIONS

We have reported a systematic study of the effects of the
J2 (tensor) terms in the Skyrme energy functional for spherical
nuclei. The aim of the present study was not to obtain a unique
best fit of the Skyrme energy functional with tensor terms, but
to analyze the impact of the tensor terms on a large variety
of observables in calculations at a pure mean-field level and
to identify, if possible, observables that are particularly, even
uniquely, sensitive to the J2 terms. To reach our goal, we
have built a set of 36 parametrizations that cover the two-
dimensional parameter space of the coupling constants of the
J2

t terms that does not give obviously unphysical predictions
for the wide variety of observables under study. The fits were
performed by using a protocol very similar to that of the
SLy parametrizations [51,52]. The 36 actual sets of parameters
can be found in the Physical Review archive [85].

We use a formalism that explicitly relates the tensor terms
in the energy functional to underlying effective density-
dependent central, spin-orbit, and tensor forces (or vertices)
in the particle-hole channel. As has been long known, a
zero-range tensor force gives no qualitatively new terms for
spherical mean-field states when combined with a central
Skyrme force, but it solely modifies the coupling constants
of the J2 terms that are already present. The contribution
from the central Skyrme force to the coupling constants of the
J2 terms depends on the same parameters t1, x1, t2, and x2

that determine the effective mass and contribute to the surface
terms. As the latter terms are much more important for the

description of bulk properties than the J2 terms, the coupling
constants of the J2 terms are confined to a very small region of
the parameter space. From this point of view, adding a tensor
force is necessary to explore it fully.

There is, however, the alternative interpretation of the
Skyrme energy functional from the density matrix expansion,
which in the absence of ab initio realizations so far is used
as a motivation to set up energy functionals with independent,
and phenomenologically fitted, coupling constants of all terms
not constrained by symmetries. In particular, this can be
used to set unwanted or underconstrained terms to zero, as
is done for many existing parametrizations of the (central)
Skyrme interaction. For the ground states of spherical nuclei,
as discussed here, the frameworks cannot be distinguished. For
deformed nuclei and, in particular, polarized nuclear matter,
this choice will make a difference.

As a result of our study, we have obtained a long list of
potential deficiencies of the Skyrme energy functional, most
of which can be expected to be related to the properties of
the central and spin-orbit interactions used. In fact, these
deficiencies become more obvious the moment one adds a
tensor force, as it appears that the presence of a tensor force
unbalances a delicate compromise within various terms of the
Skyrme interaction that permits us to obtain the correct global
trend of gross features of the shell structure.

Our conclusions, however, have to be taken with a grain of
salt. On the one hand, some might depend on the fit protocol;
on the other hand, we have to stress that (within the framework
of our study—and all others available so far using mean-field
methods) the comparison between calculated and empirical
single-particle energies is not straightforward and not without
the risk of being misled. However, without even looking at
single-particle spectra, we can conclude the following:

(i) The presence of the tensor terms leads to a strong
rearrangement of the other coupling constants, most
notably that of the spin-orbit force. In fact, we find that
the variation of the spin-orbit strength W0 provoked
by the presence of tensor terms has a larger impact on
the global systematics of single-particle spectra than
the tensor terms themselves. The rearrangement of the
parameters of the central and spin-orbit parts of the
effective interaction suggests that perturbative studies
of the tensor terms, in which they are added to an
existing parametrization without readjustment, allow
only very limited conclusions.

(ii) In the Skyrme energy functional, the combined cou-
pling constants of the spin-orbit and tensor terms are
nearly exclusively fixed by the mass differences among
40Ca, 48Ca, and 56Ni. This correlation appears to be
(at least partly) spurious, because the rapidly varying
spin-orbit and tensor terms are misused to simulate
missing physics in the standard Skyrme functional.

(iii) The cost function χ2 used in our fit protocol prefers
parametrizations with β = 0 [i.e., pure like-particle ten-
sor terms ∼(J2

n+J2
p)], without giving a clear preference

for a value of the corresponding coupling constant α.
By contrast, the mass residuals of 134 spherical even-
even nuclei are minimized for interactions with large α
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and β. However, and as we will discuss in Ref. [41],
the deformation properties of many nuclei obtained
with the latter parametrizations are unrealistic, which
disfavors this region of the parameter space.

(iv) The difference of the charge radii of 40Ca and 48Ca
turns out to be particularly sensitive to the absolute
single-particle energy of the proton 1d3/2 level, which
can be moved around by the J2 terms. Because the
parametrizations that give the best agreement for the
absolute placement of this level do not necessarily give
the best overall single-particle spectra for these two
nuclei, this quantity should not be used to constrain the
J2 terms.

Concerning the global properties of the spin-orbit current J
and its contribution to the spin-orbit potential, we have shown
the following:

(i) The spin-orbit current J in non-spin-saturated doubly-
magic nuclei as 56Ni, 100Sn, 132Sn, or 208Pb is dom-
inated by the nodeless intruder orbitals. Through the
contribution of the tensor terms to the spin-orbit field,
the feedback effect on their own spin-orbit splitting is
maximized.

(ii) In light nuclei, J and consequently the contribution
of the J2 terms to the binding energy and the spin-
orbit potential, vary rapidly between near-zero and very
large values when just a few nucleons are added to a
given nucleus. In heavy spherical nuclei, the variation
becomes much slower and smoother because one does
not encounter spin-saturated configurations anymore
because there are more and more high-� states with
large degeneracy that require more nucleons to be filled.

(iii) The contribution from the zero-range spin-orbit force to
the spin-orbit potential is peaked at the nuclear surface,
as it is proportional to the gradient of the density. By
contrast, the contribution from the zero-range tensor
terms is peaked further inside of the nucleus, modifying
the width of the spin-orbit potential with varying
nucleon number. As shown in Ref. [48], experimental
data tend to disagree with such a modification.

(iv) Large negative coupling constants of the tensor terms
will lead to instabilities, where a nucleus gains energy
separating the levels from many spin-orbit partners on
both sides of the Fermi energy. This process leads to
unphysical single-particle spectra and rules out a large
part of the parameter space. In particular cases, one
might even obtain a (probably spurious) coexistence
of two spherical configurations with different shell
structure in the same nucleus, which are separated by a
barrier.

The main motivation for adding J2 terms is of course
to improve the single-particle spectra. All observations and
conclusions concerning those have to be taken with care, as in
this study we compare the eigenvalues of a spherical single-
particle Hamiltonian with the separation energy to low-lying
states in the odd-A neighbors of doubly- and semi-magic nuclei
(as was done in all existing earlier studies). When looking at the
single-particle spectra in doubly-magic nuclei (or semi-magic

nuclei combined with a strong subshell closure of the other
species) we find the following:

(i) The relative error of the spin-orbit splittings depends
strongly on the principal quantum number of the
orbitals within a given shell, such that for parametriza-
tions without the tensor terms the splittings of the in-
truder state (without nodes in the radial wave function)
are tentatively too small, whereas they become too large
with increasing number of nodes. Adding the tensor
terms further increases the discrepancy. This problem
can only be resolved by an improved control over the
shape of the spin-orbit potential. Indeed, the size of the
spin-orbit splittings is related to the overlap of the radial
wave function of a given single-particle state with the
spin-orbit potential. The tensor terms modify the width
of the spin-orbit potential, but curing this deficiency
calls for a large negative like-particle tensor coupling
constant α, which is not consistent with the evolution of
spin-orbit splittings along chains of semi-magic nuclei
and will lead to instabilities.

(ii) In a given nucleus, the predicted spin-orbit splittings of
neutron levels are larger than those of the protons when
both are compared to experiment, which hints at an
unresolved isospin trend in the spin-orbit interaction.

(iii) For spin-saturated doubly-magic nuclei such as 16O
and 40Ca, the spin-orbit splittings of the spin-saturated
species of nucleons depend strongly on the coupling
constants of the J2 terms, although they do not con-
tribute to the spin-orbit field. This is a consequence of
the strong correlation between the spin-orbit and tensor
term coupling constants, which compensate each other
in spin-unsaturated nuclei. For parametrizations with
strong tensor term coupling constants, the resulting
spin-orbit force leads to unrealistic single-particle
spectra of spin-saturated configurations.

(iv) The centroid of the spin-orbit partners that give the
intruder state is tentatively too high compared to the
major shell below.

The main effect of the tensor terms, on which most of
the recent studies concentrate, is the evolution of spin-orbit
splittings with N and Z. Unfortunately, there are no data
for the splittings themselves, such that one relies on data for
the evolution of the distance of two levels with different �.
The comparison is compromised by the global deficiencies
of the single-particle spectra as we have just listed. Still, a
careful comparison of calculations and experiment suggests
the following:

(i) The evolution of the proton 1h11/2, 1g7/2, and 2d5/2

levels in the chain of Sn isotopes and that of the proton
1f5/2 and 2p3/2 levels in Ni isotopes calls for a positive
proton-neutron tensor coupling constant β with a value
around 120 MeV fm5, consistent with the findings of
Refs. [48–50].

(ii) The evolution of the neutron 1d3/2 and 2s1/2 levels
between 40Ca and 48Ca calls for a like-particle tensor
coupling constant α with a similar value around
120 MeV fm5. This is at variance to the findings

014312-30



TENSOR PART OF THE SKYRME ENERGY DENSITY . . . PHYSICAL REVIEW C 76, 014312 (2007)

of Refs. [48–50], but in qualitative agreement with
the parametrization skxta of Brown et al. [48] for
which the tensor terms were derived from a realistic
interaction but disregarded thereafter because of its
poor description of spin-orbit splittings.

(iii) Combining the two previous points leads to a domi-
nantly isoscalar tensor term with a coupling constant CJ

0
around 120 MeV fm5, whereas the isovector coupling
constant will have a small, near-zero, value.

Our study is obviously only a stepping stone toward
improved parametrizations of the Skyrme energy density
functional. There are a number of necessary further studies
and future theoretical developments worth pursuing:

(i) The deformation properties of selected parametriza-
tions TIJ from this study will be discussed in a
forthcoming paper [41].

(ii) The influence of the terms depending on time-odd
densities and currents in the complete energy functional
[Eq. (23)] on nuclear matter and finite nuclei (e.g.,
rotational bands) is under investigation as well. The
existing stability criteria of polarized matter have to be
generalized as the tensor force introduces new unique
terms, for example in the Landau parameters [121].

(iii) It is well known that the strength of the spin-orbit force
has to scale with the effective mass of an interaction,
which in turn determines the average density of single-
particle levels. All parametrizations discussed here have
a similar effective mass close to the m∗

0/m = 0.7
value already used for the SLy parametrizations. This
value is somewhat smaller than the one obtained from
ab initio calculations. We have checked that increasing
the effective isoscalar mass to the more realistic
m∗

0/m = 0.8 (which within our fit protocol requires
use of two density-dependent terms [84]) does not
significantly affect any of our conclusions.

(iv) It is evident that improvements of the central and
spin-orbit parts of the energy density functional are
necessary. These will require a generalization of its
functional form. Other motivations were found recently
to perform such a generalization [84].

(v) The only quantity that we found to be sufficiently
sensitive to the tensor terms is the evolution of the
distance between single-particle levels in isotopic or
isotonic chains of semi-magic nuclei. The distance
between the levels that can be used for such studies is so
large that it might be compromised by their coupling to
collective excitations. Reliable calculations including
pairing and polarization, as well as particle-vibration
coupling effects [89,90] along isotopic and isotonic
chains, are needed to test the quality, reliability, and
limits of the simplistic identification of the eigenvalues
of the spherical mean-field Hamiltonian in an even-even
nucleus with a separation energy to or from low-lying
states in the adjacent odd-A nuclei.
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APPENDIX A: COUPLING CONSTANTS OF THE
SKYRME ENERGY FUNCTIONAL

The coupling constants of the central Skyrme energy
density functional in terms of the parameters of the central
Skyrme force are given by
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The coupling constants of the spin-orbit energy density
functional in terms of the parameters of the spin-orbit force
are given by

A∇J
0 = − 3

4W0,

A∇J
1 = − 1

4W0.

(A2)

The coupling constants of the tensor energy density functional
in terms of the parameters of Skyrme’s tensor force are given
by (Table I in Ref. [59])

BT
0 = − 1

8 (te + 3to), BT
1 = − 1

8 (te − to), (A3)

BF
0 = − 3

8 (te + 3to), BF
1 = − 3

8 (te − to), (A4)

B�s
0 = − 3

32 (te − to), B�s
1 = − 1

32 (3te + to), (A5)

B∇s
0 = − 9

32 (te − to), B∇s
1 = − 3

32 (3te + to). (A6)

APPENDIX B: PHASE TRANSITIONS

The densities ρ and τ entering the energy functional
[Eq. (28)] vary smoothly with nucleon numbers as they follow
the geometric growth of the nucleus. As a result, a functional
depending only on ρ and τ usually shows a unique minimum
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FIG. 35. Total binding energy of 120Sn as a function of C =∫
d3rJn · ∇ρn in a constrained calculation. The dashed curve shows

results obtained with the parametrization mentioned in the text; the
solid curve shows results obtained with SLy5.

for given N,Z and shape. The situation is quite different
when the tensor terms are taken into account. Indeed, the
amplitude of the spin-orbit current density J [Eq. (27)] depends
on the number of spin-unsaturated single-particle states in the
nucleus; it varies from (almost) zero in spin-saturated nuclei
to large finite values as a consequence of shell and finite-size
effects; see Fig. 5.

This behavior poses the risk of an instability, which was
already reported in Ref. [5]: Multiplying J with a large
coupling constant in the spin-orbit potential [Eq. (35)] might,
for certain combinations of the signs of the coupling constant
and the spin-orbit currents of protons and neutrons, increase
the spin-orbit splittings. In some nuclei, this will cause two
levels originating from different � shells to approach the
Fermi energy, one from above and the other from below,
or even to cross. In that situation, their occupation numbers
will change such that J increases further, which feeds back
onto the spin-orbit potential and ultimately leads to a dramatic
rearrangement of the single-particle spectrum.

We faced this problem when attempting to fit parameter sets
with large negative CJ

0 and CJ
1 . During the fit, some nuclei

sometimes fell into the instability, depending on the values
of the other coupling constants. As this is a highly nonlinear
threshold effect that results in a very large energy gain from
tiny modifications of the coupling constants, the corresponding
fits did not, and could not, converge.

In special cases, one might even run into a situation with
two coexisting minima, in which, as a function of a suitable
coordinate, the configuration with regular shell structure is
separated from a configuration with unphysical large spin-orbit
splittings by a barrier. In such a case, a calculation of the
ground state might converge into one or the other minimum
depending on the initial conditions chosen for the iterative
solution of the HFB equations. In a calculation along an
isotopic or isotonic chain, the coexistence will reveal itself
through a large scattering of the mass residuals, which will
fall on two distinct curves. We illustrate this phenomenon in
Fig. 35 for 120Sn using a parameter set denoted “TXX” with
CJ

0 = −157.57 MeV fm5 and CJ
1 = −114.88 MeV fm5,

which is located outside the parameter space shown in Fig. 1,
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FIG. 36. Single-particle spectra corresponding to the minimum
found with SLy5 and (a) the secondary minimum found with TXX
and (b) the absolute minimum (see Fig. 35; left: neutron levels, right:
proton levels).

to its lower left. Among the various possible recipes for
a constraint on the spin-orbit current density, we chose to
minimize the following quantity:

E[ρ] − µ

[∫
d3r Jn · ∇ρn − C

]2

, (B1)

where µ is a Lagrange parameter and C is a constant used
to tune the constraint. The energy curve exhibits two minima,
denoted (a) and (b). The corresponding single-particle spectra
are shown in Fig. 36 along with those obtained for SLy5. The
minimum (a) corresponds to an almost spin-saturated neutron
configuration where both spin partners are either occupied
or empty,4 which is very similar to what is found using
SLy5. In the minimum (b), which is deeper by more than
7 MeV, the single-particle spectrum is completely reorganized
to maximize the spin-orbit current density and take advantage
of its contribution in the functional. In this situation the
neutron spin doublets 2d, 1g, and 1h split on both sides
of the Fermi surface and generate a large spin-orbit current
density.

This clearly shows that the parameter sets with large and
negative coupling constants of the J2 terms must be discarded
since for many nuclei they lead to ground states with unrealistic
single-particle structure.

Note that this kind of instability does not appear for
the spin-orbit term: Although its contribution to the energy
functional [Eq. (28)] also varies between small, sometimes
near-zero, and very large values (see Figs. 28 and 29), it is
only linear in J. As a consequence, its contribution to the
spin-orbit potential [Eq. (35)] lacks the feedback mechanism
outlined here as it does not scale with J. Still, its contribution to
the total energy is usually much larger than that of the J2 terms,
so it plays a decisive role for the absolute energy gained when
varying J.

4Note that the spin saturation is a consequence of the wrong ordering
of the ν 1h11/2, 2d3/2, and 1s1/2 levels compared to empirical data
found for all our parametrizations (see Fig. 16), and in fact virtually
all mean-field models [29].
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