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Core-cluster partitions of actinide nuclei
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We examine various techniques for assigning the core-cluster partitions of nuclei in the actinide region.
The core-cluster charge products thus obtained are found to be closely correlated with the corresponding
B(E2 ↓; 2+ → 0+) values, with the excitation energies and with the products of valence nucleon numbers
of the parent nuclei.
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I. INTRODUCTION

Cluster models have a long history of application to light
nuclei, predating even the discovery of the neutron [1].
Commonly, clusters of mass number A = 3, 4 have been
very successful in the description of spectra, electromagnetic
transition rates, and α-decay widths in such nuclei. More
recently, attention has shifted to heavier nuclei, where the
best choice of core-cluster decomposition is open to debate.
In the actinide region, 208Pb and its immediate neighbors are
obvious candidates for the core of a cluster model. Indeed,
many authors have combined these two ideas and successfully
modeled 212Po as a 208Pb +α system [2–6]. As pointed out
by Tang, Wildermuth, and Pearlstein [7] in an analysis of
6Li as α + d and as 3He + 3H, the wave function resulting
from a proper antisymmetrization of the single-nucleon wave
functions in both these cluster schemes will be identical.
The choice of clusterization for 6Li can therefore be made
in terms of its convenience and ease of applicability to the
property being described. We should not lose sight of this
result and its implications in the actinide region. Certainly, in
the heavier actinides, the choice of cluster and associated basis
states may advantageously be determined by its applicability
to the problem under consideration. For example, a study of
α-decay rates will be best served by using (A − 4, Z − 2) + α

to describe a parent nucleus (A,Z) [8,9]. Similarly, a study
of exotic decay rates will be easiest when the parent nucleus
is described as core + exotic cluster [3,10,11]. Nevertheless,
both cluster schemes describe the same parent nucleus in its
ground state, and only the sheer complexity of a 200+ particle
system prevents this being shown explicitly.

A. Buck Merchant Perez (BMP) cluster model

The model we have proposed offers the simplest possible
calculation of nuclear properties because it consists of only
two spinless bodies interacting through a central potential.
Changes in nuclear properties from nucleus to nucleus are
generated by corresponding changes in core and/or cluster so
that, for example, the general decrease in level spacings and
increase in B(E2) strengths from the Ra to the Th, to the U,
and to the Pu isotopes are generated by corresponding changes
of exotic cluster from C to O, to Ne, and to Mg isotopes,
respectively [10].

Alternative cluster schemes are certainly possible, but we
believe them to be harder to implement than our own. Single
α + residual core models of most actinide nuclei will require
a deformed core and consideration of noncentral forces and
deformed orbitals, while at least retaining the simplicity of
a two-body model. Another alternative is to employ many
smaller clusters in place of our single exotic cluster, with all
the concomitant difficulties of the many-body problem. Such
things can certainly be done, as, for example, by Cseh et al. [12]
in their semimicroscopic algebraic model and by Schneidman
et al. [13] in their dinuclear model. Ultimately, a detailed
comparison of the predictions of these various models with
experimental data will decide their usefulness.

B. Links to collective/rotational models

A long term goal must be to demonstrate the equivalence of
all these approaches or at least to find links between them. We
have previously noted strong links between our cluster model
and the rotational/collective model. Our calculated electro-
magnetic transition rates can be used to deduce equivalent
shape parameters β2, β3, β4, etc., for a nucleus with fixed
deformation (see Table 7 of Ref. [14]). In addition, we obtain
extremely similar relative motion radial wave functions for the
successively higher L states from this exotic cluster model. We
interpret this as a manifestation, and indeed an explanation, of
what is meant by “fixed intrinsic shape” [15].

The collective model’s deformations are supposed to be
isoscalar, which ties in exactly with the no-dipole constraint
of Eq. (2) below. The continuous variability of the deformation
parameters is also covered, by allowing noninteger values of
the cluster charge, due to superpositions of several clusters.
This allows the electromagnetic transition rates, from which
the βλ’s are deduced, to vary continuously. However, our
cluster model is more than an alternative parametrization of
the collective model, because in appropriate circumstances it
produces nonrotational features. For example, in heavy nuclei
it produces quasirotational spectra for heavy clusters, but not
for light ones [16]. It has a common intrinsic state for high G,
low L � G, but not for low G, high L ∼ G. In our present
application to a range of actinide nuclei some nonrotational
features are the following: not all nuclei examined have
spectra approximately proportional to L(L + 1), α and exotic
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decay lifetimes are closely reproduced, and a cluster model
interpretation of various Casten correlations [17] emerges.

C. Core-cluster selection: The no-dipole constraint

We next turn to the choice of core and cluster in our binary
cluster model. There is an important piece of experimental
information that should be built into the selection procedure.
The E1 transitions between the lowest Kπ = 0+ and Kπ = 0−
bands in actinide nuclei are very small (tiny fractions of a
Weisskopf single-particle unit). This contrasts markedly with
the strongly enhanced E2 transitions within the ground state
Kπ = 0+ band (typically tens of Weisskopf units). For a core
and cluster of (charge, mass) given by (Z1, A1) and (Z2, A2),
respectively, the binary cluster model gives the reduced E1
transition strength for a transition from a 1− to a 0+ state as

B(E1; 1− → 0+) =
[(

Z1

A1
− Z2

A2

)
A1A2

(A1 + A2)

]2 〈r〉2

4π
. (1)

For example, treating 226Ra as a 222Rn+α system with 〈r〉 =
6 fm leads to a B(E1) value of 0.561 e2 fm2 (0.234 Wu), while
treating it as 212Pb + 14C with the same value for 〈r〉 leads to
0.861 e2 fm2 (0.360 Wu), where the Weisskopf unit is defined
as 0.81A2/3/4π e2 fm2. The measured value is 0.000645 e2 fm2

(0.00027 Wu). This is a typical case in the actinide region.
Because the transitions are measured to be so small we deduce
that, to good approximation, a no-dipole constraint,

Z1

A1
= Z2

A2
= ZT

AT

, (2)

which would make the B(E1) strength vanish, is closely
applicable, where ZT and AT are the total (charge, mass) with
ZT = Z1 + Z2 and AT = A1 + A2, respectively.

This is essentially a consequence of the charge indepen-
dence of the strong nuclear force. This condition can rarely be
satisfied exactly by integer charge and mass values (except in
the light even-even nuclei). However, fractional values of Zi

can be introduced and interpreted as indicative of the need to
take a linear superposition of clusters with mean charge given
by the deduced fractional value of Zi . This is a very important
result, because it allows us to relate Ai to Zi , so that only one
of them is independent.

D. Core cluster selection: Previous approaches

The question of how to best describe a nucleus in terms
of cluster components has been addressed (among others) by
Ikeda, Takigawa, and Horiuchi [18]; Harvey [19]; Sandulescu,
Poenaru, and Greiner [20]; Rae [21]; and Cseh [22]. Here, we
summarize our own efforts, with special reference to a binary
cluster model description of the Jπ = 0+, 2+, 4+, . . . ground
state bands of even-even nuclei.

In the actinide region the observed breakup of a parent
nucleus into daughter plus emitted cluster immediately sug-
gests a possible core-cluster decomposition. Ambiguity arises
because many of these nuclei decay both by exotic cluster
emission and by α-cluster emission. However, only one of
these modes is consistent with the requirements of our model
in which the ground state band of the parent is generated by
the relative motion of a pair of spinless clusters interacting
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FIG. 1. Comparison of calculated (T) and experimental (E)
energies for the lowest 0+, 2+, 4+, 6+, 8+, and 10+ states of 222Ra,
228Th, 232U, and 238Pu.

via a central potential. As an example consider the specific
case of 232U, which decays both by 24Ne emission to 208Pb
and by α emission to 228Th. For the partition into 208Pb + 24Ne
there are no low-lying excited states of core or cluster below
2 MeV, and a model in which the Jπ = 0+, 2+, 4+, . . . ground
state band of 232U is generated by the relative motion of a
pair of spinless entities is directly applicable. This is not the
case for the partition of 232U into 228Th +α, which would
require that the low-lying states of 228Th be taken into account
(see Fig. 1), either by assuming that the α cluster moves in
a deformed potential or by further subdividing 228Th into
interacting spinless components that have no low-lying excited
states. In column (a) of Table I, we thus list only the core cluster
decompositions suggested by exotic decay as being pertinent
to our present application of the model.

The above approach is only useful in the actinide region
(exotic decay is not observed elsewhere) and we subsequently
examined a more widely applicable stability criterion [23].
According to this criterion we generalize the strategy for
locating magic numbers in nuclei and identify likely binary
clusterizations by the local maxima of a function D given by

D(Z1, A1, Z2, A2) = [BE(Z1, A1) − BL(Z1, A1)]

+ [BE(Z2, A2) − BL(Z2, A2)]. (3)

In Eq. (3) BE is an actual binding energy, BL is the correspond-
ing liquid drop value, and (Z1, A1) and (Z2, A2) are the core
and cluster (charge, mass) respectively. D is evaluated using
a mixture of core-cluster partitions that satisfies the no-dipole
constraint of Eq. (2). The rationale behind this method is
that likely binary clusterizations should have core and cluster
more tightly bound than other nearby ones, independent of the
core-cluster interaction. This resulted in core cluster partitions
in the actinide region consistent with those inferred from
exotic decay (see columns (a) and (b) in Table I) and the
technique also proved useful in cluster model applications to
other parts of the periodic table [24,25]. It, however, yields
poorer results for mid-shell nuclei, possibly indicating the
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TABLE I. Cluster charges Z2 obtained by the various methods
discussed in the text (and their average values).

Nucleus Clustera chargesb Z2
c Average 〈Z2〉

220Rn – 4.6 3.13 3.87
222Rn – 5.9 3.87 4.89
218Ra – 3.2 2.42 2.81
222Ra 6 5.8 6.34 6.05
224Ra 6 6.8 7.07 6.62
226Ra 6 7.8 8.57 7.46
222Th – 5.0 4.05 4.53
226Th – 7.7 7.17 7.43
228Th 8 8.5 9.47 8.66
230Th 10 9.2 9.39 9.51
232Th – 9.8 10.86 10.33
234Th – 10.5 10.00 10.25
230U 10 9.4 10.40 9.93
232U 10 10.0 11.10 10.37
234U 10.67 10.6 12.58 11.28
236U – 11.3 11.70 11.50
238U – 12.1 11.60 11.85
238Pu 12.67 12.2 11.85 12.24
240Pu – 13.0 11.75 12.38
242Pu – 14.0 10.88 12.44
244Pu – 15.7 10.02 12.86
248Cm – 17.3 10.84 14.07

aFrom exotic decay.
bFrom D plots.
cFrom fitting of spectra.

effects of the neglect of the core-cluster interaction or of
shape changes of the core and/or cluster away from their
assumed sphericity. We have thus recently investigated two
further methods of assigning core-cluster partitions: one based
on B(E2) values [26] and the other on fitting spectra [27].

E. Core-cluster selection: Present approach

Our principal aim in the present study is to apply the
spectrum fitting method to nuclei in the actinide region, where
the core-cluster partitions inferred from exotic decay and from
applications of the maximum stability criterion provide useful
consistency checks.

II. CORE-CLUSTER PARTITIONS

In the analysis we include all heavy even-even nuclei with
total proton and neutron numbers ZT � 86 and NT � 130,
respectively, for which the excitation energies of the Jπ =
0+, 2+, . . . , 10+ states of the ground state bands, as well as the
corresponding B(E2) values, are known. We list these nuclei
in Table I, together with the cluster charges Z2 inferred from
the various partition methods discussed in Sec. I D above. So,
for example, wherever exotic decay was observed we assigned
a value of Z2 corresponding to the emitted cluster charge (or
average thereof, if more than one kind of exotic cluster was
found to be emitted). Table I also lists Z2 values deduced from
the maximum stability criterion [23].

Core-cluster partitions can also be obtained by optimiz-
ing cluster model fits to spectra [27], using a core-cluster

interaction V (r) = VN (r) + VC(r) with a nuclear component
VN (r) given by

VN (r) = vaA2

[
x

{1 + exp[(r − R)/a]}
+ 1 − x

{1 + exp[(r − R)/3a]}3

]
(4)

and a Coulomb component VC(r) of standard form [27]. We
have previously found that setting

va = 55.7 MeV, a = 0.75 fm, x = 0.36, (5)

a global quantum number G = 5A2, and a radius parameter
R fitted to the appropriate exotic decay Q value results in
excellent fits to the observed exotic decay widths [28], with a
goodness-of-fit indicator S = 169 corresponding to agreement
between theory and experiment at the level of a factor of
two. We note that the asymptotic form of VN (r), important
in determining these decay widths, is weakly dependent on
the mixing parameter x. We accordingly find that setting

va = 58.1 MeV, a = 0.75 fm, x = 0.30, G = 5A2

(6)

preserves the good fits to the exotic decay data (with a
goodness-of-fit indicator S = 173) while at the same time
improving the overall agreement between the core-cluster
partitions obtained by the spectrum fitting technique with
those obtained by the other methods discussed above. We thus
use a nuclear potential VN (r) defined by Eqs. (4) and (6) in
determining the core-cluster partitions by the spectrum fitting
technique [27]. The results are summarized in Table II, with
typical examples of the excellent fits obtained to the spectra
shown in Fig. 1.

The cluster charges generated by the various methods are
compared in Table I. We note the good overall agreement
with the exception of nuclei in the very heavy region with
AT > 240. The problem is a deviation from the systematics
relating the excitation energy of the 2+ first excited state to
its B(E2 ↓; 2+ → 0+) transition strength. Broadly speaking,
it has been known since the time of Grodzins [29] that, as the
excitation energy falls, the B(E2) strength increases for nuclei
within isotopic sequences (with some slight dependence on
mass also). The precise functional form of this dependence
continues to be debated [30], but the general trend is suffi-
ciently well established for it to be used as a predictive tool
for unknown B(E2)’s when the 2+ energy is known [31].
In 242Pu, 244Pu, and 248Cm the B(E2) strength to 2+ energy
correlation is not obeyed by the data. This is not predicted
by our model and, rather than speculate on the causes of this
anomaly with inadequate information, we omit these nuclei
from further analysis.

III. CORRELATIONS

The cluster model predicts a number of relations between
the core-cluster charge products Z1Z2/ZT obtained above and
other quantities of interest [32]. The model expression for

014310-3



B. BUCK, A. C. MERCHANT, S. M. PEREZ, AND H. E. SEALS PHYSICAL REVIEW C 76, 014310 (2007)

TABLE II. Cluster charges, masses, and poten-
tial radii from optimal cluster model fits to spectra
(see text for discussion).

Nucleus Cluster (Z2, A2) R (fm)

220Rn (3.13, 8.0) 6.842
222Rn (3.87, 10.0) 6.723
218Ra (2.42, 6.0) 6.873
222Ra (6.34, 16.0) 6.649
224Ra (7.07, 18.0) 6.644
226Ra (8.57, 22.0) 6.604
222Th (4.05, 10.0) 6.775
226Th (7.17, 18.0) 6.657
228Th (9.47, 24.0) 6.618
230Th (9.39, 24.0) 6.606
232Th (10.86, 28.0) 6.621
234Th (10.00, 26.0) 6.585
230U (10.40, 26.0) 6.585
232U (11.10, 28.0) 6.643
234U (12.58, 32.0) 6.649
236U (11.70, 30.0) 6.626
238U (11.60, 30.0) 6.620
238Pu (11.85, 30.0) 6.632
240Pu (11.75, 30.0) 6.643
242Pu (10.88, 28.0) 6.666
244Pu (10.02, 26.0) 6.663
248Cm (10.84, 28.0) 6.700

B(E2; 2+ → 0+) is given by

B(E2) = 1

4π

{
Z1Z2

ZT

∫
χ2(r)r2χ0(r) dr

}2

, (7)

where χλ(r) is the radial wave function of the core-cluster
relative motion for angular momentum λ. For near-identical
χλ(r) [33] we can then write

B(E2) ∼ 1

4π

{
Z1Z2

ZT

∫
χ2

0 (r)r2 dr

}2

∼ 1

4π

{
Z1Z2

ZT

r2
0 A

2/3
T

}2

,

i.e.,

√
B(E2)

A
2/3
T

= 1√
4π

r2
0

{
Z1Z2

ZT

}
. (8)

We now seek a relation between excitation energy differ-
ences and Z1Z2/ZT . The radial Schrödinger equation for χλ(r)
reads

−h̄2

2µ

d2χλ

dr2
+ V (r)χλ + h̄2λ(λ + 1)

2µr2
χλ = Eλχλ, (9)

where V (r) is the core-cluster potential and µ = A1A2/AT is
the reduced mass.

Premultiplying Eq. (9) for λ = � by the solution χL(r)
for λ = L, subtracting the resulting expression from the
corresponding one with � and L interchanged, and integrating
over the radial coordinate yields

1

(EL − E�)
= µIL�

dL�

, (10)

where

dL� = h̄2

2
{L(L + 1) − �(� + 1)} (11)

and

IL� =
[∫

χL(r)
1

r2
χ�(r) dr

]−1 ∫
χL(r)χ�(r) dr. (12)

The IL� may be rewritten

IL� ∼ r2
L�A

2/3
T , (13)

where, under the assumption of near-identical χλ(r), we expect
the rL� to be similar to each other. Finally, making use of the
no-dipole rule of Eq. (2) we can write

µ = A1A2

AT

= Z1Z2

ZT

AT

ZT

, (14)

so that {
ZT

(EL − E�)A5/3
T

}
= 1

dL�

r2
L�

Z1Z2

ZT

. (15)

As in a previous analysis [32] we concentrate on L = 2, � = 0
and L = 4, � = 2 here.

We can also relate the charge products Z1Z2/ZT to the
products NP NN , which occur in various forms of the Casten
correlations [17]. Here NP and NN are the number of valence
protons and valence neutrons, respectively. For the simplest
case of a near-magic core, so that the cluster has Z2 ∼ ZP and
N2 ∼ NN , and small cluster, so that the core has Z1 ∼ ZT and
N1 ∼ NT , we have, using the no-dipole rule of Eq. (2),

NP NN = Z2N2 = Z2
2
NT

ZT

≈
(

Z1Z2

ZT

)2
NT

ZT

, (16)
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FIG. 2. Plot of measured values of [B(E2 in e2 fm4)]1/2/A
2/3
T ,

with error bars [31], against Z1Z2/ZT , where the deduced cluster
charges are taken from Table I. The best straight line fit (solid line) has
a gradient of 0.3555 ± 0.0132 and a y intercept of 0.3858 ± 0.1060.

014310-4



CORE-CLUSTER PARTITIONS OF ACTINIDE NUCLEI PHYSICAL REVIEW C 76, 014310 (2007)

so that √
ZT

NT

{NP NN }1/2 =
{

Z1Z2

ZT

}
. (17)

For the actinide region analyzed here, NP and NN are
calculated using the standard shell closures at Z = 82 and
N = 126, respectively.

We note that a number of assumptions have been made
in deriving Eqs. (8), (15), and (17), and in particular that of
near-identical radial wave functions χλ(r). We thus replace
these relations by the less restrictive forms

√
B(E2)

A
2/3
T

= a0 + 1√
4π

r2
0

{
Z1Z2

ZT

}
, (18)

{
ZT

(EL − E�)A5/3
T

}
= aL� + r2

L�

dL�

{
Z1Z2

ZT

}
, (19)

and √
ZT

NT

{NP NN }1/2 = α + β

{
Z1Z2

ZT

}
. (20)

We have applied Eqs. (18)–(20) to the present data for
AT � 240, using the averaged Z2 values from Table I. Figure 2
shows a plot of Eq. (10), together with a linear fit corresponding
to a0 = 0.39 ± 0.11 and r0 = 1.12 ± 0.02 fm. We note that
these values are in good accord with expectation and strongly
support the overall consistency of the analysis. Plots of
Eq. (19) with L = 2, � = 0 and L = 4, � = 2 are shown
in Figs. 3 and 4, respectively. The linear fits result in
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FIG. 3. Plot of 100ZT A
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T /(E2 − E0) against Z1Z2/ZT , where

the measured excitation energies in MeV are taken from the
appropriate Nuclear Data Sheets and the cluster charges are taken
from Table I. The best straight line fit (solid line) has a gradient of
2.8975 ± 0.1062 and a y intercept of −5.8663 ± 0.8508.
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the measured excitation energies in MeV are taken from the
appropriate Nuclear Data Sheets and the cluster charges are taken
from Table I. The best straight line fit (solid line) has a gradient of
0.9860 ± 0.0351 and a y intercept of 0.0958 ± 0.2813.
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FIG. 5. Plot of (NP NNZT /NT )1/2 against Z1Z2/ZT , where NP

and NN are the valence proton and neutron numbers, respectively,
and the cluster charges are taken from Table I. The best straight line
fit (solid line) has a gradient of 1.0113 ± 0.0516 and a y intercept of
0.4408 ± 0.4129.
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a20 = (−5.87 ± 0.85) × 10−2 and r20 = 1.91 ± 0.02 fm and
a42 = (0.096 ± 0.28) × 10−2 and r42 = 1.70 ± 0.03 fm, re-
spectively.

An early finding [34] regarding applications of the cluster
model is that � = 0 ground states tend to be underbound with
respect to the rest of the spectrum. This results in the L = 2
to � = 0 energy difference being less well reproduced in the
model than all the other energy differences in the spectrum,
particularly for light clusters in heavy nuclei. Removing the
points corresponding to clusters with Z2 � 6.0 from Fig. 3
results in a20 = (−1.11 ± 1.31) × 10−2 and r20 = 1.73 ±
0.05 fm, with the values of a20 and a42 consistent with zero
and the values of r20 and r42 consistent with each other. We
note here that the values of r0, r20, and r42 thus obtained give
valuable direct information on matrix elements of r2 and 1/r2,
and hence on the underlying radial wave functions χλ(r).

Finally, Fig. 5 shows the results of plotting Eq. (20) with the
fitted line corresponding to α = 0.44 ± 0.41 and β = 1.01 ±
0.05, in excellent agreement with the values α = 0 and β = 1.0

expected from Eq. (17). We note that this is fundamental to a
cluster model interpretation [32] of Casten-type correlations
[17], for it then follows that substituting

√
NP NNZT /NT for

Z1Z2/ZT in Eqs. (18) and (19) generates linear plots similar
to those of Figs. 2, 3, and 4.

IV. CONCLUSIONS

We have generated the core-cluster charge products
Z1Z2/ZT for an extensive set of even-even nuclei in the
actinide region, by fitting the spectra of their ground state
bands. The core-cluster charge products thus obtained are con-
sistent with values generated by other methods. As predicted
by a binary cluster model, the Z1Z2/ZT values are found to
be closely correlated with expressions involving the B(E2)
values, excitation energies, and products of valence nucleon
numbers. This provides strong support for the applicability of
the model in this mass region, as well as for a cluster model
interpretation of the Casten correlations.
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