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I. INTRODUCTION

Pairing correlations affect properties of atomic nuclei in
a profound way [1–4]. They impact nuclear binding and
properties of nuclear excitations and decays and dramatically
influence the nuclear collective motion. In particular, pairing
plays a crucial role in exotic, weakly bound nuclei in which
the magnitude of the chemical potential is close to that
of the pairing gap. In such systems, a naive independent
single-particle picture breaks down and the pair scattering,
also involving the continuum part of the phase space, can
determine the very nuclear existence [5].

Many aspects of nuclear superfluidity can be successfully
treated within the independent quasiparticle framework by
applying the Bardeen-Cooper-Schrieffer (BCS) [6] or Hartree-
Fock-Bogoliubov (HFB) approximations [2]. The advantage
of the mean-field approach to the pairing problem lies in
its simplicity that allows for a straightforward interpretation
in terms of pairing fields and deformations (pairing gaps)
associated with the spontaneous breaking of the gauge
symmetry. However, this simplicity comes at a cost. In the
intrinsic-system description, the gauge angle associated with
the particle-number operator is fixed; hence, the particle-
number invariance is internally broken [1–3]. Therefore, to
relate to experiment, the particle-number symmetry needs to
be, in principle, restored.

Some observables, like masses, radii, or deformations, are
not very strongly affected by the particle-number-symmetry
restoration, whereas some other ones, like even-odd mass
staggering or pair-transfer amplitudes, are influenced signifi-
cantly. Moreover, quantitative impact of the particle-number
projection (PNP) depends on whether the pairing correlations
are strong (open-shell systems) or weak (near closed shells).
Therefore, methods of restoring the particle-number symmetry
must be implemented in studies of pairing correlations. This
can be done on various levels [2,7], including the quasipar-
ticle random-phase approximation, Kamlah expansion [8,9],

Lipkin-Nogami (LN) method [10–18], the particle-number
projection after variation (PNPAV) [2,19], the projected LN
method (PLN) [18–22], and the variation after particle-number
projection (VAPNP) [19,23–26].

In this article, we concentrate on the VAPNP method.
Recently, it has been shown [25] that the total energy in the
HFB + VAPNP approach can be expressed as a functional
of the unprojected HFB density matrix and pairing tensor. Its
variation leads to a set of HFB-like equations with modified
self-consistent fields. The method has been illustrated within
schematic models [27] and also implemented in the HFB
calculations with the finite-range Gogny force [19,26]. Here,
we adopt it for the Skyrme energy-density functionals and
zero-range pairing forces; in this case the building blocks of
the method are the local particle-hole and particle-particle
densities and mean fields. In the present study, the HFB
equations are solved by using the harmonic oscillator (HO)
basis, but the formalism can be straightforwardly applied
with the transformed harmonic oscillator (THO) basis [18,28],
which helps maintain the correct asymptotic behavior of the
single-quasiparticle wave functions.

It has already been realized some time ago [29], and
then discussed by several authors [7,26,30,31], that the PNP
methods applied to the energy-density functionals are plagued
with difficulties related to vanishing overlaps between gauge-
rotated intrinsic states. This problem concerns any functional
that uses density-dependent terms and thus is not related
to an average of a Hamiltonian. In particular, the most
frequently used approaches based on the Skyrme, Gogny, or
relativistic-mean-field functionals all fall into this category. A
detailed study of this problem will be published in forthcoming
articles [32,33]. Although in the future, modifications of the
VAPNP method, based on these considerations, will have to
be included, issues discussed in the present study will remain
valid. Moreover, we have checked that the results presented
in this work are not numerically affected by the above
difficulties.
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The article is organized as follows. Section II gives a
brief overview of the HFB theory and defines the densities
and fields entering the formalism. Section III extends the
VAPNP method of Ref. [27] to the case of the HFB theory
with Skyrme interaction. The technical details pertaining to
the Skyrme HFB + VAPNP method are given in Sec. IV,
whereas Sec. V contains an illustrative example of calculations
for the Ca and Sn isotopes. In particular, the LN and
PLN approximations are compared to the VAPNP results.
Summary and discussion are given in Sec. VI. Prelimi-
nary results of our VAPNP calculations were presented in
Ref. [34].

II. THE HFB METHOD

The many-body Hamiltonian of a system of fermions is
usually expressed in terms of a set of annihilation and creation
operators (c, c†):

H =
∑
nn′

enn′c†ncn′

+ 1

4

∑
nn′mm′

Vnn′mm′c†nc
†
n′cm′cm, (1)

where

Vnn′mm′ = 〈nn′|V |mm′ − m′m〉 (2)

are the antisymmetrized two-body interaction matrix
elements.

In the HFB method, the ground-state wave function is the
quasiparticle vacuum |�〉, defined as αk|�〉 = 0, where the
quasiparticle operators (α, α†) are connected to the original
particle operators via the Bogoliubov transformation

αk =
∑

n

(U ∗
nkcn + V ∗

nkc
†
n), (3)

α
†
k =

∑
n

(Vnkcn + Unkc
†
n), (4)

where the matrices U and V satisfy the unitarity and com-
pleteness relations:

U †U + V †V = I, UU † + V ∗V T = I, (5)

UT V + V T U = 0, UV † + V ∗UT = 0. (6)

A. The HFB equations

In terms of the density matrix ρ and pairing tensor κ , defined
as

ρ = V ∗V T , κ = V ∗UT = −UV †, (7)

the HFB energy is expressed as an energy functional:

E[ρ, κ] = 〈�|H |�〉
〈�|�〉

= Tr

[(
e + 1

2
�

)
ρ

]
− 1

2
Tr[�κ∗], (8)

where

�nm =
∑
n′m′

Vnn′mm′ρm′n′ , (9)

�nn′ = 1

2

∑
mm′

Vnn′mm′κmm′ . (10)

The variation of the HFB energy (8) with respect to ρ and κ

yields the HFB equations:

H
(

Uk

Vk

)
= Ek

(
Uk

Vk

)
, (11)

where

H =
(

e + � − λ �

−�∗ −(e + �)∗ + λ

)
, (12)

Uk and Vk are the kth columns of matrices U and V ,
respectively, and Ek is a positive quasiparticle energy eigen-
value. Because the HFB state |�〉 violates the particle-number
symmetry, the Fermi energy λ is introduced to fix the average
particle number.

B. The Skyrme HFB method

For the zero-range Skyrme forces, the HFB formalism can
be written directly in the coordinate representation [35–37] by
introducing particle and pairing densities

ρ(rσ, r ′σ ′) = 1

2
ρ(r, r ′)δσσ ′

+ 1

2

∑
i

(σ |σi |σ ′)ρi(r, r ′), (13)

ρ̃(rσ, r ′σ ′) = 1

2
ρ̃(r, r ′)δσσ ′

+ 1

2

∑
i

(σ |σi |σ ′)ρ̃i(r, r ′), (14)

which explicitly depend on spin. The use of the pairing density
ρ̃,

ρ̃(rσ, r ′σ ′) = −2σ ′κ(r,σ, r ′, − σ ′), (15)

instead of the pairing tensor κ is convenient when restricting
to time-even quasiparticle states where both ρ and ρ̃ are
Hermitian and time-even [36].

The densities ρ and ρ̃ can be expressed in the single-particle
basis:

ρ(rσ, r ′σ ′) =
∑
nn′

ρnn′ψ∗
n′ (r ′, σ ′)ψn(r, σ ), (16)

ρ̃(rσ, r ′σ ′) =
∑
nn′

ρ̃nn′ψ∗
n′ (r ′, σ ′)ψn(r, σ ), (17)

where ρn′n and ρ̃n′n are the corresponding density matrices.
In this study, we take ψn(r, σ ) as a set of the HO wave
functions.

The building blocks of the Skyrme HFB method are the
local densities, namely the particle density ρ(r), kinetic energy
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density τ (r), and spin-current density Jij (r):

ρ(r) = ρ(r, r),

τ (r) = ∇r∇r ′ρ(r, r ′)|r ′=r , (18)

Jij (r) = 1

2i
(∇i − ∇′

i)ρj (r, r ′)|r ′=r ,

as well as the corresponding pairing densities ρ̃(r), τ̃ (r), and
J̃ij (r).

In the coordinate representation, the Skyrme HFB energy
(8) can be written as a functional of the local particle and
pairing densities:

E[ρ, ρ̃] = 〈�|H |�〉
〈�|�〉 =

∫
d r H(r). (19)

The energy density H(r) is a sum of the particle H (r) and
pairing energy density H̃ (r):

H(r) = H (r) + H̃ (r). (20)

The derivatives of E[ρ, ρ̃] with respect to density ma-
trices ρ and ρ̃ define the self-consistent particle (h) and
pairing (h̃) fields, respectively. The explicit expressions for
H (r), H̃ (r), h(r, σ, σ ′), and h̃(r, σ, σ ′) have been given in
Ref. [36] and will not be repeated here.

The Skyrme HFB equations can be written in the matrix
form as:(

h − λ h̃

h̃ −h + λ

) (
ϕ1,k

ϕ2,k

)
= Ek

(
ϕ1,k

ϕ2,k

)
, (21)

where

hnn′ = ∂E[ρ, ρ̃]

∂ρn′n

=
∑
σσ ′

∫
d r ψ∗

n (r, σ )h(r, σ, σ ′)ψn′ (r, σ ′), (22)

and

h̃nn′ = ∂E[ρ, ρ̃]

∂ρ̃n′n

=
∑
σσ ′

∫
d r ψ∗

n (r, σ )h̃(r, σ, σ ′)ψn′ (r, σ ′), (23)

and ϕ1,k and ϕ2,k are the upper and lower components,
respectively, of the quasiparticle wave function corresponding
to the positive quasiparticle energy Ek . After solving the HFB
equations (21), one obtains the density matrices,

ρnn′ =
∑
Ek>0

ϕ2,nkϕ
∗
2,n′k, (24)

ρ̃nn′ = −
∑
Ek>0

ϕ2,nkϕ
∗
1,n′k, (25)

which define the spatial densities (16) and (17).
We note in passing that the derivation of the coordinate-

space HFB equations [36] is strictly valid only when the
time-reversal symmetry is assumed. When the time-reversal
symmetry is broken, one has to introduce additional real vector
particle densities s, j , T [38], whereas the pairing densities
acquire imaginary parts; see Ref. [37] for complete derivations.

III. VARIATION AFTER PARTICLE-NUMBER
PROJECTION

A. The HFB + VAPNP method

It has been demonstrated [25] that the HFB + VAPNP
energy,

EN [ρ, κ] = 〈�|HP N |�〉
〈�|P N |�〉

=
∫

dφ〈�|Heiφ(N̂−N)|�〉∫
dφ〈�|eiφ(N̂−N)|�〉 , (26)

where P N is the particle-number projection operator,

P N = 1

2π

∫
dφ eiφ(N̂−N), (27)

can be written as an energy functional of the unprojected
densities (7).

The variation of Eq. (26) results in the HFB + VAPNP
equations:

HN

(
UN

k

V N
k

)
= Ek

(
UN

k

V N
k

)
, (28)

where

HN =
(

εN + �N + �N �N

−(�N )
∗ −(εN + �N + �N )∗

)
. (29)

Equations (28) and (29) have the same structure as Eqs. (11)
and (12), except that the expressions for the VAPNP fields are
now different [25,27], i.e.,

εN = 1

2

∫
dφ y(φ){Y (φ)Tr[eρ(φ)]

+ [1 − 2ie−iφ sin φρ(φ)]eC(φ)} + h.c., (30)

�N = 1

4

∫
dφ y(φ){Y (φ)Tr[�(φ)ρ(φ)]

+ 2[1 − 2ie−iφ sin φρ(φ)]�(φ)C(φ)} + h.c., (31)

�N = 1

2

∫
dφ y(φ)e−2iφC(φ)�(φ) − (. . .)T , (32)

�N = −1

4

∫
dφ y(φ){Y (φ)Tr[�(φ)κ∗(φ)]

− 4ie−iφ sin φ C(φ)�(φ)κ∗(φ)} + h.c., (33)

with

�nm(φ) =
∑
n′m′

Vnn′mm′ρm′n′ (φ), (34)

�nn′ (φ) = 1

2

∑
mm′

Vnn′mm′κmm′(φ), (35)

where, using the unit matrix Î ,

ρ(φ) = C(φ)ρ, (36)

κ(φ) = C(φ)κ, (37)

κ(φ) = e2iφC†(φ)κ, (38)

C(φ) = e2iφ[1 + ρ(e2iφ − 1)]−1, (39)
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x(φ) = 1

2π

e−iφN det(eiφI )√
det C(φ)

, (40)

y(φ) = x(φ)∫
dφ′ x(φ′)

, (41)

and

Y (φ) = ie−iφ sin φ C(φ)

− i

∫
dφ′y(φ′)e−iφ′

sin φ′ C(φ′). (42)

After solving the HFB + VAPNP equations (28), one obtains
the intrinsic density matrix and pairing tensor:

ρ = (V N )∗(V N )T , κ = (V N )∗(UN )T . (43)

Finally, the total HFB + VAPNP energy is given by

EN [ρ, κ] =
∫

dφ y(φ) Tr

[
eρ(φ) + 1

2
�(φ)ρ(φ)

]

−
∫

dφ y(φ)
1

2
Tr[�(φ)κ∗(φ)]. (44)

The quantity y(φ) plays a role of an N -dependent metric. The
integrands in Eqs. (30)–(32) take the familiar HFB limit at
φ = 0, whereas the integrand in Eq. (33) vanishes (�N does
not appear in the standard HFB approach).

B. The Lipkin-Nogami method

The LN method [10,11] constitutes an astute and efficient
way of performing an approximate VAPNP calculation. It
can be considered [7] as a variant of the second-order
Kamlah expansion [8,9], in which the VAPNP energy (26)
is approximated by a simple expression,

ELN = E[ρ, ρ̃] − λ2(〈N̂2〉 − N2), (45)

with λ2 depending on the HFB state |�〉 and representing the
curvature of the VAPNP energy with respect to the particle
number. The role of λ2 in the Kamlah and LN methods
differs. In the former, λ2 is varied along with variations of
the HFB state |�〉, whereas in the latter, this variation is
neglected. Had the second-order Kamlah expression (45) been
exact, the variation of λ2 would have been fully justified
and the method would be giving the exact VAPNP energy.
However, because the second-order expression is, in practical
applications, never exact, it is usually more reasonable to adopt
the LN philosophy, in which one rather strives to find the best
estimate of the curvature λ2 instead of finding it variationally
in an approximate way.

When the HFB method is applied to a given Hamiltonian,
values of λ2 can be estimated by calculating new mean-field
potentials, �′ and �′, that are analogous to the standard mean
fields of Eqs. (9) and (10); see, e.g., Refs. [7,18]. However, such
formulas were not used in practical applications, because most
often the self-consistent calculations are performed within the
density functional approach, by using different interactions
in the particle-hole and particle-particle channels, or for
density dependent interactions; see, e.g., Refs. [13,15–17].
Moreover, in some studies, such as that of Ref. [12], the terms

in λ2 originating from the particle-hole channel are simply
disregarded. (The expressions for λ2 valid for a general energy
density functional can be found in Ref. [17].)

Similarly, as in our previous study [18], here we adopt an
efficient phenomenological way of estimating the curvature λ2

from the seniority-pairing expression,

λ2 = Geff

4

Tr′(1 − ρ)κTr′ρκ − 2 Tr(1 − ρ)2ρ2

[Trρ(1 − ρ)]2 − 2 Trρ2(1 − ρ)2
, (46)

where the effective pairing strength,

Geff = − �̄2

Epair
, (47)

is determined from the HFB pairing energy,

Epair = −1

2
Tr�κ∗, (48)

and the average pairing gap [46],

�̄ = Tr′�ρ

Trρ
. (49)

Expression (46) pertains to a system of particles occupying
single-particle levels with fixed (non-self-consistent) energies
and interacting with a seniority pairing interaction. In our
method, this expression is used to probe the density of
self-consistent energies that determine the curvature λ2. All
quantities defining λ2 in Eq. (46) depend on the self-consistent
solution and microscopic interaction, whereas the effective
pairing strength Geff is only an auxiliary quantity. The quality
of the prescription for calculating λ2 can be tested against the
exact VAPNP results (see Sec. V).

C. The Skyrme HFB + VAPNP method

Following the VAPNP procedure of Sec. III A, one can
develop the Skyrme HFB + VAPNP equations by introducing
the gauge-angle-dependent transition density matrices:

ρ(rσ, r ′σ ′, φ) =
∑
nn′

ρnn′ (φ)ψ∗
n′(r ′, σ ′)ψn(r, σ ), (50)

ρ̃(rσ, r ′σ ′, φ) =
∑
nn′

ρ̃nn′ (φ)ψ∗
n′(r ′, σ ′)ψn(r, σ ). (51)

In the above equation, the density matrix ρnn′ (φ) is given by
Eq. (36), whereas

ρ̃(φ) = e−iφC(φ)ρ̃. (52)

The associated gauge-angle-dependent local densities ρ(r, φ),
τ (r, φ), Jij (r, φ), ρ̃(r, φ), τ̃ (r, φ), and J̃ij (r, φ) are defined
by Eqs. (18) in terms of the density matrices (50) and (51).
Using the Wick theorem for matrix elements [2], one can
show that the gauge-angle-dependent transition energy density
H(r, φ) can be obtained from the intrinsic energy density
H(r) simply by substituting particle (pairing) local densities
with their gauge-angle-dependent counterparts (e.g., ρ(r) →
ρ(r, φ)).
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In the case of Skyrme functionals, the HFB + VAPNP
energy (26) can be expressed through an integral

EN [ρ, ρ̃] =
∫

dφ y(φ)E(φ), (53)

where the transition energy reads:

E(φ) = 〈�|HeiφN̂ |�〉
〈�|eiφN̂ |�〉 =

∫
d r H(r, φ). (54)

The projected energy (53) is a functional EN [ρ, ρ̃] of the
matrix elements of intrinsic (i.e., φ = 0) matrices ρ and ρ̃.

To compute the derivatives of EN (ρ, ρ̃) with respect to ρ

and ρ̃, one should take first the derivatives of EN [ρ, ρ̃] with
respect to ρ(φ) and ρ̃(φ), and then the derivatives of ρ(φ)
and ρ̃(φ) with respect to the intrinsic densities ρ and ρ̃. For
example,

∂EN [ρ, ρ̃]

∂ρnn′
=

∫
dφ y(φ)

[
1

y(φ)

∂y(φ)

∂ρnn′
E(φ)

+
∑
αβ

∂E(φ)

∂ραβ(φ)

∂ραβ(φ)

∂ρnn′

+
∑
αβ

∂E(φ)

∂ρ̃αβ(φ)

∂ρ̃αβ(φ)

∂ρ̃nn′

+
∑
αβ

∂E(φ)

∂ρ̃∗
αβ(−φ)

∂ρ̃∗
αβ(−φ)

∂ρnn′


 . (55)

With the use of the identity:

δmm′ − 2ie−iφ sin φρmm′(φ) = e−2iφCmm′ (φ), (56)

the partial derivatives in Eq. (55) can easily be calculated:

∂y(φ)

∂ρnn′
= y(φ)Ynn′(φ), (57)

∂ρmm′ (φ)

∂ρnn′
= δm′n′Cmn(φ)

− 2ie−iφ sin(φ)ρn′m′(φ)Cmn(φ), (58)
∂ρ̃mm′(φ)

∂ρnn′
= −2ie−iφ sin(φ)ρ̃n′m′ (φ)Cmn(φ), (59)

∂ρ̃mm′(φ)

∂ρ̃nn′
= e−iφCmn(φ)δm′n′

+ e−iφCmn̄(φ)δn̄m′sn̄′s∗
n̄ , (60)

where n̄ and sn (sns
∗
n = 1, sn̄ = −sn) are defined using the

time-reversal operator T̂ , as

T̂ ψn(r, σ ) = snψn̄(r, σ ). (61)

By inserting Eqs. (57)–(60) in Eq. (55), the latter reads

∂EN [ρ, ρ̃]

∂ρ

=
∫

dφ y(φ)Y (φ)E(φ) +
∫

dφ y(φ) e−2iφC(φ)h(φ)C(φ)

−
[∫

dφ y(φ)2ie−iφ sin(φ)ρ̃(φ)h̃(φ)C(φ) + h.c.

]
, (62)

where

hnn′(φ) = ∂E(φ)

∂ρn′n(φ)

=
∑
σσ ′

∫
d3r ψ∗

n (rσ )h(r,σ, σ ′, φ)ψn′ (rσ ′), (63)

h̃nn′(φ) = ∂E(φ)

∂ρ̃n′n(φ)

=
∑
σσ ′

∫
d3r ψ∗

n (rσ )h̃(r, σ, σ ′, φ)ψn′ (rσ ′). (64)

The derivative of EN (ρ, ρ̃) with respect to ρ̃ can be computed
in a similar manner. The φ-dependent fields h(r, σ, σ ′, φ) and
h̃(r, σ, σ ′, φ) are obtained by substituting the local particle
and pairing densities in the intrinsic fields h(r, σ, σ ′) and
h̃(r, σ, σ ′) with their gauge-angle-dependent counterparts.

The Skyrme HFB + VAPNP equations can finally be
written in the form(

hN h̃N

h̃N −hN

)(
ϕN

1,k

ϕN
2,k

)
= Ek

(
ϕN

1,k

ϕN
2,k

)
, (65)

with particle-hole and particle-particle Hamiltonians

hN =
∫

dφy(φ)Y (φ)E(φ)

+
∫

dφy(φ)e−2iφC(φ)h(φ)C(φ)

−
[∫

dφy(φ)2ie−iφ sin(φ)ρ̃(φ)h̃(φ)C(φ)+h.c.

]
, (66)

h̃N =
∫

dφy(φ)e−iφ[h̃(φ)C(φ) + (. . .)T ]. (67)

Finally, solutions of the HFB + VAPNP equations (65) allow
for calculating the intrinsic density matrices as,

ρnn′ =
∑
Ek>0

ϕN
2,nkϕ

N∗
2,n′k, (68)

ρ̃nn′ = −
∑
Ek>0

ϕN
2,nkϕ

N∗
1,n′k . (69)

Let us re-emphasize that the densities and fields that
enter the Skyrme HFB + VAPNP equations are immediate
generalizations of the analogous quantities that appear in
the standard Skyrme HFB formalism. Of course, due to the
presence of C(φ) and integrations over the gauge angle, the
Skyrme HFB + VAPNP calculations are appreciably more
involved.

IV. SKYRME HFB + VAPNP PROCEDURE: PRACTICAL
DETAILS

A. Two kinds of nucleons

As one is dealing with Z protons and N neutrons, two gauge
angles, φn and φp, must enter the number projection operator:

P NZ = 1

2π

∫
dφn eiφn(N̂−N) 1

2π

∫
dφp eiφp(Ẑ−Z). (70)
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Consequently, the total projected energy (53) becomes a
double integral,

EN =
∫

dφn dφp yn(φn)yp(φp) E(φn, φp), (71)

where the transition energy density

E(φn, φp) =
∫

d r H(r, φn, φp) (72)

depends on both gauge angles φn, φp.
To simplify notation, we use the isospin label q = τ3

(q = +1 for neutrons and −1 for protons) and q̄ = −q.
In the following, we shall employ the convention y(φq) ≡
yq(φq), C(φq) ≡ Cq(φq), and Y (φq) ≡ Yq(φq). The isospin-
dependent particle-hole and particle-particle fields (66), (67)
can be written as:

hN
q =

∫
dφqy(φq)

{
Y (φq)

[∫
y(φq̄)E(φq, φq̄)dφq̄

]

+ e−2iφq C(φq)

[∫
y(φq̄)hq(φq, φq̄)dφq̄

]
C(φq)

}

−
{∫

dφqy(φq) 2ie−iφq sin(φq)ρ̃q(φq)

×
[∫

y(φq̄)h̃q(φq, φq̄)dφq̄

]
C(φq) + h.c.

}
, (73)

h̃N
q =

∫
dφqy(φq) e−iφq

×
{[∫

y(φq̄)h̃q(φq, φq̄)dφq̄

]
C(φq) + (. . .)T

}
. (74)

In numerical applications, the two-dimensional integrals over
the gauge angles are replaced by a sum over Ln × Lp points
using the Gauss-Chebyshev quadrature method [39].

B. Canonical representation

The canonical-basis single-particle wave functions,

χµ(r, σ ) =
∑

n

Wnµψn(r, σ ), (75)

are defined by the unitary matrix W , which diagonalizes the
density matrices,

∑
n′

ρnn′Wn′µ = v2
µWnµ,

(76)∑
n′

ρ̃nn′Wn′µ = uµvµWnµ,

where v2
µ are the occupation probabilities 0 � v2

µ � 1 and
v2

µ + u2
µ = 1. In the canonical representation, the gauge-angle-

dependent matrices become diagonal with the diagonal matrix

elements given by:

Cµ(φq) = e2ıφq

u2
µq + e2ıφq v2

µq

, (77)

ρµq(φq) = e2ıφq v2
µq

u2
µq + e2ıφv2

µq

, (78)

ρ̃µq(φq) = eıφq uµqvµq

u2
µq + e2ıφq v2

µq

, (79)

and the determinant of matrix C(φq), needed in Eq. (40),
becomes a product of the diagonal values (77). The use of the
canonical representation significantly simplifies calculations
of the projected fields.

C. Intrinsic average particle number in the HFB + VAPNP
method

The HFB state |�〉 is a linear combination of eigenstates
|N〉 of the particle-number operator, i.e.,

|�〉 =
∑
N

aN |N〉, (80)

where

|N〉 = P N |�〉√
〈�|P N |�〉

, (81)

and N̂ |N〉 = N |N〉. The HFB + VAPNP method is based on
the variation of the projected energy (26), which is the average
value of the Hamiltonian on the state |N〉, EN = 〈N |Ĥ |N〉.
Obviously, the projected energy does not depend on amplitudes
aN , although the intrinsic average number of particles,

N̄ = 〈�|N̂ |�〉 =
∑
N

|aN |2N = Tr ρ, (82)

does depend on aN .
The HFB + VAPNP variational procedure gives, in prin-

ciple, the same value of the projected energy independently
of the value of N̄ . This independence can, however, be
subject to numerical instabilities whenever the amplitude aN ,
corresponding to the projection on N particles, is small.
Therefore, for practical reasons, one is interested in keeping
the average number of particles N̄ as close as possible to N ,
which guarantees that amplitude aN is as large as possible.

In the standard HFB equations (21), the average number
of particles is kept equal to N by adjusting the Lagrange
multiplier λ. However, in the HFB + VAPNP approach, λ

does not appear in the variational equations (65), because
the variation of the constant term λ〈�|N̂P N |�〉/〈�|P N |�〉 =
λN equals zero. Therefore, the HFB + VAPNP equations (65)
do not allow for adjusting the average particle number N̄ ,
which, during the iteration procedure, may become vary
different from N . Moreover, such uncontrolled changes of
N̄ from one iteration to another may preclude reaching the
stable self-consistent solution.

To cope with these problems, one can artificially reintro-
duce a constant µ, analogous to the Fermi energy λ, into the
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HFB + VAPNP equations (65), i.e.,(
hN − µ h̃N

h̃N −hN + µ

)(
ϕN

1,k

ϕN
2,k

)
= Ek

(
ϕN

1,k

ϕN
2,k

)
, (83)

provided it is equal to zero once the convergence is achieved.
With this modification, the iterations proceed as follows.
Suppose that at a given iteration, condition N̄ = N is fulfilled.
Then, no readjustment of N̄ is necessary, and in the next
iteration one proceeds with µ = 0.

Had such an ideal situation continued until the end, a
nonzero value of µ would have never appeared, and the
required solution would have been found. In practice, this
situation never happens, and at some iteration one finds that
Trρ, i.e., the sum of norms of the second components ϕN

2,nk

(68) of the HFB + VAPNP wave functions, is larger (smaller)
than N . In such a case, in the next iteration one uses a slightly
negative (positive) value of µ, which decreases (increases) the
norms of ϕN

2,nk , and decreases (increases) the average particle
number in the next iteration. Because µ acts in exactly the
same way as the Fermi energy does within the standard HFB
method, the well-established algorithms of readjusting λ can
be used. Moreover, as soon as the iteration procedure starts to
converge, the nonzero values of µ cease to be needed, and thus
µ naturally converges to zero, as required. In practice, we find
that the above algorithm is very useful, and it provides the same
converged solution with any value of N̄ = N ± �N,�N

being a small integer.

D. The cut-off procedure for the contact pairing force

When using zero-range pairing forces such as the density-
dependent delta force, one has to introduce the energy cut-
off [40]. Within the unprojected HFB calculations, a pairing
cut-off is introduced by using the so-called equivalent single-
particle spectrum [36]. After each iteration, one calculates an
equivalent spectrum ēn and corresponding pairing gaps �̄n:

ēn = (1 − 2Pn)En + λ, �̄n = 2En

√
Pn(1 − Pn), (84)

where En is the quasiparticle energy, λ is the chemical
potential, and Pn denotes the norm of the lower component
of the HFB wave function. The energy cut-off is practically
realized by requesting that the phase space for the pair
scattering is limited to those quasiparticle states for which ēn is
less than the cut-off energy εcut (usually εcut = 60 MeV) [41].

Obviously, the above procedure cannot be directly applied
to the HFB + VAPNP method, where the intrinsic quantities, in
particular the “quasiparticle” energies EN

n , do not have obvious
physical meaning. A reasonable practical prescription for εcut

can be proposed in terms of intrinsic (φ = 0) HFB fields h and
h̃. After each iteration of Eq. (65), the average quasiparticle
energies,

En =
(

UN

V N

)†

n

(
h − λ h̃

h̃ −h + λ

)(
UN

V N

)
n

, (85)

together with Pn ≡ P N
n , give the equivalent energies (84).

Based on the spectrum of ēn, the set of quasiparticle states
appearing below the cut-off energy can now be easily defined.

FIG. 1. (Color online) The neutron equivalent single-particle
energies (84) for N = 70 and Z = 50 obtained in the HFB + LN
method (first spectrum), HFB + VAPNP method using the average
quasiparticle energies En (second spectrum) (85), and by using the
“quasiparticle” energies EN

k calculated in the HFB + VAPNP method
for different values of the intrinsic neutron N̄ and proton Z̄ numbers
(the remaining five spectra). The dashed line indicates the position of
the LN Fermi energy λ.

At the same time, the Fermi energy λ (as an auxiliary quantity)
can be recalculated in each iteration.

The results of such a procedure are illustrated in Fig. 1.
The left-most spectrum shows the neutron equivalent energies
obtained within the LN method applied to N = 70 and Z = 50,
and the dashed line shows the position of the corresponding
LN neutron Fermi energy λ. For ēn < 0, this spectrum is very
similar to the HF bound single-particle energies of this nucleus.
Our method, based on the average quasiparticle energies
(85), gives almost identical negative equivalent energies and
quite similar positive ones. In particular, for highly positive
equivalent energies, in the region of the cut-off energy εcut =
60 MeV, similar continuum quasiparticle states appear in
both methods; this guarantees the correct application of the
cut-off procedure. The five equivalent spectra shown on the
right-hand side of Fig. 1 were calculated directly from the
unphysical “quasiparticle” energies EN

n obtained for several
selected values of the intrinsic particle numbers N̄ and Z̄. It is
obvious that these spectra (even at N̄ = 70 and Z̄ = 50) bear
no resemblance to the real single-particle spectra and cannot
be used to define the cut-off procedure.

V. SAMPLE RESULTS

To illustrate the Skyrme HFB + VAPNP procedure, we
carried out calculations for the complete chain of calcium
isotopes, from the proton drip line to the neutron drip line and
for the chain of tin isotopes with 70 � N � 90. We used the
Sly4 Skyrme force parametrization [42] and the mixed delta
pairing [43,44]. The calculations were performed in the basis
of 20 major HO shells. We took L = 13 gauge-angle points,
and this practically ensures exact projection for all considered
nuclei. We have found that the HFB + VAPNP procedure is
just L-times slower compared to the PLN method.
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In our standard HFB calculations [40,41], the strength
of the pairing force (assumed identical for protons and
neutrons) is usually adjusted at a given cut-off energy εcut =
60 MeV to the experimental value of the average neutron
gap �̃n = 1.245 MeV in 120Sn. In the present study, we
used this procedure to fix the pairing-force strength of V0 =
−260.4 MeV fm−3 for all LN and PLN calculations. However,
it is well known that the PNP method requires another strength
of the pairing force. Unfortunately, the average pairing gap
�̃n is not defined within the VAPNP approach, and the
standard procedure for adjusting the pairing strength is no
longer applicable. In this study, we adjusted the VAPNP
pairing strength of V0 = −244.72 MeV fm−3 to the total
energy of the 44Ca nucleus calculated in HFB + PLN. A
much more consistent way of fitting the pairing strength
should be based on calculating the mass differences of the
odd-mass and even-even nuclei, all obtained within the VAPNP
method. We intend to adopt such a procedure in future
applications.

A measure of pairing correlations in a nucleus is the
particle-particle energy (pairing energy) given by the second
term in Eq. (44). The energy of proton pairing correlations
is about 2–3 MeV and it changes smoothly with N along
the isotopic chains. However, the neutron pairing is signif-
icantly affected by the shell structure. As seen in Figs. 2
and 3, upper panels, the neutron pairing energies obtained
within the LN, PLN, and VAPNP methods (and with pairing
strengths adjusted as described above) are quite similar to one
another.

The lower panels of Figs. 2 and 3 show differences between
the total energies obtained in the LN and PLN methods and

FIG. 2. (Color online) Comparison between the LN, PLN, and
VAPNP results for the chain of Ca isotopes. The upper panel shows
the neutron pairing energies, whereas the lower panel shows the total
LN and PLN energies relative to the VAPNP values.

FIG. 3. (Color online) Similar to Fig. 2, except for the chain of
Sn isotopes.

those obtained in VAPNP. The LN or PLN results are fairly
close to VAPNP for midshell nuclei, where the neutron pairing
correlations are large and static in character. Near closed shells,
pairing is dynamic in nature, and the LN/PLN results deviate
from those obtained in VAPNP. For open-shell nuclei, the PLN
approximation is particularly good; in the calcium isotopes,
the deviations from the HFB + VAPNP method usually do
not exceed 250 keV. For the closed-shell nuclei, however,
the LN method is not appropriate [19,20,45], and the energy
differences increase to more than 1 MeV. Figures 2 and 3
also show that the PLN method always leads to a considerable
improvement over LN, often reducing the deviation of the total
energy with respect to VAPNP by about 1 MeV. Note that in our
approach, the PLN energies can in some cases (e.g., 122−126Sn
in Fig. 3) be lower than the VAPNP energies, because they are
calculated with different pairing strengths, as explained at the
beginning of this section.

As suggested in Refs. [20,21], one can further improve the
PLN approximation around magic nuclei by applying the PNP
to the LN solutions obtained in the neighboring nuclei. This
procedure is illustrated in Figs. 4 and 5 for the magic nuclei
48Ca and 132Sn, respectively. It is seen that while the projection
from 46Ca nicely reproduces the VAPNP result in 48Ca, the
approximation fails when projecting from 50Ca. Similarly,
projection from the LN solution in 130Sn (134Sn) gives a
better (worse) result than the projection of the LN solution
obtained in 132Sn. We observe a similar pattern of results
in other cases near closed shells; however, the improvement
gained by projecting from isotopes below closed shells is not
sufficient to replace the full VAPNP calculations at closed
shells.

To discuss the quality of prescription to calculate the
LN parameter λ2 presented in Sec. III B, we have repeated
all our LN and PLN calculations with the effective pairing
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FIG. 4. (Color online) The total binding energy (with respect to a
linear reference) as a function of N for even-even nuclei around 48Ca,
calculated in the LN, PLN, and VAPNP methods. Crosses indicate the
PLN results for 48Ca obtained by projecting from the LN solutions in
neighboring nuclei 46Ca and 50Ca as indicated by arrows.

strengths G′
eff = αGeff scaled by factors of α = 0.9 or 1.1

with respect to those given by Eq. (47). In this way, we tested
whether our results are sensitive to this phenomenological
prescription. The results obtained for the chains of Ca and Sn
isotopes are shown in Fig. 6. Although the LN energies (45)
uniformly depend on the scaling factor α, the PLN energies
are almost independent of the scaling factor. This shows that
the PNP components of the LN states weakly depend on λ2

and can be obtained without paying too much attention to
the way in which λ2 is calculated. A rough estimate given
by our phenomenological prescription is good enough to
obtain reliable PLN results. However, deviations between the
LN/PLN and VAPNP energies depend mostly on the local shell
structure and visibly cannot be corrected by modifications of
the prescription used to calculate λ2. In large part, these de-
viations stem from the inapplicability of the LN/PLN method
to closed-shell nuclei, where the total energy in function of
particle number cannot be well approximated by the quadratic
Kamlah expansion. Altogether, we conclude that the PLN
method gives a fair approximation of the full VAPNP results
but fails in reproducing detailed values, especially near closed
shells.

FIG. 5. (Color online) Similar to Fig. 4, except for nuclei near
132Sn.

FIG. 6. (Color online) Total LN and PLN energies relative to
the VAPNP values, calculated in the Ca (upper panel) and Sn
(lower panel) isotopes with the effective pairing strengths scaled by
a factor α.

VI. SUMMARY AND DISCUSSION

In this study, the variation after particle-number projection
is discussed in the context of the nuclear density functional
theory. Specifically, we implement for the first time the self-
consistent Skyrme HFB + VAPNP formalism. We demonstrate
that the particle-number conserving HFB equations with
Skyrme functionals can be simply obtained from the standard
Skyrme HFB equations in coordinate space by replacing the
intrinsic densities and currents by their gauge-angle-dependent
counterparts.

The calculations are carried for the Ca and Sn isotope
chains. The VAPNP results are compared with those obtained
with the LN and PLN methods. We demonstrate that the
pathological behavior of LN and PLN methods around closed-
shell nuclei can be partly cured by performing particle-number
projection from neighboring open-shell systems. This result
is important in the context of large-scale microscopic mass
calculations, such as those of Ref. [22].

The restoration of broken symmetries in the density
functional theory causes a number of fundamental questions,
mainly related to the density dependence of the underlying
interaction and to the different treatment of particle-hole and
particle-particle channels [7,26,29–31]. These questions and
problems will be discussed in detail in a forthcoming article
[32].
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W. Nazarewicz, Phys. Rev. C 69, 014316 (2004).
[38] Y. M. Engel, D. M. Brink, K. Goeke, S. J. Krieger, and

D. Vautherin, Nucl. Phys. A249, 215 (1975).
[39] K. Hara, S. Iwasaki, and K. Tanabe, Nucl. Phys. A332, 69 (1979).
[40] J. Dobaczewski, W. Nazarewicz, T. R. Werner, J.-F. Berger,
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