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We calculate the ground-state properties of well deformed, even-even N = Z nuclei in the region between 56Ni
and 100Sn within two different approaches, focusing on the binding energy and deformation and pairing properties.
First, we employ the Hartree-Fock-BCS (HFBCS) approximation with the Skyrme effective nucleon-nucleon
interaction and discuss how the results depend on the parametrization of the interaction and on the pairing force
parameters adjusted in various schemes to reproduce the experimental odd-even mass differences. Then, within
the Higher Tamm-Dancoff Approximation (HTDA), which explicitly conserves the particle number, we calculate
the same properties starting from the HFBCS solutions. The HTDA treatment of the ground-state correlations is
converged within a n-particle-n-hole expansion using up to n = 4 particle-hole excitations of the pair type (in the
sense of Cooper pairs). We compare the ground-state properties calculated in these two descriptions of pairing
correlations and deduce the importance of the particle-number conservation in weak pairing regimes. Finally, we
extend the HTDA calculations so as to include the proton-neutron residual interaction and investigate the role of
proton-neutron pairing on the above ground-state properties.
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I. INTRODUCTION

Nuclei with an equal number of neutrons and protons
are of a special interest in many respects. The similarity of
the neutron and proton single-particle (sp) spin-space wave
functions, in the vicinity of the chemical potentials, allows
for rather interesting physical studies associated with isospin
mixing, β decays, and proton-neutron correlations. Such pe-
culiar correlations are encountered in pairing properties either
in the T = 0 or T = 1 channels. Another intriguing property
is the so-called Wigner term in a liquid-drop approaches,
corresponding to a very sharp pattern of extra stability
close to N = Z. These nuclei are also of importance for the
rapid-proton astrophysical process. Up to A ∼ 60 for even
values of N = Z, these nuclei are very close indeed to the
proton drip line. However, contrary to the situation near
the neutron drip line and due to the Coulomb barrier, their
description in a mean-field-plus-correlations approach is not
marred by the necessity of dealing accurately with the
treatment of the continuum. If one is interested in specific
properties of such nuclides and their neighbors (such as the
Wigner term), it is desirable to use a description of pairing
correlations that is not blurred by fluctuations of the neutron
and proton numbers as is the case when using Bogoliubov
quasiparticle vacua as ansatz for the ground-state (GS) wave
functions.

In this article we are concerned with the mean-field and
beyond-mean-field descriptions of well-deformed even-even
N = Z nuclei lying between the doubly magic nuclei 56Ni
and 100Sn. To do so we use various Skyrme effective interac-
tions (SIII [1] and SLy4 [2]) supplemented by two different
treatments of the pairing correlations: à la Bogoliubov-
Valatin (BCS wave function) and within the particle-number
conserving approach dubbed as the higher Tamm-Dancoff

approximation (HTDA) [3], in both cases for like-particle
pairing correlations. Then we add in the latter treatment
proton-neutron pairing correlations in T = 0 or T = 1 isospin
channels.

In view of its widespread use for several decades, the BCS
approach for like-particle pairing properties is not reviewed
here. Only some practical details (among which the choice
of the relevant average matrix elements is of paramount
importance) are discussed. In contrast the HTDA approach
is less widely known and is briefly described here.

The HTDA approach may be presented as a treatment
of correlations in a highly truncated shell model whose
practicability and efficiency rely on the fast convergence
of the particle-hole expansion. This has been shown to
be realized upon choosing for the particle-hole quasi-particle
vacuum a relevant Hartree-Fock (HF) solution associated
self-consistently with the one-body reduced density matrix of
the correlated wave function. The HTDA approach was applied
for the first time to describe the ground and isomeric states in
178Hf [3] and then odd nuclei and most general isomeric states
[4]. A Routhian-HTDA scheme was then proposed to desc-
ribe the superdeformed yrast bands in the A ∼ 190 region [5].
A preliminary HTDA study of the GS pairing correlations in
64Ge, including isovector and isoscalar residual interactions,
was presented in Ref. [6]. Here the HTDA approach is applied
for the first time in systematic calculations of the properties of
medium-mass, proton-rich nuclei.

The outline of the present work is the following. In
Sec. II we describe the theoretical background (mostly the
HTDA formalism) and explain at length in Sec. III how the
calculations are carried out in practice, especially regarding
the pairing strength fitting strategy in both BCS and HTDA
approaches and the optimization of the harmonic-oscillator
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basis parameters in the HFBCS calculations. The presentation
and discussion of the obtained results is organized in three
steps. First, in Sec. IV, we focus on the GS properties obtained
within the HFBCS approach and, in Sec. V, on the results
obtained within the HTDA formalism without proton-neutron
coupling in the particle-particle channel. Then we carry out in
Sec. VI a comparative study of pairing properties depending
on the pairing treatment and the fitting scheme. Finally we
extend in Sec. VII the HTDA calculations so as to include
the full isovector and isoscalar pairing interaction. The main
conclusions of our study are drawn in Sec. VIII.

II. THEORETICAL BACKGROUND

In the HFBCS approach we use the Skyrme effective
interaction in the particle-hole channel and the seniority force
in the particle-particle channel and expand the single-particle
wave functions in the cylindrical harmonic-oscillator basis, as
detailed in Ref. [7].

We focus in the remainder of this section on the HTDA ap-
proach. Its purpose is to describe various nucleon correlations
(such as pairing and RPA) on the same footing. Among the
many particle-hole excitations on a Slater determinant vacuum
(noted here |�0〉1), pair excitations around the Fermi surface
play an essential role. By construction the HTDA approach is
an extension of the Tamm-Dancoff approximation to higher
order of particle-hole excitations, so it may be regarded as
a truncated shell model. The rapidity of the convergence of
the particle-hole expansion, and thus the tractability of the
approach, depends on the realistic character of |�0〉. A fast
convergence is expected to be reached when the quasi-vacuum
is defined self-consistently in such a way that some many-body
effects of the correlations are already taken into account at the
mean-field level.

Let us consider the effective Hamiltonian

Ĥ = K̂ + V̂ , (1)

where K̂ denotes the kinetic energy operator and V̂ an effective
interaction. For the wave function |�0〉 we choose the HF
solution, i.e., the eigenstate of the Hamiltonian Ĥ HF defined
by

Ĥ HF = K̂ + V̂ HF, (2)

where the potential V̂ HF denotes the one-body reduction of V̂

for |�0〉 and is self-consistently obtained from the many-body
reduced density matrix ρ̂ of the correlated solution |�〉 for the
desired number of particles. We have thus

Ĥ HF|�0〉 = E0|�0〉, (3)

where E0 is the associated eigenenergy. This approach also
allows to include various one-body constraints (on the nuclear
deformation for example) in a simple way because the
constraint operator can be absorbed in the definition of Ĥ HF.

1For the sake of clarity in the notation, we reserve the letter � for a
Slater determinant and the letter � for a correlated state.

In addition we assume here that the GS solutions possess the
time-reversal axial and parity symmetries.

The quasi-vacuum |�0〉 may now serve to construct an
orthonormal many-body basis in which we diagonalize the
Hamiltonian Ĥ . In principle to build this basis we should
include, in addition to |�0〉 = |�τ

0〉 ⊗ |�τ ′
0 〉, the particle-hole

excitations of all orders (from 1 to the particle number) created
on |�0〉, noted generically |�n〉 for n-particle-n-hole (np-nh)
excitations. The total GS wave function |�〉 = |�τ 〉 ⊗ |�τ ′ 〉
can therefore be decomposed in the following way

|�〉 = χ00

∣∣�τ
0

〉 ⊗ ∣∣∣�τ ′
0

〉
+

∑
(1p−1h)τ

χ10

∣∣�τ
1

〉 ⊗ ∣∣∣�τ ′
0

〉

+
∑

(1p−1h)τ ′

χ01

∣∣�τ
0

〉⊗∣∣∣�τ ′
1

〉
+

∑
(1p−1h)τ
(1p−1h)

τ ′

χ11

∣∣�τ
1

〉⊗∣∣∣�τ ′
1

〉

+
∑

(2p−2h)τ

χ20

∣∣�τ
2

〉 ⊗ ∣∣∣�τ ′
0

〉

+
∑

(2p−2h)τ ′

χ02

∣∣�τ
0

〉 ⊗ ∣∣∣�τ ′
2

〉
,+ · · · (4)

where τ and τ ′ denote two different charge states. However,
practical calculations require to truncate this expansion. Based
on the former studies in the HTDA framework [3,4,6], we
may assume that the components of the pair-excitation type
dominate in the GS solution. The set of products of Slater
determinants |�τ

i 〉 ⊗ |�τ ′
j 〉 is an orthonormal basis of the

physical space accessible to a nucleus having N neutrons and
Z protons. Assuming time-reversal symmetry, the coefficients
χi in Eq. (4) are real and, if we take |�〉 normalized to unity,
obey the relation ∑

i

χ2
i = 1. (5)

It can be easily shown that the expression (4) of |�〉
ensures that |�〉 is an eigenstate of the particle-number
operator: N̂ |�〉 = A|�〉, with A = N + Z. Finally, to obtain
the correlated ground state we diagonalize the Hamiltonian
defined in Eq. (1) in the retained many-body basis.

Now, let us rewrite the Hamiltonian Ĥ as

Ĥ = 〈�0|Ĥ |�0〉 + Ĥ IQP + V̂ res, (6)

where the independent quasiparticle Hamiltonian Ĥ IQP and
the residual interaction V̂ res are defined by

Ĥ IQP = Ĥ HF − 〈�0|Ĥ HF|�0〉, (7)

V̂ res = V̂ − V̂ HF + 〈�0|V̂ |�0〉. (8)

Because 〈�0|V̂ HF|�0〉 = 2 〈�0|V̂ |�0〉, these definitions give
a vanishing expectation value of Ĥ IQP and V̂ res for the HF
solution |�0〉. The independent quasiparticle Hamiltonian can
also be expressed as

Ĥ IQP =
∑

k

ξkη
†
kηk, (9)

where ξk is equal to the energy εk of the single-particle state
|k〉 if |k〉 is a particle state with respect to |�τ

0〉 or equal
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to −εk if |k〉 is a hole state. In Eq. (9), η
†
k is the creation

operator a
†
k associated with |k〉 if |k〉 is a particle state or

the annihilation operator ak if |k〉 is a hole state. The matrix
element of Ĥ between two Slater determinants |�i〉 and |�j 〉
of the multiparticle multihole basis therefore takes the form

〈�i |Ĥ |�j 〉 = δij

(
〈�0|Ĥ HF|�0〉 +

∑
τ

E
i(τ )
ph

)

+〈�i |V̂ res|�j 〉, (10)

where E
i(τ )
ph is the particle-hole excitation energy associated

with |�τ 〉
i and calculated with respect to the vacuum |�τ

0〉 as

E
i(τ )
ph =

∑
k∈|�τ

i 〉
ξk. (11)

where the sum runs over all the single-particle states |k〉 con-
tained in |�τ

i 〉. Because the residual interaction contains only
one- and two-body operators, the matrix element 〈�i |V̂ res|�j 〉
vanishes when |�i〉 and |�j 〉 differ by particle-hole excitations
of order three or higher. It can be calculated in terms of
two-body matrix elements of V̂ by application of the Wick
theorem generalized to quasi-vacua as shown in Ref. [4].

III. CALCULATION PROCEDURE

Because we are in a region of nuclear deformation instabil-
ity (shape coexistence) our final results can be sensitive to the
choice of the effective interaction and to the pairing treatment.
This is why two parametrizations of the phenomenological
Skyrme interaction, namely the SIII and SLy4 ones are used.
In the particle-particle channel a simple seniority ansatz
is adopted in the BCS calculations. It is specified by the
value G of the constant pairing matrix elements between
any single-particle states in the canonical basis retained in
this part of the calculations. The value of G is adjusted to
reproduce the so-called empirical pairing gaps evaluated in
the three-point [8] or a five-point formula [9]. More precisely,
the neutron gap �(3)

n in the three-point formula is the arithmetic
mean of the gap values calculated for the neighbor odd
nuclei with N − 1 and N + 1 neutrons (with the same
proton number Z). The proton gap �(3)

p is calculated in a
similar manner. The differences between the three-point and
five-point gaps deduced experimentally are large in this region
and so are the experimental errors for nuclear masses. In
addition the meaning of the pairing gap derived from finite
mass differences is no longer clear in the N = Z case.
Therefore, we find it necessary to make a comparison of the
results obtained in the two cases which represent stronger
(five-point fit) and somewhat weaker (three-point fit) pairing
regimes. We describe in the next subsection the fitting
procedure for G as well as the harmonic-oscillator (HO) basis
parameters optimization carried out in the HFBCS framework.
The obtained basis parameters are then used in the HTDA
calculations assuming that they do not differ significantly from
the values that would result from an optimization in the HTDA
approach.

Once the solutions corresponding to the equilibrium defor-
mations determined in the HFBCS calculations are found, we
perform perturbative HTDA calculations (one diagonalization
of the HTDA matrix is performed on top of the HFBCS
calculations) without any constraints on the deformation.
Because we are interested in the GS correlations of even-
even nuclei, the many-body basis includes here only pair
excitations, i.e., excitations where nucleons occupying twofold
Kramer-degenerate hole levels are scattered into Kramer-
degenerate particle levels. As for the residual interaction in
the HTDA approach, we choose a δ force whose strength
is adjusted as explained in subsection III B. In this way, we
are clearly not deducing the residual interaction from the
effective Skyrme interaction in use in the Hartree–Fock part
of the approach. As is well known, there is indeed no reason
why the latter, which has not been fitted for that purpose,
should provide the correct behavior of particle-particle and
hole-hole matrix elements. Our purpose is rather to take stock
of the realistic character of the kind of interactions (Skyrme
and delta) in use in HFBCS calculations while improving this
approach quite substantially by ensuring the particle number
conservation. It is worth emphasizing here that, if the exact
residual interaction was expanded in multipoles, then the
Coulomb part would be included. However, in practice, in our
calculations as usual, high multipoles are mocked up by a delta
interaction and a corrective factor of the strength for protons is
introduced to take the Coulomb contribution into account. For
the time being the low-multipole part of the full expansion,
giving rise mostly to RPA correlations, is not included.

A. Pairing strength adjustment in the HFBCS approach

We shall follow here the steps of Bonche and collaborators
[10] and apply the BCS approximation with the seniority
pairing interaction. For the sake of defining our notation
and for completeness, we recall the relevant expressions
involved, omitting the isospin τ index. First, the seniority
antisymmetrized matrix element is given by

Ṽ klk′l′ = −Gfkfk′δlkδl′k′ (12)

with the smooth cut-off factor

fk = 1

1 + exp[(εk − εF − �ε)/µ]
. (13)

Here as well as in the HTDA case, the Fermi level εF is defined
by

εF = 1
2 (εn + εn+1), (14)

where εn and εn+1 denote the energies of the last occupied
and the first empty single-particle state, respectively (in a pure
HF picture), and �ε and µ denote the cut-off energy and the
diffuseness parameters. The pairing gap can be expressed as

�k = fk �, (15)
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where the state independent gap � is given by

� = G

2

∑
k>0

f 2
k �

E
(k)
qp

(16)

with the quasiparticle energy E(k)
qp defined by

E(k)
qp =

√
(εk − λ)2 + f 2

k �2. (17)

In Eq. (16), the sum runs over all the pairs of Kramer
degenerate single-particle states, but in fact the cut-off factor
fk suppresses the contributions of single-particle states lying
at least about �ε +µ above the Fermi level. From the average
particle number conservation

2
∑
k>0

v2
k = N, (18)

we can deduce the expression of the chemical potential λ

λ =
N −

∑
k>0

(
1 − εk

E
(k)
qp

)
∑

k>0

1
E

(k)
qp

. (19)

Finally the pairing energy takes here the simple form

Epair = −�2

G
. (20)

We now discuss the determination of the pairing strengths
G

(τ )
0 related to the actual matrix elements G(τ ) through the

following prescription

G(τ ) = G
(τ )
0

11 + Nτ

. (21)

First we approximately take into account the Coulomb re-
duction of proton pairing by assuming that, as the Hartree-
Fock-Bogoliubov (HFB) calculations with the Gogny D1S
interaction tend to indicate [11]:

G
(p)
0 = 0.9 G

(n)
0 . (22)

Then, for a given parametrization of the Skyrme force and
a given set of basis parameters (N0, b, and q in the notation
of Ref. [7]), we determine the GS deformation β2 of each
nucleus using a reasonable initial G value, assumed to be
the same for all the nuclei under study. Then we deduce
G = G

(n)
0 from a least-square fit to the experimental minimal

quasiparticle energies through the three-point [8] and five-
point [9] formulas, reported in Table I, and using the same
single-particle spectrum (the one for the charge state τ

corresponding to the converged solution at β2). We thus have
to minimize the following function

χ2(G) = 1

2 Nnucl

Nnucl∑
i=1

∑
τ=n,p

(
[Eτ (G)]i − [

�(exp)
τ

]
i

)2
, (23)

where Eτ denotes the lowest quasiparticle energy of the
nucleons of type τ and i is an index running over the Nnucl

nuclei included in the fit. With the obtained G value, we
determine the new GS deformation of each nucleus and
minimize again χ2(G) to find a new G value. This procedure is

TABLE I. Empirical pairing gaps deduced from the odd-even
mass differences (using the Atomic Mass Evaluation AME2003 [12])
in five-point [9] and three-point [8] formulae, except for �(5)

p (80Zr)
for which we use the nuclear mass calculated by Möller and Nix
[13]. The standard estimate of the pairing gap 12/

√
A is given for

comparison. In the last column the experimental binding energy per
nucleon is also indicated. All values are in MeV.

Nucleus �(5)
n �(5)

p �(3)
n �(3)

p 12/
√

A E/A

64Ge 2.07 1.85 1.48 1.14 1.50 8.5294
68Se 2.24 2.01 1.66 1.37 1.45 8.4773
72Kr 1.72 1.73 1.24 1.10 1.41 8.4293
76Sr 1.46 1.635 0.88 1.07 1.37 8.3938
80Zr 1.94 1.57 1.31 0.99 1.34 8.3741

repeated until the simultaneous convergence of G and the GS
deformations β

(i)
2 is reached. In practice, it is necessary to scan

a wide range of deformations to find the lowest local minimum
of the deformation energy curve. The latter is determined using
the basis parameters b = √

mω0/h̄, with ω0 = (ω2
⊥ωz)1/3, and

q = ω⊥/ωz deduced from an approximate expression for a
HO potential (see Ref. [7]). This approximate optimization
requires only the knowledge of b0, the optimized value of
b(q) for a spherical solution. We carry out this study with
b0 = 0.505, which is approximately the actual optimal value
for the considered nuclei. By varying the basis parameters in
the calculated ground states of all nuclei, we have checked
that the optimal G value does not change significantly. The
obtained values of G are reported in Table II.

B. Pairing strength adjustment in the HTDA approach

As mentioned earlier, in the HTDA calculations we use
a δ force in the particle-particle channel. Both the coupling
constant and the cut-off parameter are necessary to define
fully the interaction. In our approach it is then necessary to fix
the strength of this interaction and this is done by adjusting
it so as to reproduce physical quantities for the considered
nuclei, e.g., the phenomenological gaps. For that purpose,
assuming that the appearance of the pairing gap is related
to the breaking of the Cooper pair of lowest energy, we block
in the HTDA calculations the single-particle level (neutron
or proton) closest to the Fermi energy. Then, we adopt the
difference between the expectation value of V̂ res in a normal
(n) and blocked (b) calculations as a proper measure of the
pairing correlations that can be compared to the experimental
odd-even mass differences. Namely we define

� = (
E(n) − E

(n)
IQP

) − (
E(b) − E

(b)
IQP

)
, (24)

where E = 〈�|Ĥ |�〉 and EIQP = 〈�|Ĥ IQP|�〉.

IV. RESULTS OF THE HARTREE–FOCK–BCS
CALCULATIONS

The five selected well-deformed N = Z nuclei are 64Ge,
68Se, 72Kr, 76Sr, and 80Zr. For one of the two considered
effective interactions (SIII) we use several pairing windows
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TABLE II. Optimal G values and corresponding
root-mean-square error on the experimental gaps σ�

(in MeV) obtained with the SIII and SLy4 Skyrme
interactions using the three-point and the five-point for-
mulae with �ε = 6 MeV, µ = 0.2 MeV, and N0 = 10.

Force Formula Gopt σ�

SIII Three-point 17.7 0.120
SIII Five-point 20.6 0.216
SLy4 Three-point 17.2 0.194
SLy4 Five-point 19.9 0.260

with different values of �ε (6, 8, and 10 MeV) and µ (0.2
and 0.5 MeV). In the fitting process, whereas the choice of �ε

is rather unimportant in the considered range, we find that it
is not the case for µ. For instance, with µ = 0.5 MeV and
�ε = 6 MeV, the iterative procedure to adjust of G undergoes
oscillations preventing to reach convergence, contrary to all
the other pairing windows considered here. We thus retain for
further calculations the values �ε = 6 MeV and µ = 0.2 MeV
stemming as the best choice from the fit to the five-point
experimental gaps. The optimal pairing strengths Gopt for the
different Skyrme interactions and fitting schemes are displayed
in Table II together with the root-mean-square error on the
experimental quasiparticle energies σ�

σ� =
√

χ2(Gopt). (25)

These adjustments have been performed with a basis size
defined by N0 = 10. The same adjustment procedure has also
been carried out with a much larger HO basis (N0 = 16) in

the illustrative case of the pairing window parameters �ε =
6 MeV and µ = 0.2 MeV. The optimal value of G and the
associated root-mean-square error turns out to be very close
to that obtained with N0 = 10. This justifies the choice of
N0 = 10.

It is worth adding that the authors of Ref. [10] performed
similar calculations in the same mass region (including for
76Sr and 80Zr) with the SIII Skyrme interaction and the
following set of parameters for the seniority force: �ε =
5 MeV, µ = 0.5 MeV, G

(n)
0 = 13.5 MeV, and G

(p)
0 =

16.5 MeV. The pairing strengths were determined from the
experimental quasiparticle energies extracted in the same way
as we did from the experimental binding energies.

With the optimal values of the pairing strength of Table II
we calculate several GS properties related to the nuclear
size (through the root-mean-square mass radius rm) and
deformation (through β2 and the mass quadrupole Q20 and
hexadecapole Q40 moments), the binding energy per nucleon
(E/A) as well as pairing quantities (the BCS pairing gaps
�n and �p, the chemical potentials λn and λp, and the
minimal quasiparticle energies En and Ep). The definitions
of β2, rm,Q20, and Q40 can be found in the Appendix. The
obtained results are reported in Table III. The most striking
difference between the two Skyrme interactions is that they
yield very different GS deformations for 80Zr (strongly prolate
with SIII, spherical with SLy4). Moreover the GS deformation
of 76Sr drastically depends on the pairing strength when using
the SLy4 interaction.

Because the GS deformations calculated with the SIII
interaction are in agreement with the experimental data,
especially for 76Sr [14] and 80Zr [15], we perform HTDA
calculations only with this interaction.

TABLE III. Ground-state properties obtained with the SIII and SLy4 Skyrme interactions and the pairing strengths obtained through the
three-point and the five-point formulas adjustment procedure. All the quantities in the columns at the right of Q40 are expressed in MeV.

Force Formula Nucleus β2 rm (fm) Q20 (b) Q40 (b2) E/A �n �p λn λp En Ep

SIII 3-point 64Ge 0.200 3.917 2.651 0.0097 8.4216 1.375 1.138 −12.642 −2.713 1.376 1.140
SIII 3-point 68Se −0.267 4.015 −3.324 0.0535 8.3698 1.173 0.891 −13.040 −2.760 1.502 1.222
SIII 3-point 72Kr −0.340 4.117 −4.550 0.1038 8.3229 0.966 0.579 −13.057 −2.479 1.299 1.081
SIII 3-point 76Sr 0.390 4.238 7.498 0.2353 8.3024 0.425 0.000 −13.653 −2.584 1.132 0.971
SIII 3-point 80Zr 0.401 4.318 8.441 0.1879 8.2592 0.967 0.623 −13.131 −1.586 1.185 0.965

SIII 5-point 64Ge 0.191 3.918 2.515 0.0141 8.4485 2.035 1.690 −12.775 −2.830 2.036 1.690
SIII 5-point 68Se −0.244 4.012 −3.062 0.0460 8.3967 2.074 1.709 −13.119 −2.807 2.238 1.876
SIII 5-point 72Kr −0.259 4.089 −3.546 0.0544 8.3472 2.064 1.710 −13.228 −2.477 2.065 1.712
SIII 5-point 76Sr 0.381 4.234 7.301 0.2133 8.3087 1.380 0.947 −13.537 −2.515 1.683 1.330
SIII 5-point 80Zr 0.384 4.308 8.031 0.1995 8.2741 1.766 1.387 −13.256 −1.685 1.828 1.495

SLy4 3-point 64Ge 0.166 3.887 2.141 0.0010 8.4719 1.162 0.978 −12.687 −2.831 1.162 0.979
SLy4 3-point 68Se −0.256 3.996 −3.172 0.0344 8.4347 0.672 0.133 −12.984 −2.768 1.551 1.322
SLy4 3-point 72Kr −0.169 4.047 −2.359 −0.0038 8.3741 1.275 1.058 −13.237 −2.541 1.295 1.075
SLy4 3-point 76Sr 0.392 4.218 7.470 0.2380 8.3402 0.000 0.000 −13.627 −2.597 1.226 1.149
SLy4 3-point 80Zr 0.000 4.158 0.000 0.0000 8.3377 0.461 0.000 −13.911 −2.352 1.458 1.238

SLy4 5-point 64Ge 0.150 3.887 1.922 0.0035 8.4908 1.687 1.426 −12.764 −2.907 1.693 1.430
SLy4 5-point 68Se −0.228 3.992 −2.844 0.0288 8.4489 1.736 1.376 −13.064 −2.823 2.153 1.837
SLy4 5-point 72Kr −0.164 4.048 −2.297 −0.0010 8.3958 1.839 1.533 −13.296 −2.608 1.852 1.543
SLy4 5-point 76Sr 0.000 4.097 0.001 0.0000 8.3614 1.805 1.530 −13.952 −2.863 1.867 1.572
SLy4 5-point 80Zr 0.000 4.158 0.000 0.000 8.3450 1.365 1.065 −13.931 −2.383 1.971 1.655
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V. RESULTS OF HTDA CALCULATIONS

A. Convergence of the HTDA solutions

In the HTDA calculations two types of truncation schemes
need to be defined. The first one is concerned with the
maximal order in the many-particle many-hole basis, the
second one with the single-particle states from which this
basis is built. In the latter case, we are facing thus a situation
met in customary BCS calculations. Typically, we limit our
single-particle subspace to the configuration-space window
defined as

|εk − εF | � �ε, (26)

where εF is the Fermi energy and �ε is a cut-off energy.
The actual value of �ε is chosen such that single-particle
states left out would not contribute significantly except by
a renormalization of quantities measuring the intensity of
pairing correlations (such as the correlation energy defined
below). As already used in HTDA calculations for the 64Ge
nucleus [6], we retain here �ε = 12 MeV for both charge
states. As in the BCS treatment, the two-body matrix elements
are multiplied by the smooth cut-off factor of Eq. (13) with
�ε = 12 MeV and µ = 0.2.

A detailed study of the particle-hole expansion of the HTDA
ground state was performed in Ref. [16] in the picket-fence
model with 8 or 16 levels filled with 8 or 16 particles,
respectively. The authors obtained the convergence of GS
solutions toward the exact solution of the Richardson model
for a 6p-6h space in the standard nuclear pairing regime.
Nevertheless, it may be expected that the realistic character of
the HF vacuum calculated with a realistic effective interaction
ensures a faster convergence of the particle-hole expansion.
This is what the studies of Refs. [3,6] using a 4p-4h space tend
to indicate.

Within the above truncation scheme for the configuration-
space window obtained in the HFBCS calculations with the
SIII force and G = 20.6 MeV, we study the convergence of
the HTDA solutions as a function of the many-body basis size.
The three quantities under consideration are (i) the correlation
energy defined as the difference between the expectation
values of the Hamilton operator evaluated in the correlated
and uncorrelated states

Ecorr = 〈�|Ĥ |�〉 − 〈�0|Ĥ |�0〉, (27)

(ii) the occupation probabilities v2
i that are defined in the

HTDA approach as the diagonal matrix element of the one-
body density ρ̂ in the single-particle basis

v2
i = ρii = 〈�|a†

i ai |�〉, (28)

where a
†
i and ai are the creation and annihilation operators

associated with the single-particle state |i〉, respectively, and
(iii) the mass quadrupole moment (see the Appendix for
definitions). Because the one-body density is not diagonal in
the HF basis a transformation to the canonical basis is done to
obtain the v2

i values.
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FIG. 1. Convergence of the total correlation energy for 72Kr as a
function of the pairing strength V0. The percentage difference between
correlation energies obtained in many-body spaces that differ by 2p-
2h are shown.

The percentage difference of Ecorr between solutions
obtained in 2p-2h, 4p-4h, and 6p-6h spaces of pair excitations
are shown for 72Kr as a function of the strength V0 of the
residual δ interaction in Fig. 1. The difference between 2p-2h
and 4p-4h solutions is found to be very large and increases
nearly linearly with the pairing strength V0. The discrepancy
between 4p-4h and 6p-6h solutions reaches 5% in the strong
pairing region. A similar behavior is found for the other nuclei.

The occupation probabilities of single-particle levels ob-
tained in the different spaces and with different V0 values are
shown in Fig. 2 for 76Sr. There are no conspicuous differences
between the various solutions except in the stronger pairing
case, where the difference between the v2

i values in 2p-2h and
larger spaces becomes substantial. Therefore, the calculated
quantities like quadrupole moments and radii converge quickly
with the maximal order of particle-hole excitations.

In Tables IV and V, the values of correlation energies and
quadrupole moments obtained in 2p-2h, 4p-4h, and 6p-6h
spaces are given for all nuclei and for two realistic values of the
strength of the residual interaction, namely V0 = 400 MeVfm3

and V0 = 320 MeV fm3 (see the next subsection for details).
The largest discrepancy between 4p-4h and 6p-6h results
occurs for 72Kr with V0 = 400 MeV fm3, where the difference
for the correlation energy reaches 4.6%. With the pairing
strength V0 = 320 MeV fm3 the discrepancies for Ecorr amount
on average to 1%. For all five nuclei the differences between
the values of the quadrupole moments obtained in 4p-4h and
6p-6h calculations are negligible.

These results suggest that it is reasonable to truncate the
particle-hole expansion at order 4. As a matter of fact, this
allows for a satisfactory accuracy of the calculations at a rather
low cost in terms of computation time. A typical number of
many-body configurations to be handled for each charge state
is about 5000, whereas it may rise typically up to 50,000 or
higher when including 6p-6h excitations. It is worth adding
here that in these calculations no additional cutoff on the
maximal particle-hole energy of the scattered pairs is applied.
The addition of such a cutoff for the particle-hole excitation
energy would yield an even faster convergence without losing
any substantial accuracy [16] and may be one way to handle
calculations of higher particle-hole excitation order.
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FIG. 2. Convergence of the occupation probability v2
i with enlarging of the particle-hole excitations space for neutrons and protons in 76Sr.

The cases of three different intensities V0 of pairing interaction are shown.

B. Adjustment of the strength of the residual δ-interaction

The fit of the strength of the δ interaction in the HTDA ap-
proach is performed in the space of up to two-pair excitations.
Two adjustment schemes are considered: one where the same
strength is retained for neutrons (V0n) and protons (V0p), the
other one where V0p is reduced by 10% with respect to V0n to
account for the Coulomb anti-pairing effect as in the HFBCS
calculations.

In Table VI we present the optimal V0p values, noted V
opt

0 ,
and the associated gap root-mean-square deviations σ� in each
adjustment scheme and using the three-point and five-point
formulas. Because the reduction of V

opt
0 slightly improves the

quality of the fit, we choose this adjustment scheme in further
HTDA calculations.

C. Ground-state properties obtained within the
HTDA approach

As mentioned at the end of Sec. IV, the HTDA calculations
are performed from the HFBCS solutions obtained with the

SIII Skyrme interaction only and two sets of values of the
pairing-strength adjusted to experimental data through the
three-point and five-point formulas. The results for the GS
properties are presented in Tables VII and VIII when using the
three-point and five-point formulas, respectively.

Because we are considering here only the equilibrium
deformations as determined by the HFBCS calculations,
HTDA calculations do not affect much the bulk observables,
with the exception of the binding energy and related quantities
such as the pairing gaps. The former is indeed much lower (by
2 to 4 MeV) for the HTDA solutions than for the HFBCS ones.
Regardless of the adjustment scheme for the pairing strength,
the binding energy calculated in the HTDA approach agrees
better with the experimental values (see Table I) than in the
HFBCS approach.

VI. PAIRING PROPERTIES IN BCS AND
HTDA APPROACHES

To evaluate the amount of pairing correlations one might
think of considering the correlation energy, defined as the

TABLE IV. Correlation energy and mass quadrupole moments obtained in
the calculations using 2p-2h, 4p-4h, and 6p-6h spaces with the δ-force strength
V0 = 400 MeV fm3.

Nucleus Ecorr (MeV) Q20 (b)

2p-2h 4p-4h 6p-6h 2p-2h 4p-4h 6p-6h

64Ge −4.763 −6.383 −6.556 2.670 2.645 2.641
68Se −4.127 −5.060 −5.205 −3.301 −3.306 −3.306
72Kr −4.306 −5.348 −5.594 −4.575 −4.528 −4.519
76Sr −4.010 −4.996 −5.042 7.493 7.482 7.480
80Zr −4.077 −5.046 −5.228 8.453 8.449 8.448
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TABLE V. Same as in Table IV with the strength V0 = 320 MeV fm3 of the
δ force.

Nucleus Ecorr (MeV) Q20 (b)

2p-2h 4p-4h 6p-6h 2p-2h 4p-4h 6p-6h

64Ge −2.992 −3.796 −3.870 2.676 2.656 2.655
68Se −2.404 −2.798 −2.842 −3.301 −3.304 −3.304
72Kr −2.558 −2.936 −3.026 −4.595 −4.574 −4.571
76Sr −2.493 −2.696 −2.758 7.498 7.493 7.493
80Zr −2.421 −2.768 −2.825 8.456 8.456 8.456

difference between the expectation values of the Hamiltonian
in the correlated and uncorrelated (HF vacuum) solutions.
However, such a correlation energy has no realistic character
in practice, in both the HFBCS and HTDA approaches. Indeed,
there is no consistency between the interaction used to generate
the mean field and the one building up pairing correlations.
Instead, a quantity only related to the residual interaction
would be more significant in this respect. This is the case of the
so-called condensation energy Econd. In the HFBCS approach,
Econd is proportional to the trace of the product of the abnormal
density and the pairing field. In the HTDA approach, we may
define it by

Econd = Ecorr −
∑

i

χ2
i Ei

p−h, (29)

where the χ2
i factors are the probability of the configuration i

whose unperturbed particle-hole energy is Ei
ph.

Another variable that may shed light on the amount of
pair correlations is the trace of the positive-definite operator

ρ̂
1
2 (1− ρ̂)

1
2 . Indeed, this quantity expresses the nonidempotent

character of the density operator ρ̂ and is thus related to
correlations. As well known in the BCS case, it is related to
the abnormal density. Using the occupation factor vi defined

in Eq. (28), we can write the trace of the operator ρ̂
1
2 (1 − ρ̂)

1
2

simply as the sum
∑

i uivi , with ui =
√

1 − v2
i .

These two measures of pairing correlations calculated in
the HFBCS and HTDA approaches (with the SIII interaction
only) are compared separately for neutrons and protons
in Tables IX and X, respectively. The most striking feature is
the rather tiny variations in the HTDA case from one nucleus
to another. This is due to the resilience of the HTDA solutions
to react on variations of the level density at the Fermi surface.

TABLE VI. Optimal values V
opt

0 (in MeV fm3) and
corresponding root-mean-square errors σ� (in MeV) on
pairing gaps obtained with the SIII Skyrme interaction using
the three-point and the five-point formulae.

Formula V0p = V0n V0p = 0.9V0n

V
opt

0 σ� V
opt

0 σ�

Three-point 320 0.278 340 0.264
Five-point 400 0.285 420 0.249

In contrast, it is overemphasized in the HFBCS calculations.
One example of this is to be found for the protons distribution
in 76Sr, where in the HFBCS calculations with a G value fitted
to the three-point pairing indicator, no superfluid solution is
found (see also Table III for the values of pairing gaps).

VII. PROTON-NEUTRON PAIRING IN THE
HTDA APPROACH

In spite of the wide recent theoretical interest paid to
the proton-neutron pairing mode, it is still uncertain what is
the exact importance of its T = 0 component. Moreover, its
connection with the Wigner energy is not completely clarified
and there are a lot of controversies about other signatures.
Because the T = 0 pairing is neglected in all fits of the effe-
ctive interactions in use to calculate the mean field, this
missing contribution may cause some artificial bias in the
outcome. In the calculations of masses that make use of
a macroscopic energy (liquid-drop models), this problem is
circumvented by adding an ad hoc Wigner term. It is, however,
highly predictable that the inclusion of proton-neutron pairing
correlations within a HFB approach would lead to novel
features of the mean field, as for instance different deforma-
tion properties because the usual spin-triplet (T = 0) pairing
mode would tend to break the axial symmetry. However, be-
cause we do not carry out self-consistent HTDA calculations,
the mean field itself is not affected by the presence of these
proton-neutron correlations.

Expectation values of various observables (such as the
radii and quadrupole moments) specifying the correlated
wave function have been calculated from solutions obtained
after diagonalization of a full isoscalar and isovector residual
interaction. For the reasons mentioned in the previous para-
graph, these quantities are not expected to change much in
this perturbative treatment. In contrast, the change in energy
brought in by the consideration of a full T = 0 part of the
interaction is expected to be more significant. In the HTDA
framework as applied here, and as far as relative variations
are concerned, the correlation energy defined in Eq. (27) is
relevant.

The calculations reported in this section are performed
in the 4p-4h space of pair excitations containing all new
configurations that result from the coupling of neutron and
proton states to produce the 0+ ground state (including aligned
proton-neutron pairs). The proton-neutron configurations
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TABLE VII. Ground-state properties within the HTDA framework with the SIII force and the pairing
strength obtained through the three-point formula adjustment procedure. The mass root-mean-square
radius rm, quadrupole moment and hexadecapole moment are given in fm, barns (b) and b2, respectively,
whereas the binding energy per nucleon E/A and the pairing gaps are expressed in MeV.

Nucleus β2 rm Q20 Q40 E/A �n �p

64Ge 0.201 3.917 2.661 0.0076 8.4340 1.801 1.698
68Se −0.267 4.014 −3.315 0.0530 8.4004 1.338 1.324
72Kr −0.341 4.120 −4.575 0.1059 8.3577 1.164 1.152
76Sr 0.389 4.240 7.494 0.2344 8.3344 2.003 1.524
80Zr 0.400 4.320 8.444 0.1830 8.2863 1.216 1.011

TABLE VIII. Same as Table VII using the five-point formula adjustment procedure.

Nucleus β2 rm Q20 Q40 E/A �n �p

64Ge 0.200 3.919 2.651 0.0089 8.4723 2.113 2.011
68Se −0.266 4.017 −3.318 0.0536 8.4326 2.023 2.006
72Kr −0.337 4.121 −4.532 0.1027 8.3898 1.718 1.714
76Sr 0.382 4.242 7.483 0.2330 8.3620 2.003 1.524
80Zr 0.400 4.321 8.436 0.1879 8.3138 1.513 1.323

TABLE IX. Neutron condensation energies and diffuseness of the
neutron Fermi surface obtained in the HFBCS and HTDA approaches. The
results with SIII force and two fits of the strength of the pairing interaction
are given in each case.

Formula Nucleus HFBCS HTDA

Econd
∑

i uivi Econd
∑

i uivi

Three-point 64Ge −4.80 3.4 −5.27 3.2
Three-point 68Se −3.50 3.0 −4.55 2.8
Three-point 72Kr −2.50 2.6 −4.68 2.9
Three-point 76Sr −0.50 1.2 −4.33 2.7
Three-point 80Zr −2.68 2.8 −4.61 3.0
Five-point 64Ge −9.04 4.3 −8.31 3.7
Five-point 68Se −9.95 4.6 −7.85 3.6
Five-point 72Kr −9.78 4.7 −8.16 3.7
Five-point 76Sr −4.53 3.3 −7.70 3.6
Five-point 80Zr −7.75 4.4 −8.20 3.9

TABLE X. Same as in Table IX for protons.

Formula Nucleus HFBCS HTDA

Econd
∑

i uivi Econd
∑

i uivi

Three-point 64Ge −3.55 3.1 −3.90 2.9
Three-point 68Se −2.22 2.5 −3.15 2.4
Three-point 72Kr −1.00 1.7 −3.40 2.6
Three-point 76Sr −0.00 0.0 −2.94 2.3
Three-point 80Zr −1.42 2.1 −3.01 2.4
Five-point 64Ge −6.73 3.9 −6.12 3.4
Five-point 68Se −7.34 4.2 −5.58 3.2
Five-point 72Kr −7.46 4.3 −6.11 3.4
Five-point 76Sr −2.36 2.5 −5.33 3.1
Five-point 80Zr −5.70 4.0 −5.48 3.3
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TABLE XI. Ground-state properties of the five considered nuclei as functions of the x value (see text for details).

Formula Nucleus rm (fm) Q20 (b) Q40 (b2)

x = 0 x = 1 x = 2 x = 0 x = 1 x = 2 x = 0 x = 1 x = 2

3-point 64Ge 3.916 3.916 3.917 2.691 2.693 2.697 0.0065 0.0064 0.0062
3-point 68Se 4.012 4.012 4.012 −3.309 −3.308 −3.308 0.0523 0.0522 0.0522
3-point 72Kr 4.119 4.120 4.120 −4.601 −4.602 −4.603 0.1081 0.1082 0.1084
3-point 76Sr 4.239 4.240 4.240 7.499 7.501 7.506 0.2354 0.2356 0.2360
3-point 80Zr 4.320 4.320 4.321 8.446 8.446 8.450 0.1798 0.1795 0.1792
5-point 64Ge 3.917 3.918 3.918 2.688 2.690 2.696 0.0069 0.0067 0.0065
5-point 68Se 4.013 4.013 4.013 −3.308 −3.308 −3.307 0.0525 0.0524 0.0523
5-point 72Kr 4.120 4.120 4.120 −4.590 −4.592 −4.490 0.1073 0.1075 0.1078
5-point 76Sr 4.240 4.240 4.240 7.495 7.498 7.506 0.2351 0.2354 0.2361
5-point 80Zr 4.321 4.321 4.322 8.442 8.444 8.450 0.1811 0.1806 0.1801

considerably enlarge the dimension of the Hamiltonian ma-
trices to be computed and diagonalized (up to ∼ 105). As a
result, the computing time becomes an issue. This is why we do
not test here the convergence of the particle-hole expansion by
going up to order 6 as we have done in the previous section. A
more detailed study of the proton-neutron pair correlations in
the HTDA approach will be given in a forthcoming publication.
In addition, no evidence from previous theoretical approaches
has been found for the T = 0 collectivity. On the contrary,
a rather strong quenching of the isoscalar pairing has been
observed in the particular case of pf -shell nuclei. It is thus
likely that we have to deal with a proton-neutron pairing
correlations that are not strong enough to yield collective
pairing effects. Consequently the 4p-4h limitation should not
constitute a stringent constraint.

Based on isospin invariance arguments we choose the
strength V T =1

0pn = 1/2(V T =1
0p + V T =1

0n ) for the part of the
residual interaction acting on neutron-proton two-body states.
Since the actual T = 0 pairing strength is unknown, in other
words because one does not know what should be the data
pertaining to the determination of a phenomenological such
interaction, we adopt an exploratory approach by varying the
ratio x = V T =0

0 /V T =1
0 of the residual interaction in the two

isospin channels from 0.5 to 2.0 by steps of 0.5.
In Table XI the resulting GS deformations and radii are

indicated only for three values of x, namely 0, 1, and 2. As
expected, these quantities do not vary significantly with x.

The relative correlation energy with respect to the T = 0
pairing mode, i.e., the difference between the values of Ecorr

calculated with a given x value and with x = 0, is plotted in

Fig. 3 as a function of x. The correlation energy induced by
the T = 0 mode is rather important for large x values, so it
is highly desirable to get some guidance on the actual value
of x. One could argue that the shell-model estimates of Ref.
[17] provide a value of about 1.5. However, the shell-model
pairing definition with only (J, T ) = (0, 1) and (J, T ) =
(1, 0) couplings is not consistent with the HTDA one where
the δ force in use includes all multipolarities. Therefore, a
systematic comparative study of pair correlations in large shell-
model calculations and in the HTDA approach would be very
helpful to better assess a realistic value of x.

Finally it is important to add that the energy shift due to the
T = 0 pair correlations depends on the pairing intensity in the
T = 1 channel. Indeed these pair correlations are larger when
the T = 1 pairing interaction is stronger. This suggests that,
in a full treatment of these correlations, the adjustment of the
pairing parameters in the T = 1 channel should be done with
proton-neutron correlations.

VIII. CONCLUSIONS AND PERSPECTIVES

The purpose of this article is to provide a firm basis to
study the correlations present in deformed even-even N = Z

nuclei in the A ∼ 70 region. We mean, first of all, pairing
correlations in the sense of Cooper pair excitation of nucleons
belonging to similar orbits. For these particular nuclei, where
active orbits near the Fermi surfaces are very similar for the
two charge states, proton-neutron correlations are, as generally
expected, capable of playing a significant role both in terms of
mixed charge pair transfer. They should certainly be added to
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with the pairing strength adjusted through
the three-point and five-point formulas,
respectively, in the T = 1 channel.
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assess their actual effect. Moreover, RPA correlations should
be further added. All things considered, the existence of a
strong phenomenological Wigner term indicates the presence
of sizable proton-neutron correlations beyond the mean field.
In view of the difficulties to be overcome in achieving this
program, we have undertaken here initial steps by including
only proton-neutron pairing correlations in an exploratory way.

Because the various traditional pairing schemes often lead
to a weak coupling regime, the Bogoliubov vacuum ansatz
for the correlated ground state is rather inadequate. This is
especially true for the not-so-heavy nuclei considered here.
In contrast the HTDA framework represents a consistent and
more physical way of handling various kinds of correlations,
including RPA correlations, on the same footing. In the present
work, we have chosen to use it from as good as possible
HFBCS solutions with the usual pairing treatment which
involves the T = 1 channel only.

We have had, therefore, to carefully study the pairing
channel that includes in particular the choice of a δ interaction
strength consistent with the data on atomic masses in the stud-
ied region. As a result, we have calculated some deformation
properties that are naturally of paramount importance to grasp
the single-particle spectroscopic properties. Upon determining
the HTDA correlated ground state, we have shown that the
diffuseness of the Fermi surface is somewhat similar to what
HFBCS yields but less sensitive to the fluctuations of the level
density as a function of the mass number.

In the last step, where the full Tz = 0 residual interaction
has been considered, we have established the feasibility of such
calculations. Then, we have assessed in a quantitative way how
much the relative amount of T = 0 and T = 1 components of
the residual interaction influences the correlations properties.
Even though in this study the T = 1 interaction strength is the
one adjusted in the absence of a Tz = 0 component, it clearly
appears from our results that a determination of the above ratio
of isospin components is badly needed.

The directions of improvement are therefore easy to
perceive. First they imply a better understanding of the residual
interaction. Then, RPA correlations should be included in a
consistent way, which is currently in progress.
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APPENDIX: SPECIFIC QUANTITIES USED TO ASSESS
THE DEFORMATION PROPERTIES OF OUR SOLUTIONS

In the HFBCS case, the expectation value of a local one-
body operator may be expressed as a space integral involving
the local (diagonal in 	r) one-body reduced density matrix. For
the mass or isoscalar (neutron plus proton) distribution, one
defines the root-mean-square radius rm and the quadrupole
Q20 and hexadecapole Q40 moments as

rm =
√∫

d3r ρ(r)r2

A
, (A1)

Q20 = 2
∫

d3r ρ(r) r2 P2( cos θ )

= 2

√
4π

5

∫
d3r ρ(r) r2Y 0

2 (θ ), (A2)

Q40 =
∫

d3r ρ(r) r4 Y 0
4 (θ ), (A3)

where Y 0
� denotes the spherical harmonic of order � and

magnetic quantum number 0.
We then consider the equivalent spheroid which has the

same root-mean-square radius and quadrupole moment as the
actual nucleus. Denoting the semiaxes along the symmetry
axis and perpendicular to it by a and c, respectively, we
have

Ar2
m = 1

5 (2a2 + c2), (A4)

Q20 = 2
5 A (c2 − a2). (A5)

The β2 parameter is then calculated for this equivalent spheroid
by expanding the nuclear radius in polar coordinates according
to the βl-parametrization [13]

R(θ ) = a√
1 − α cos2θ

(A6)

= R0

(
1 +

∞∑
l=1

βl Y
0
l (θ )

)
, (A7)

with

α = 1 − a2

c2
. (A8)

This allows us to calculate analytically the expression of β2

for the equivalent spheroid as a function of α as

β2 =




√
5π

[
3

2α

(
1 −

√
α(1 − α)

Arcsin
√

α

)
− 1

]
α ∈ ]0; 1[

0 α = 0
√

5π

[
3

2α

(
1 −

√−α(1 − α)

ln(
√−α + √

1 − α)

)
− 1

]
α < 0

. (A9)
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In the HTDA case, the above quantities have to be evaluated
in the correlated state |�〉 and one cannot use anymore
the usual generalized Wick theorem. Indeed, one has to
evaluate matrix elements between two Slater determinants,
generally different. One might keep, however, the Wick

theorem framework by using mixed densities à la Löwdin [18].
Instead, here we reduce these many-body matrix elements
into matrix elements evaluated between single-particle states,
which makes the HTDA calculation of the above expectation
values similar to the HFBCS ones.
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