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Relativistic Faddeev equations for three-body scattering at arbitrary energies are formulated in momentum
space and in first order in the two-body transition operator directly solved in terms of momentum vectors without
employing a partial wave decomposition. Relativistic invariance is incorporated within the framework of Poincaré
invariant quantum mechanics and presented in some detail. Based on a Malfliet-Tjon-type interaction, observables
for elastic and breakup scattering are calculated up to projectile energies of 1 GeV. The influence of kinematic
and dynamic relativistic effects on those observables is systematically studied. Approximations to the two-body
interaction embedded in the three-particle space are compared to the exact treatment.
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I. INTRODUCTION

Light nuclei can be accurately modeled as systems of
nucleons interacting via effective two- and three-body forces
motivated, for example, by meson exchange. This picture is
expected to break down at a higher energy scale where the
physics is more efficiently described in terms of subnuclear
degrees of freedom. One important question in nuclear physics
is to understand the limitations of models of nuclei as systems
of interacting nucleons. Few-body methods have been an es-
sential tool for determining model Hamiltonians that describe
low-energy nuclear physics. Few-body methods also provide
a potentially useful framework for testing the limitations
of models of nuclei as few-nucleon systems; however, this
requires extending the few-body models and calculations to
higher energy scales. There are a number of challenges that
must be overcome to extend these calculations to higher
energies. These include replacing the nonrelativistic theory
by a relativistic theory, limitations imposed by interactions
fit to elastic scattering data, new degrees of freedom that
appear above the pion production threshold, and numerical
problems related to the proliferation of partial waves at high
energies. In this article we address some of these questions.
We demonstrate that it is possible to now perform relativistic
three-body scattering calculations at energies up to 1 GeV
laboratory kinetic energy. The key elements of our success
are the use of direct integration methods that avoid the use
of partial waves and new techniques for treating functions
of noncommuting operators that appear in the relativistic
nucleon-nucleon interactions.

During the past two decades calculations of nucleon-
deuteron scattering based on momentum-space Faddeev equa-
tions [1] experienced large improvements and refinements. It
is fair to state that below about 200 MeV projectile energy
the momentum-space Faddeev equations for three-nucleon
(3N ) scattering can now be solved with high accuracy for

realistic two- and three-nucleon interactions. A summary
of these achievements can be found in Refs. [2–5]. The
approach described there is based on using angular momentum
eigenstates for the two- and three-body systems. This partial
wave decomposition replaces the continuous angle variables
by discrete orbital angular momentum quantum numbers,
and thus it reduces the number of continuous variables to
be discretized in a numerical treatment. For low projectile
energies the procedure of considering orbital angular mo-
mentum components appears physically justified because of
arguments related to the centrifugal barrier and the short range
of the nuclear force. If one considers three-nucleon scattering
at a few-hundred-MeV projectile kinetic energy, the number
of partial waves needed to achieve convergence proliferates,
and limitations with respect to computational feasibility and
accuracy are reached. It appears therefore natural to avoid
a partial wave representation completely and work directly
with vector variables. This is common practice in bound-state
calculations of few-nucleon systems based on variational [6]
and Green’s function Monte Carlo (GFMC) methods [7–10]
and was for the first time applied in momentum-space Faddeev
calculations for bound states in Ref. [11] and for scattering at
intermediate energies in Ref. [12].

The key advantage of a formulation of the Faddeev
equations in terms of vector variables lies in its applicability at
higher energies, where special relativity is expected to become
relevant. Poincaré invariance is an exact symmetry that should
be satisfied by all calculations; however, in practice consistent
relativistic calculations are more numerically intensive, thus
making their nonrelativistic counterpart a preferred choice.
Furthermore, estimates of relativistic effects have been quan-
titatively small for 3N scattering below 200 MeV [13–15]
with the exception of some breakup cross sections in certain
phase-space regions [16], indicating that at those energies
nonrelativistic calculations have sufficient precision. This is in
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part because in either a relativistic or nonrelativistic model the
interactions are designed to fit the same invariant differential
cross section [17], which can be evaluated in any frame by
using standard kinematic Lorentz transformations, so model
calculations are designed so that there are no “relativistic
corrections” at the two-body level. Three-body interactions can
even be chosen so that the nonrelativistic calculations fit both
the two- and three-body invariant cross sections. This can be
done in one frame and the invariance of the cross section fixes it
in all other frames using standard relativistic kinematics. This
procedure has internal inconsistencies, which show up if these
models are used as input in larger systems, but they clearly
indicate that the problem of identifying relativistic effects is
more subtle than simply computing nonrelativistic limits. In
this article we focus on differences between relativistic and
nonrelativistic calculations with two-body input that have the
same cross section and use the same two-body wave functions
[18–20].

There are two primary approaches for modeling relativistic
few-body problems. One treats Poincaré invariance as a sym-
metry of a quantum theory; the other is based on quasipotential
reductions [21] of formal relations [22,23] between covariant
amplitudes. One specific realization of this approach is the
covariant spectator approach of Ref. [24]. In this article
the relativistic three-body problem is formulated within the
framework of Poincaré invariant quantum mechanics. It has
the advantage that the framework is valid for any number of
particles and the dynamical equations have the same number
of variables as the corresponding nonrelativistic equations.
Poincaré invariance is an exact symmetry that is realized by a
unitary representation of the Poincaré group on a three-particle
Hilbert space. The dynamics is generated by a Hamiltonian.
This feature is shared with the Galilean invariant formulation
of nonrelativistic quantum mechanics. The Hamiltonian of
the corresponding relativistic model differs in how the two-
body interactions are embedded in the three-body center of
momentum Hamiltonian (mass operator). The equations we
use to describe the relativistic few-body problem have the same
operator form as the nonrelativistic ones but the ingredients are
different.

In this article we want to concentrate on the leading-order
term of the Faddeev multiple scattering series within the
framework of Poincaré invariant quantum mechanics. The
first-order term already contains the most relativistic ingre-
dients, which, together with the relativistic free three-body
resolvent, gives the kernel of the integral equation. We want to
understand the essential differences between a relativistic and
nonrelativistic approach on the basis of the first-order term. As
a simplification we consider three-body scattering with spin-
independent interactions. This is mathematically equivalent
to three-boson scattering. The interactions employed are of
Yukawa type, and no separable expansions are employed. To
obtain a valid estimate of the size of relativistic effects, it is
important that the interactions employed in the nonrelativistic
and relativistic calculations are phase-shift equivalent. To
achieve this we employ here the approach suggested by
Kamada and Glöckle [18], which uses a unitary rescaling of
the momentum variables to change the nonrelativistic kinetic
energy into the relativistic kinetic energy.

This article is organized as follows. Section II discusses
the formulation of Poincaré invariant quantum mechanics, and
Sec. III discusses the structure of the dynamical two- and three-
body mass operators. Scattering theory formulated in terms
of mass operators is discussed in Sec. IV. The formulation
of the Faddeev equations and techniques for computing the
Faddeev kernel are discussed in Sec. V. Details on kinematical
aspects of how to construct the cross sections are given in
Sec. VI. In Secs. VIII and IX we present calculations for
elastic and breakup processes in the intermediate energy
regime from 0.2 to 1 GeV. Our focus here is to compare
different approximations to the embedded interaction with
respect to the exact calculation. Our conclusions are in Sec. X.
Two Appendices are devoted to relating the transition matrix
elements based on mass operators to the invariant amplitudes
with the conventions used in the particle data book and
expressing the invariant cross section and differential cross
sections worked out directly in laboratory-frame variables.

II. POINCARÉ INVARIANT QUANTUM MECHANICS

Symmetry under a change of inertial coordinate system
is the fundamental symmetry of Poincaré invariant quantum
mechanics. In special relativity different inertial coordinate
systems are related by the subgroup of Poincaré transforma-
tions continuously connected to the identity. In this article the
Poincaré group refers to this subgroup, which excludes the
discrete transformations of space reflection and time reversal.
Wigner [25] proved that a necessary and sufficient condition
for quantum probabilities to be invariant under a change
of inertial coordinate system is the existence of a unitary
representation, U(�, a), of the Poincaré group on the model
Hilbert space. Equivalent vectors, |ψ〉 and |ψ ′〉 in different
inertial coordinate systems are related by

|ψ ′〉 = U(�, a)|ψ〉. (2.1)

In Poincaré invariant quantum mechanics the dynamics is
generated by the time evolution subgroup of U(�, a). The
fundamental dynamical problem is to decompose U(�, a)
into a direct integral of irreducible representations. This is
the analog of diagonalizing the Hamiltonian or time-evolution
operator in nonrelativistic quantum mechanics. The problem
of formulating the dynamics is to construct the dynamical
representation U(�, a) of the Poincaré group by introducing
realistic interactions in the tensor products of single-particle
irreducible representations in a manner that preserves the
group representation property and essential aspects of cluster
separability. The solution to this nonlinear problem is achieved
by adding suitable interactions to the Casimir operators of
noninteracting irreducible representations of the Poincaré
group.

Since irreducible representations of the Poincaré group
play a central role in both the formulation and solution
of the dynamical model, we give a brief summary of the
construction of the irreducible representations that we use
in this article. The Poincaré group is a ten-parameter group
that is the semidirect product of the Lorentz group and the
group of space-time translations. Space-time translations are
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generated by the four-momentum operator P µ and Lorentz
transformations are generated by the antisymmetric angular
momentum tensor Jµν .

The Pauli-Lubanski vector is the four-vector operator
defined by

Wµ = 1
2εµαβγ PαJβγ . (2.2)

The Casimir operators for the Poincaré group are

M2 = −ηµνP
µP ν = H 2 − P · P (2.3)

and

W 2 = −ηµνW
µWν = M2j 2, (2.4)

where ηµν is the Minkowski metric, M is the mass operator,
H is the Hamiltonian, P is the linear momentum, and j 2 is the
spin.

Positive-mass positive-energy irreducible representations
are labeled by eigenvalues of the mass M and spin j 2. Vectors
in an irreducible subspace are square integrable functions of
the eigenvalues of a complete set of commuting Hermitian
operator-valued functions of the generators P µ and Jµν . In
addition to the two invariant Casimir operators, it is possible
to find four additional commuting Hermitian functions of the
generators. For each of these four commuting observables
it is possible to find conjugate operators. These conjugate
operators, along with the eigenvalues of the Casimir operators,
fix the eigenvalue spectrum of the four commuting Hermitian
operators. The irreducible representation space is the space
of square integrable functions of the eigenvalues of the four
commuting operators. The generators can be expressed as
functions of these four operators, their conjugates, and the
Casimir invariants [26–28].

In this article we choose the four commuting operators
to be the three components of the linear momentum and
the z component of the canonical spin operator. In this
representation the four conjugate operators are taken as the
partial derivatives of the momentum holding the canonical
spin constant (Newton-Wigner position [29] operator) and the
x component of the canonical spin. Although jx is not exactly
conjugate to jz, the two operators generate the full SU(2) spin
algebra. The corresponding eigenstates have the form

|p, µ〉 := |(m, j )p, µ〉. (2.5)

The mass m spin j irreducible representation of the
Poincaré group in this basis is determined from the group
representation property and the action of rotations, space-time
translations, and canonical boosts on the zero-momentum
eigenstates:

U(R, 0)|0, µ〉 = |0, µ′〉Dj

µ′µ(R), (2.6)

U(I, a)|0, µ〉 = e−ia0m|0, µ〉, (2.7)

U(B(pm), 0)|0, µ〉 = |p, µ〉
√

Epm

m
, (2.8)

where in these equations R is a rotation, D
j

µ′µ(R) is the
standard 2j + 1 dimensional unitary representation of SU(2),
a = (a0, a) is a displacement four-vector, B(pm) is the rota-
tionless Lorentz boost (canonical boost) that transforms (m, 0)

to pm := (Epm
, p),

(B(pm))µν :=
(

Epm
/m p/m

p/m I + p ⊗ p
m(m+Epm )

)
, (2.9)

and Epm
=

√
m2 + p2. That the magnetic quantum number

remains invariant in Eq. (2.8) under the rotationless boost
[Eq. (2.9)] is the defining property of the canonical spin.

The multiplicative factor on the right side of Eq. (2.8)
is fixed up to a phase by unitarity and the normalization
convention

〈p′, µ′|p, µ〉 = δ(p′ − p)δµ′µ. (2.10)

With these choices the action of an arbitrary Poincaré
transformation on these states is given by

Umj (�, a)|p, µ〉 = |p′, µ′〉
√

E′
pm

Epm

D
j

µ′µ(Rw(�,pm))eip′
m·a,

(2.11)

where Rw(�,pm) is the (standard) Wigner rotation,

Rw(�,pm) := B−1(�pm)�B(pm), (2.12)

and p′
m = �pm. Since each of the elementary transformations

[Eqs. (2.6)–(2.8)] is unitary, it follows that Eq. (2.11) is unitary.
Since every basis vector can be generated from the µ = j

and P = 0 basis vector using Eqs. (2.6), (2.7), and (2.8),
representation (2.11) is also irreducible.

The mass m spin j irreducible representations that are used
in this article have the form of Eq. (2.11). The mass m spin
j irreducible representation space with basis (2.5) is denoted
by Hmj .

The Hilbert space for the-three nucleon problem is the
tensor product of three one-nucleon irreducible representation
spaces:

H = Hm 1
2
⊗ Hm 1

2
⊗ Hm 1

2
. (2.13)

In this article all nucleons are assumed to have the same
mass m.

The noninteracting unitary representation of the Poincaré
group on H is the tensor product of three one-nucleon
irreducible representations:

U0(�, a) = Um 1
2
(�, a) ⊗ Um 1

2
(�, a) ⊗ Um 1

2
(�, a). (2.14)

As in the case of rotations, the tensor product of irreducible
representations of the Poincaré group is reducible. The
tensor product of three irreducible representations can be
decomposed into a direct integral of irreducible representation
by using Clebsch-Gordan coefficients for the Poincaré group.
The Clebsch-Gordan coefficients for the Poincaré group are
known [28,30,31]. As in the case of rotations, the Poincaré
Clebsch-Gordan coefficients are basis dependent and the
three-body irreducible representations can be generated by
pairwise coupling. The Poincaré Clebsch-Gordan coefficients
can be computed by using SU(2) Clebsch-Gordan coefficients
to decompose three-body zero-momentum eigenstates states
into irreducible SU(2) representations. Three-body irreducible
basis vectors are generated by applying Eqs. (2.6), (2.7), and
(2.8) to the zero-momentum SU(2) irreducible representations.
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The resulting irreducible three-body basis depends on
the order of the coupling. In the basis of eigenstates of
the three-body linear momentum and canonical spin the
irreducible eigenstates are labeled by eigenvalues W of the
three-body invariant mass M0, the three-body canonical spin
j (where for simplicity of notation we use the same label j for
the total canonical spin of the three-body system and the single
particle canonical spin), the total three-body momentum P, the
z component of the three-body canonical spin µ, and invariant
degeneracy quantum numbers d, which distinguish multiple
copies of the same irreducible representation:

|(W, j ), P, µ, d〉. (2.15)

For two-particle systems the degeneracy quantum numbers
d are discrete (e.g., they may be taken to be invariant spin
and orbital angular momentum quantum numbers) whereas
for more than two particles the degeneracy quantum numbers
will normally include invariant subenergies, which have a
continuous eigenvalue spectrum. In addition to the appearance
of the degeneracy quantum numbers, the eigenvalue spectrum
of the free invariant mass operator M0 is continuous.

These states transform as mass W spin j irreducible
representations of the Poincaré group under U0(�, a):

U0(�, a)|(W, j ), P, µ, d〉

= |(W, j ), P′, µ′, d〉
√

E′
PW

EPW

D
j

µ′µ(Rw(�,PW))eiP ′
W·a,

(2.16)

where

P ′
W = �PW, PW := (

√
W2 + P2, P) = (EPW , P). (2.17)

The quantities W, j, d are invariants of the representation
(2.16) of U0(�, a).

Because the Poincaré group allows time evolution to be
expressed in terms of spatial translations and Lorentz boosts,
when particles interact, consistency of the initial value problem
requires that the unitary representation of the Poincaré group
depends nontrivially on the interactions. The construction of
U(�, a) for dynamical models is motivated by the example
of Galilean invariant quantum mechanics. The nonrelativistic
three-body Hamiltonian has the form

H = P2

2Mg

+ h, (2.18)

where the Casimir Hamiltonian h is the Galilean invariant
part of the Hamiltonian and Mg is the Galilean mass. In the
nonrelativistic case interactions are added to the noninteracting
Casimir Hamiltonian h0:

h = h0 + Vnr, (2.19)

where the Galilean invariance of h requires that the interaction
Vnr is rotationally invariant and commutes with and is
independent of the linear momentum P. This means that in
the corresponding nonrelativistic basis

〈h, P, j, µ, d|Vnr|h′, P′, j ′, µ′, d ′〉
= δ(P − P′)δjj ′δµµ′ 〈h, d‖V j

nr‖h′, d ′〉, (2.20)

where h is an eigenvalue of h0.

In the Poincaré invariant case Eq. (2.18) is replaced by

H =
√

P2 + M2, (2.21)

where M in Eq. (2.21) plays the same role as the Casimir
Hamiltonian h in Eq. (2.18). The corresponding free relativistic

Hamiltonian is H0 =
√

P2 + M2
0 . In what follows λ denotes

the eigenvalue of M to distinguish it from the eigenvalue W
of M0.

A Poincaré invariant dynamics can be constructed by
adding an interaction to the noninteracting M0 that commutes
with and is independent of P and jz:

M = M0 + Vr. (2.22)

In the noninteracting irreducible basis [Eq. (2.15)] these
conditions require interactions of the form

〈(W, j ), P, µ, d|Vr |(W′, j ′), P′, µ′, d ′〉
= δ(P − P′)δjj ′δµµ′ 〈W, d‖V j

r ‖W′, d ′〉. (2.23)

The dynamical problem is to find simultaneous eigenstates
of the commuting operators M, P, jz, and j 2. This is done
by diagonalizing M in the irreducible basis [Eq. (2.15)]. The
eigenfunctions of M have the form

〈(W, j ), P, µ, d|(λ, j ′), P′, µ′〉 = δ(P − P′)δjj ′δµµ′

× 〈W, d, j |λ, j 〉, (2.24)

where the eigenfunctions 〈W, d, j |λ, j 〉 are solutions of

W〈W, j, d|λ, j 〉

+
′∑ ∫ ′

〈W, d‖V j
r ‖W′, d ′〉dW′dd ′〈W′, j, d ′|λ, j 〉

= λ〈W, j, d|λ, j 〉, (2.25)

with mass eigenvalue λ. For two-particle systems the degen-
eracy quantum numbers d are discrete (e.g., they may taken
to be invariant spin and orbital angular momentum quantum
numbers) whereas for more than two particles the degeneracy
quantum numbers will normally include invariant subenergies,
which have a continuous eigenvalue spectrum.

Because {M0, j
2, jz, P, jx,−i∇P } have the same commu-

tation relations as {M, j 2, jz, P, jx,−i∇P }, if the dynamical
Poincaré generators are defined as the same functions of these
operators [27,28] with M0 replaced by M , it follows that the
simultaneous eigenstates

|(λ, j ), P, µ〉 (2.26)

of M, j 2, P, jz transform as a mass λ spin j irreducible
representation of the Poincaré group.

Since these eigenstates are complete, this defines the
dynamical representation of the Poincaré group on a basis
by

U(�, a)|(λ, j ), P, µ〉

= |(λ, j ), P′, µ′〉
√

E′
Pλ

EPλ

D
j

µ′µ(Rw(�,Pλ))eiP ′
λ·a, (2.27)

where

EPλ
=

√
λ2 + P2, Pλ := (EPλ

, P), P ′
λ = �Pλ. (2.28)
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This shows that the solution to the eigenvalue problem
[Eq. (2.25)] provides the desired decomposition of the dy-
namical unitary representation of the Poincaré group into a
direct integral of irreducible representations.

The appearance of the mass eigenvalue λ on the right
side of Eq. (2.27) indicates the interaction dependence of
this representation. It can happen, for a given choice of
irreducible basis, that the coefficient on the right-hand side
of Eq. (2.27) is independent of the mass eigenvalue for a
subgroup of the Poincaré group. For the basis (2.15), of linear
momentum and canonical-spin eigenstates, both translations
and rotations have this property. These transformations gen-
erate a three-dimensional Euclidean subgroup of the Poincaré
group that is independent of the interaction. An interaction-
independent subgroup is called a kinematic subgroup; the
three-dimensional Euclidean group as the kinematic subgroup
is associated with an instant-form dynamics [32].

III. MASS OPERATORS

Next we discuss the structure of mass operators for the two-
and three-body problems. We pay particular attention to issues
related to representations of these operators that are suitable
for computations without using partial waves.

The construction of the dynamics in Eqs. (2.25) and
(2.27) adds an interaction to the mass Casimir operator of
a noninteracting irreducible representation of the Poincaré
group to construct an interacting irreducible representation.
The role of the spin in the structure of the irreducible
representations suggests that this construction requires a
partial wave decomposition; however, partial waves are not
used in the calculations that follow.

The spin in the relativistic case is obtained by coupling the
single-particle spins and orbital angular momentum vectors.
Although the form of the coupling is more complex than it
is in the nonrelativistic case, the final step involves coupling
redefined spins and orbital angular momenta with ordinary
SU(2) Clebsch-Gordon coefficients. Undoing this coupling
leads to a representation of the dynamical operators that can
be used in a calculation based on vector variables.

The first step is to construct redefined vector variables
that can be coupled to obtain the spin. To understand
the transformation properties of these operators note that
the magnetic quantum number in Eq. (2.27) undergoes a
Wigner rotation when the system is Lorentz transformed. If
the spin of the representation is obtained by coupling the
redefined particle spins and orbital angular momenta with
SU(2) Clebsch-Gordan coefficients, then all of the spins and
relative angular momenta must also transform with the same
Wigner rotation.

To illustrate how to construct momentum operators that
Wigner rotate under kinematic Lorentz boosts consider a pair
of noninteracting spinless particles. The total four-momentum
PM0 of this system is the sum of the single-particle four
momenta,

PM0 = pm1 + pm2 . (3.1)

Define the operator k by

k := B−1(PM0 )pm1 , (3.2)

where B−1(PM0 ) is interpreted as a 4 × 4 matrix of operators.
If both PM0 and pm1 are transformed with a Lorentz transfor-
mation �, then k rotates with the same Wigner rotation that
appears in Eq. (2.16),

k′ = B−1(P ′
M0

)p′
1 = B−1(�PM0 )�p1

= B−1(�PM0 )�B(PM0 )B−1(PM0 )p1

= Rw(�,PM0 )k. (3.3)

It is because of the operator nature of B−1(PM0 ) that k does
not transform as a four-vector.

The tensor product of single-particle basis vectors |p1, p2〉
can be replaced by a basis |P, k〉 by using a variable change.
In this basis Eq. (3.3) implies

U0(�, a)|P, k〉 = |P′, Rw(�,PW)k〉
√

E′
PW

EPW

eiP ′
W·a,

(3.4)
P ′

W = �PW,

where k is the eigenvector of the space components of the
operator (3.2). This shows that k undergoes the same Wigner-
rotation as the two-body canonical spin.

If the two particles have spin, these single-particle spins
need to be Wigner rotated before they can be coupled [28].
The spins obtained this way are called constituent spins. The
constituent spins undergo the same Winger rotations as k
but they are not one-body operators and do not have natural
couplings to the electromagnetic interaction. In this article we
only consider spinless interactions. In this case the constituent
spins can be ignored. Their only effect is that they impact the
permutation symmetry of the orbital-isospin part of the wave
functions.

The magnitude of k is an invariant that fixes the two-body
invariant mass eigenvalue W:

W = 2
√

k2 + m2. (3.5)

If the vector part of k is expanded in partial waves as

|P, |k|, j, µ〉 :=
∫

|P, k〉Y jµ(k̂)dk̂ (3.6)

then

U0(�, a)|P, |k|, j, µ〉

:=
∑
µ′

|P′, |k|, j, µ′〉
√

E′
PW

EPW

D
j

µ′µ(Rw(�,PW))eiP ′
W·a (3.7)

transforms like Eq. (2.11).
In the representation |P, k〉 Eq. (2.23) is satisfied for a

spinless interaction of the form

〈P, k|Vr |P′, k′〉 = δ(P − P′)〈k‖Vr‖k′〉 (3.8)

with a rotationally invariant kernel

〈Rk‖Vr‖Rk′〉 = 〈k‖Vr‖k′〉. (3.9)
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If the interaction includes nucleon spins, the rotational in-
variance must be generalized to include rotationally invariant
contributions involving the constituent spins.

Next we consider the three-body problem, where
U0(�, a),M0, and W are now associated with the three-
nucleon system. In the three-body system vector operators
that Wigner rotate are the Poincaré-Jacobi momenta and
three-body constituent spins. The Jacobi momenta are obtained
from the nonrelativistic Jacobi momenta by replacing Galilean
boosts to the zero-momentum frame of a system or subsystem
by the corresponding noninteracting Lorentz boosts. In these
expression the boosts are considered to be matrices of
operators. The replacements are

k̃ij ≡ B−1
g (P)(pi − pj ) = pi − pj − (pi + pj )

(mi + mj )
(mi − mj )

−→ k̃ij ≡ B−1(Pm0,ij
)(pi − pj ), (3.10)

qi ≡ B−1
g (P)pi = pi − P

Mg

mi

−→ qi ≡ B−1(PM0 )pi, (3.11)

where m0,ij is the invariant mass of the noninteracting two-
particle (i, j ) system.

The only complication in the three-body case is that when
the single-particle momenta undergo Lorentz transformations
the variables k̃ij , qi experience different Wigner rotations:

qi → Rw(�,PM0 )qi , (3.12)

k̃ij → Rw(�,Pm0,ij
)k̃ij . (3.13)

Because of the different Wigner rotations, the angular mo-
menta associated with qi and k̃ij cannot be consistently
coupled with SU(2) Clebsch-Gordon coefficients. To fix this,
we redefine k̃ij → kij by replacing all of the pis in Eq. (3.10)
by the corresponding qis. Then when the single-particle
variables are Lorentz transformed, the qi will all Wigner rotate
with a rotation R′. This means that the redefined kij transforms
as Rw(R′, qij ), where qij = qi + qj . But the defining property
of the canonical boost [Eq. (2.9)] is Rw(R′, qij ) = R′, which
means that both qi and kij undergo the same Wigner rotation,
R′, when the single-particle variables are Lorentz transformed.

Only two of the six vector variables, qi and kij , are
linearly independent. Any two of these variables along with
P can be used to label three-body basis vectors. Following
nonrelativistic usage, the single-particle momenta are replaced
by the independent variables

{P, qk, kij }, (3.14)

where k 	= i, j . The single-particle basis vectors are replaced
by

|P, qk, kij 〉 = |p1, p2, p3〉
∣∣∣∣∂(p1, p2, p3)

∂(P, qk, kij )

∣∣∣∣1/2

. (3.15)

These definitions imply the desired transformation property:

U0(�, a)|P, qk, kij 〉 = |P′, Rw(�,PW)qk, Rw(�,PW)kij 〉

×
√

E′
PW

EPW

eiP ′
W·a, (3.16)

where P ′ = �P .

The operators qk and kij are functions of the single-particle
momenta, and they are thus defined on states with any total
momenta, not just on three-body rest states. This is similar to
the mass operator, which is also defined on states of any total
momentum.

Next we discuss the structure of the mass operators that
will be used in the two- and three-body problems. The
mass operators m0,ij and M0 for the noninteracting two- and
three-body systems can be expressed in terms of the operators
k̃ij , kij , and qk as

m0,ij =
√

m2
i + k̃2

ij +
√

m2
j + k̃2

ij (3.17)

and

M0 =
√

m2
0,ij + q2

k +
√

m2
k + q2

k , (3.18)

where m0,ij in Eq. (3.18) replaces k̃ij by kij .
When two-body interactions are added to m0,ij the interact-

ing two-body mass operator becomes

mij = m0,ij + ṽij , (3.19)

where in this basis Eq. (2.23) becomes

〈pij , k̃ij |ṽij |p′
ij , k̃′

ij 〉 = δ(pij − p′
ij )〈k̃ij‖vij‖k̃′

ij 〉. (3.20)

Cluster properties determine how the two-body interactions
enter the three-body mass operator. To obtain a three-body
scattering operator that clusters properly, it is enough to
replace k̃ij by kij in the two-body interaction and include the
modified two-body interaction in the three-body mass operator
as follows:

Mij =
√

(m0,ij + vij )2 + q2
k +

√
m2

k + q2
k, (3.21)

where

〈P,qk,kij|vij|P′,q′
k,k′

ij〉 = δ(P − P′)δ(qk − q′
k)〈kij‖vij‖k′

ij〉,
(3.22)

and the functional form of the reduced kernel 〈kij‖vij‖k′
ij 〉 is

identical in Eqs. (3.20) and (3.22), and it must be a rotationally
invariant function of its arguments k̃ij and k̃′

ij (respectively,
kij and k′

ij ) .
The interacting three-body mass operator is then defined

by

M := M0 + V12 + V23 + V31, (3.23)

where the two-body interactions embedded in the three-
particle Hilbert space [31] are

Vij := Mij − M0 =
√

(m0,ij + vij )2 + q2
k −

√
m2

0,ij + q2
k.

(3.24)

The sum of the interactions is consistent with the constraint
(2.23) since each of the two-body interactions Vij in Eq. (3.23)
is consistent with Eq. (2.23). The dynamical problem is to find
eigenstates of M in the basis (3.15). The technical challenge
for the numerical solutions of the three-body problem is the
computation of the embedded two-body interactions, Vij ,
which requires computing functions of the noncommuting
operators m0,ij and vij .
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Although this dynamical model leads to a S matrix that
satisfies cluster properties, the constructed unitary representa-
tion of the Poincaré group only clusters properly when P = 0.
Since the S matrix is Poincaré invariant, this is sufficient
for computing all bound-state and three-body scattering
observables; however, additional corrections are required if the
three-body eigenstates are used to compute electromagnetic
observables.

IV. RELATIVISTIC SCATTERING THEORY

Our interest in this article is the computation of scattering
cross sections for two-body elastic scattering and breakup
reactions in Poincaré invariant quantum mechanics. The
formulation of the scattering theory by using dynamical mass
operators for the Poincaré group is outlined in the following.
For a more complete discussion see Ref. [28].

The multichannel scattering matrix is calculated by using
the standard formula

Sαβ = 〈�+
α (0)|�−

β (0)〉, (4.1)

where β is the initial deuteron-nucleon channel and α is either
a deuteron-nucleon or three-nucleon channel.

The scattering states that appear in Eq. (4.1) are defined
to agree with states of noninteracting particles long before or
long after the collision:

lim
t→±∞ ‖e−iH t |�±

α (0)〉 − e−iHαt |±
α (0)〉‖ = 0. (4.2)

In this article the ± on the scattering states and wave operators
indicates the direction of the time limit (− = past and + =
future), which is opposite to the sign of iε.

In the breakup channel |+
α (0)〉 is a normalizable Hilbert

space vector. In the nucleon-deuteron channels |±
α (0)〉 has

the form

〈P, qi , kjk|±
α (0)〉 = φD(kjk)f (qi , P), (4.3)

where φD(kjk) is the deuteron wave function and f (qi , P) is
a unit normalized wave packet describing the state of a free
deuteron and nucleon at time zero.

The asymptotic and interacting scattering states are related
by the multichannel wave operators by

|�±
α (0)〉 = �α±(H,Hα)|±

α (0)〉, (4.4)

where the multichannel wave operators are defined by the
strong limits

�α± = lim
t→±∞ eiHte−iHαt (4.5)

on channel states. The multichannel scattering operator can
then be expressed in terms of the wave operators as

Ŝαβ = �
†
α+(H,Hα)�β−(H,Hβ). (4.6)

In the three-body breakup channel α = 0,

Hα = H0 =
√

M2
0 + P2. (4.7)

In channels α = (ij ), with an incoming or outgoing deuteron,

Hα = Hij = H0 + VHα, (4.8)

where

VHα =
√

M2
ij + P2 −

√
M2

0 + P2 (4.9)

is the interaction between the nucleons in the deuteron in the
three-body Hamiltonian. We use the notation Mα to denote
M0 for the breakup channel or Mij for the nucleon-deuteron
channel. In the nonrelativistic case the Hamiltonian, which
generates time evolution in the asymptotic conditions, is
normally replaced by the Casimir Hamiltonian h. This can be
done because P2/2Mg appears linearly in both the interacting
and noninteracting Hamiltonians and commutes with the
interactions. In the relativistic case the interaction in the
Hamiltonian is different from the interaction in the mass
operator, and the kinetic energy enters the mass nonlinearly. In
the relativistic case the wave operators can still be expressed
directly in terms of the mass operators. The justification is
the Kato-Birman invariance principle [33,34], which implies
that H and Hα can be replaced by a large class of admissible
functions of H and Hα in the wave operators; specifically,

M =
√

H 2 − P2 (4.10)

is in the class of admissible functions. This gives

�α± = lim
t→±∞ eiMte−iMαt = lim

t→±∞ eiHte−iHαt , (4.11)

which leads to an expression for the multichannel scattering
operator [26] expressed directly in terms of the mass operators:

Sαβ = lim
τ,τ ′→∞

eiMατ e−iM(τ+τ ′)eiMβτ ′
. (4.12)

If these limits are computed in channel mass eigenstates |α〉
and |β〉 of Mα and Mβ the result is

〈α|S|β〉 = 〈α|β〉 − 2πiδ(Wα − Wβ)〈α|T αβ(Wα + i0+)|β〉,
(4.13)

where

T αβ(z) = V β + V α(z − M)−1V β, (4.14)

and

V α = M − Mα = M − Mij (4.15)

for two-cluster n − d channels and

V α = M − M0 (4.16)

for the breakup channel. Here Wα and Wβ are the eigenvalues
of Mα and Mβ in the channel eigenstates |α〉 and |β〉. The first
term in Eq. (4.13) is identically zero if the states |α〉 and |β〉
correspond to different scattering channels.

Compared to the standard expression that is based on using
the Hamiltonian, in Eq. (4.14) the interactions are expressed
as differences of mass operators rather than Hamiltonians, the
resolvent of the Hamiltonian is replaced by the resolvent of
the mass operator, and the energy-conserving delta function is
replaced with an invariant mass conserving delta function.

The translational invariance of the interaction given in
Eq. (4.15) requires that

〈P, . . . |T αβ(z)| . . . , P′〉 = δ(P − P′)〈· · · ‖T αβ(z)‖ · · ·〉. (4.17)
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Given the momentum-conserving delta function, the product
of the momentum- and mass-conserving delta functions can be
replaced by a four-momentum-conserving delta function and
a Jacobian:

δ(Wα − Wβ)δ(Pα − Pβ) = δ4(Pα − Pβ)

∣∣∣∣ dE

dM

∣∣∣∣
= δ4(Pα − Pβ)

∣∣∣∣Wα

Eα

∣∣∣∣ , (4.18)

where Eα = √
W2

α + P2.
The representation of Eq. (4.13) for the scattering matrix

can be used to calculate the cross section. The relation between
the scattering matrix and the cross section is standard and can
be derived by using standard methods, such as the ones used
by Brenig and Haag in Ref. [35]. The only modification is
that in the usual expression relating the cross section to the
transition operator, the transition operator is the coefficient of
−(2π )iδ(Eα − Eβ). Thus to compute the cross section it is
enough to use the standard relation between T and S with the
channel transition operator being replaced by∣∣∣∣Wα

Eα

∣∣∣∣ × 〈· · · ‖T αβ(z)‖ · · ·〉. (4.19)

The resulting expression for the differential cross section
for elastic scattering is given by

dσ = (2π )4

v′
nd

|〈pd , pn‖T αβ‖p′
d , p′

n〉|2
W2

α

E2
α

× δ4(pd + pn − p′
d − p′

n)dpndpd , (4.20)

and for breakup reactions the formula is replaced by

dσ = (2π )4

v′
nd3!

|〈p1, p2, p3‖T αβ‖p′
d , p′

n〉|2
W2

α

E2
α

× δ4(p1 + p2 + p3 − p′
d − p′

n)dp1dp2dp3. (4.21)

These relations are normally given in terms of single-particle
momenta whereas the transition matrix elements are evaluated
in terms of the Poincaré-Jacobi momenta. The transformation
relating these representations involves some Jacobians. These
are discussed in the sections on calculations.

Except for the factor W2
α/E2

α , Eq. (4.20) is identical to
the corresponding nonrelativistic expression. The additional
factor of W2

α/E2
α arises because we have chosen to calculate

the transition operator using the mass operator instead of the
Hamiltonian. The differences in these formulas with standard
formulas are (1) that the transition operator is constructed
from the difference of the mass operators with and without
interactions and (2) the appearance of the additional factor of
W2

α/E2
α, which corrects for the modified transition operator.

This factor becomes 1 when P = 0.
The differential cross section dσ is invariant.

Equations (4.20) and (4.21) can be expressed in a manifestly
invariant form. The relation to the standard expression of
the invariant cross section found by using conventions of the
particle data book [36] is derived in Appendix A where we
also outline the proof of Eq. (4.13).

V. INTEGRAL EQUATIONS

The dynamical problem is to compute the three-body
transition operators T αβ(z) that appear in Eqs. (4.20) and (4.21)
and use these to calculate the cross sections. It is useful to
replace the transition operators [Eq. (4.14)] by the on-shell
equivalent AGS [37] transition operators:

Uαβ(z) := δ̄αβ(z − Mα) + T αβ(z). (5.1)

When z is put on the energy shell and evaluated on the channel
eigenstate for the channel α the first term of Eq. (5.1) vanishes.
The AGS operators are solutions of the integral equation

Uαβ(z) := δ̄αβ(z − M0) +
∑

γ

δ̄αγ Vγ (z − Mγ )−1Uγβ(z),

(5.2)

where Vγ := Mγ − M0 = Vij are the embedded two-
body interactions given in Eq. (3.24), and the sum is
over the three two-cluster configurations, 1 = (1; 23), 2 =
(2; 31), and 3 = (3; 12), with each cluster labeled by the
index γ .

When the particles are identical this coupled system can be
replaced by an equation for a single amplitude,

U (z) = P (z − M0) + PV1(z − M1)−1U (z), (5.3)

where we chose without loss of generality to single out the
configuration (1;23). In this case the permutation operator P

is given by P = P12P23 + P13P23. This solution can be used
to generate the breakup amplitude

U0 = (I + P )V1(z − M1)−1U (z). (5.4)

The AGS operators U (z) and U0(z) can be expressed in terms
of the solution T (z) of the symmetrized Faddeev equations

U (z) = P (z − M0) + PT (z),
(5.5)

U0(z) = (1 + P )T (z),

where T (z) is the solution to

T (z) = T1(z)P + T1(z)P (z − M0)−1T (z) (5.6)

and where the operator T1(z) is the two-body transition
operator embedded in the three-particle Hilbert space defined
as the solution to

T1(z) = V1 + V1(z − M0)−1T1(z), (5.7)

where V1 = V23 = M23 − M0.
The first-order calculation that we perform in this article

is defined by keeping the first term of the multiple scattering
series generated by Eq. (5.6):

T (z) → T1(z)P, (5.8)

U (z) → P (z − M0) + PT1(z)P,
(5.9)

U0(z) → (1 + P )T1(z)P.

Because the embedded interactions Vγ [Eq. (3.24)] in the
AGS equations are operator-valued functions of the noncom-
muting operators m0,ij and vij , their computation, given vij as
input, presents additional computational challenges.
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To compute the kernel note that it can be expressed as

Vγ (z − Mγ )−1 = Tγ (z)(z − M0)−1, (5.10)

where

Tγ (z) = Vγ + Vγ (z − Mγ )−1Vγ . (5.11)

In this article we compute this kernel using a method that
exploits the relation between the two-body transition operator
and the operator [Eq. (5.11)]. Because Mij and mij have the
same eigenvectors it follows that [20]

〈P′, q′, k′|Tγ (z′)(z′ − M0)−1|P, q, k〉

= δ(P′ − P)δ(q′ − q)

(
m0,ij (k′) + m0,ij (k)

M0(q, k′) + M0(q, k)

)
× 〈k′|tij (z̃′)|k〉

z′ − M0(q, k)
, (5.12)

where

z′ = M0(q, k′) + i0+, z̃′ = m0,ij (k′) + i0+. (5.13)

In the AGS equation, this kernel is needed for all values of
z, whereas Eq. (5.12) only holds for z = z′. The kernel for
an arbitrary z can be computed by using the first resolvent
equation, which leads to integral equation

Tγ (z) = Tγ (z′) + Tγ (z)G0(z)(z′ − z)G0(z′)Tγ (z′), (5.14)

where G0(z) = (z − M0)−1, which can be used to calculate
Tγ (z) from Tγ (z′) for all z 	= z′.

VI. RELATIVISTIC FORMULATION OF THREE-BODY
SCATTERING

In the scattering of three particles interacting with spin-
independent interactions, there are two global observables,
the total cross section for elastic scattering, σel , and the total
cross section for breakup, σbr. These can be computed by using
Eqs. (4.20) and (4.21). In this section we discuss the kinematic
relations needed to compute these quantities in more detail.

If we replace the transition operators by the corresponding
symmetrized AGS operators, use the identities

�d =
∫

|P, q, ϕd〉dPdq〈P, q, ϕd |

=
∫

|pd , pn, ϕd〉dpddpn〈pd , pn, ϕd | (6.1)

and

I =
∫

|P, k, q〉dPdkdq〈P, k, q|

=
∫

|p1, p2, p3〉dp1dp2dp3〈p1, p2, p3|, (6.2)

and evaluate the initial state and vbt in the center of momentum
frame, Eq. (4.20) becomes

σel = (2π )4

vbt

∫
dqδ(Wf − Wi)|〈ϕd, q‖U‖ϕd, q0〉|2 (6.3)

for elastic scattering and

σbr = 1

3

(2π )4

vbt

∫
dqdkδ(Wf − Wi)|〈k, q‖U0‖ϕd, q0〉|2

(6.4)

for breakup. Here Wi(Wf ) are the invariant mass eigenvalues
of the initial (final) state, q0 is the Poincaré-Jacobi momentum
between the projectile and the target, and k and q are the
Poincaré-Jacobi momenta for a given pair and spectator
defined in the previous section. The permutation operator in
Eq. (5.3) only includes three of the six permutations of the
three particles; the other three independent permutations are
related by an additional transposition that interchanges the
constituents of the deuteron, which is already symmetrized.
This accounts for replacement of the statistical factor 1/3! in
Eq. (4.20) by the factor of 1/3 in Eq. (6.4).

Using relativistic kinematical relations one can integrate
over |q| in Eq. (6.3) by using the invariant mass conserving
delta function with the result

σel = (2π )4
∫

d�
E2

n(q0)E2
d (q0)

W2
|〈ϕd, q̂q0|U |ϕd, q0〉|2. (6.5)

The quantities W and q0 are determined by the laboratory
kinetic energy Elab of the incident nucleon. First note that

W2 = (m + md )2 + 2mdElab. (6.6)

The nucleon rest mass is given by m, and the rest mass of the
deuteron is md = 2m − εd , where εd is the deuteron binding
energy. The Poincaré-Jacobi momentum between projectile
and target, q0, is related to Elab by

q2
0 = m2

dElab

W2
(Elab + 2m). (6.7)

In the nonrelativistic case the phase-space factor under the
integral of Eq. (6.5) reduces to (2m/3)2.

It is also necessary to compute the transition matrix
elements that appear in Eqs. (6.3) and (6.4). The momenta
of the three particles can be labeled either by single-particle
momenta p1, p2, and p3 or the total momentum P and the
relativistic Poincaré-Jacobi momenta of Eqs. (3.10) and (3.11)
with the pi replaced by qi . The explicit relations between the
three-body Poincaré-Jacobi momenta are

q ≡ qi = −(qj + qk),

k ≡ ki = kjk = 1
2 (qj − qk) − 1

2 (qj + qk)

×
(

Ej − Ek

Ej + Ek + √
(Ej + Ek)2 − (qj + qk)2

)
, (6.8)

where Ei ≡ E(qi) =
√

m2 + qi
2. For nonrelativistic kinemat-

ics the second term in k, being proportional to the total
momentum of the pair (j, k), vanishes. In addition, the
transformation from the single-particle momenta pi to the
Poincaré-Jacobi momenta has a Jacobian given by

|p1, p2, p3〉 =
∣∣∣∣ ∂(P, k, q)

∂(p1, p2, p3)

∣∣∣∣1/2

|P, k, q〉, (6.9)
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where for P = 0 the Jacobian becomes∣∣∣∣ ∂(P, k, q)

∂(p1, p2, p3)

∣∣∣∣1/2

|P=0

=
(√

(E(q2) + E(q3))2 − q2(E(q2) + E(q3))

4E(q2)E(q3)

)1/2

≡ n̂ (q; q2q3) . (6.10)

In this expression we chose without loss of generality particle
1 as spectator. The difference between the relativistic and
nonrelativistic Jacobi momenta in Eqs. (3.10) and (3.11) are

relevant for the calculation of the permutation operator P in
Eqs. (5.5) and (5.6). The matrix elements of the permutation
operator are then explicitly calculated as

〈k′, q′|P |k, q〉 = N (q′, q)
[
δ(k′ − q − 1

2 q′C(q, q′))

× δ(k + q′ + 1
2 qC((q′, q))

+ δ(k′ + q + 1
2 q′C(q, q′))

× δ(p − q′ − 1
2 qC((q′, q))

]
, (6.11)

where the function N (q′, q) contains the product of two
Jacobians and reads

N (q, q′) =
√

E(q) + E(q + q′)
√

E(q′) + E(q + q′)
4E(q + q′)

×
4
√

(E(q) + E(q + q′))2 − q′2 4
√

(E(q′) + E(q + q′))2 − q2

√
E(q)E(q′)

, (6.12)

and the function C(q, q′) is calculated as

C(q′, q) = 1 + E(q′) − E(q′ + q)

E(q′) + E(q′ + q) +
√

(E(q′) + E(q′ + q))2 − q2
. (6.13)

These permutation operators, which change the order of cou-
pling, are essentially Racah coefficients for the Poincaré group.
In the nonrelativistic case the functions N (q′, q) and C(q′, q)
both reduce to the constant 1 and have the relatively compact
form of the matrix elements of P given in, for example,
Refs. [11,12]. Since both functions depend on magnitudes
as well as angles between the momentum vectors, the 3D
formulation is very appropriate for our relativistic calculations.
To illustrate the momentum and angle dependence we display
in Fig. 1 the function C(q′, q) for a given value of |q′| =
0.65 GeV as a function of |q| and several values of the angle
y = q̂′ · q̂. In general the values of C drop below 1 as q

increases. The angle dependence is strongest for small q, where
for q̂′ · q̂ = −1 the function is larger than 1. For the same fixed

value of |q′| we display the function N (q′, q) in Fig. 2. Here
we see a slowly varying dependence on the momentum |q|
and a strong angle dependence. For small angles (y = 1) the
function N (q′, q) is larger than 1, whereas for large angles
(y = −1) it is reduced from 1 by as much as 20%.

In matrix form the Faddeev equation, Eq. (5.6), has the
form

〈k, q‖T ‖ϕd, q0〉
= 〈k, q‖T1P ‖ϕd, q0〉 + 〈k, q‖T1P (z − M0)−1T ‖ϕd, q0〉.

(6.14)

Since at this stage we are only carrying out first-order
calculations, we only need to consider the first term. Explicitly
this is given as

〈k, q‖T (W)‖ϕd, q0〉 = 〈k, q‖T1(q, ε)P ‖ϕd, q0〉

=
∫

dk′dq′dk′′dq′′〈k, q‖T1(q, ε)‖k′, q′〉〈k′, q′‖P ‖k′′, q′′〉〈k′′, q′′|ϕd, q0〉

=
∫

dk′dq′dk′′dq′′T1(k, k′, q; ε)δ(q′ − q)ϕd (k′′)δ(q′′ − q0)

×N (q′, q′′)[δ(k′ − k(q′′,−q′ − q′′))δ(k′′ + k(q′,−q′ − q′′))
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+ δ(k′ + k(q′′,−q′ − q′′))δ(p′′ − p(q′,−q′ − q′′))]

= N (q, q0)Ts

(
p, q0 + 1

2
qC(q0, q), q; ε

)
ϕd

(
q + 1

2
q0C(q, q0)

)
. (6.15)

Here the invariant parametric energy ε which enters the
two-body t matrix is given by ε = W −

√
m2 + q2. Since we

consider bosons, the symmetrized two-body transition matrix
Ts is given by

Ts(k, k′, q; ε) = T1(k, k′, q; ε) + T1(−k, k′, q; ε)

= T1(k, k′, q; ε) + T1(k,−k′, q; ε). (6.16)

This expression is the starting point for our numerical
calculations of the transition amplitude in first order. The first
step for an explicit calculation is the selection of independent
variables. Since we ignore spin and isospin dependencies, the
matrix element 〈k, q‖T ‖ϕd, q0〉 is a scalar function of the
variables k and q for a given projectile momentum q0. Thus
one needs five variables to uniquely specify the geometry of
the three vectors k, q, and q0. We follow here the procedure
from Ref. [12] and choose as variables

k = |k|, q = |q|, xk = k̂ · q̂0, xq = q̂ · q̂0,
(6.17)

x
q0
kq = ̂(q0 × q) · ̂(q0 × k).

The last variable, x
q0
kq , is the angle between the two normal

vectors of the k-q0 plane and the q-q0 plane, which are
explicitly given by

̂(q0 × k) = q̂0 × k̂√
1 − (q̂0 · k̂)2

,

(6.18)̂(q0 × q) = q̂0 × q̂√
1 − (q̂0 · q̂)2

.

With these definitions of variables the expression for the
transition amplitude as a function of the five variables from
Eq. (6.17) has the same form as its nonrelativistic counterpart,
and we can apply the algorithm developed in Ref. [12] for
solving it without partial wave decomposition. The only addi-
tional effort is the evaluation of the functions C(q0, q, xq ) and
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FIG. 1. (Color online) The momentum and angle dependence
of the function C(q′, q) from Eq. (6.13) at fixed momentum q ′ =
0.65 GeV.

N (q0, q, xq ). However, this is conceptually and numerically
quite straightforward, since both functions depend on only
one angle, xq .

VII. TWO-BODY TRANSITION OPERATOR AND
RELATIVISTIC DYNAMICS

The kinematic effects related to the use of the relativistic
Racah coefficients have been described in the previous section.
It is left now to obtain the transition amplitude of the
2N subsystem embedded in the three-particle Hilbert space,
Ts(k, k′, q; ε), entering Eq. (6.15). This is a fully off-shell
amplitude depending in addition on the Poincaré-Jacobi mo-
mentum q of the pair. The embedded 2N transition amplitude
satisfies the Lippmann-Schwinger equation

T1(k, k′; q) = V1(k, k′; q) +
∫

dk′′

× V1(k, k′′; q)T1(k′′, k′; q)√
[2

√
m2 + k′2]2 + q2 −

√
[2

√
m2 + k′′2]2 + q2 + iε

,

(7.1)

where the interaction of Eq. (3.24) can be expressed in the
relativistic Jacobi momenta as [31]

V (q) =
√[

2
√

m2 + k2 + v
]2

+ q2

−
√[

2
√

m2 + k2
]2

+ q2. (7.2)

For q = 0 this expression reduces to the interaction
v(k, k′)δ(q − q′), which is the interaction in the two-nucleon
mass operator. In the same limit, Eq. (7.1) reduces to
the familiar Lippmann-Schwinger equation with relativistic
kinetic energies.
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FIG. 2. (Color online) The momentum and angle dependence
of the function N (q′, q) from Eq. (6.12) at fixed momentum q ′ =
0.65 GeV.
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This matrix element is constructed by using the methods
outlined in Eqs. (5.12) and (5.14). First the matrix element
of the right half-shell embedded t operator is evaluated by
using the two-body half-shell transition amplitude, where the
convention of Ref. [35] is employed:

〈k|T1(q; z′)|k′〉 = 〈k|V (q)|k′(−)〉
= 2(Ek′ + Ek)√

4E2
k′ + q2 +

√
4E2

k + q2
t(k, k′; 2Ek′),

(7.3)

with the 2N transition amplitude t(k, k′; 2Ek′) being the
solution of the half-shell Lippmann-Schwinger equation

t(k, k′; 2Ek′) = v(k, k′) +
∫

dk′′ v(k, k′′)t(k′′, k′; 2Ek′)

Ek′ − 2
√

m2 + k′′2 + iε
.

(7.4)

This solution is used as input to Eq. (5.14), which has the form

〈k|T1(q; z)|k′〉
= 〈k|T1(q; z′|k′〉 −

∫
dk′′〈k|T1(q; z)|k′′〉

×
(

1

z −
√

4(m2 + k′′2) + q2
− 1

z′ −
√

4(m2 + k′′2) + q2

)
×〈k′′|T1(q; z′)|k′〉, (7.5)

where T1(z′) is taken to be right half-shell with z′ =√
4(m2 + k′2) + q2 + iε. Note that in this equation the un-

known matrix element is to the left of the kernel.
We refer to T1(k, k′; q) := 〈k|T1(q; z)|k′〉 as the embedded

2N t matrix and to V (k, k′; q) as the embedded interaction.
Matrix elements of T1(z) can be alternatively calculated by
inserting a complete set of eigenstates of the 2N mass
operator m12 = 2

√
k2 + m2 + v, as has been carried out in

Ref. [38] for a relativistic calculation of the triton binding
energy using two-body s waves. Similarly, this method of
spectral decomposition can be used to directly calculate the
matrix elements of the embedded two-body t matrix, as has
been done in another relativistic calculation of the triton
binding energy [39]. The general difficulty with this method
of spectral decomposition is that it requires an integration over
the c.m. half-shell matrix elements t(k, k′; Ek′) in k′, requiring

knowledge of those matrix elements for large values of k′,
which can pose a challenge with respect to numerical accuracy.
To our knowledge, this method has not yet led to a successful
relativistic calculation of scattering observables.

We use Eq. (7.5) to explicitly construct the elements of
the fully off-shell t matrix, which enters the calculation of
the three-body transition amplitude given in Eq. (6.15). For
every off-shell momentum k′ the integral equation, Eq. (7.5),
must be solved for each z. It is worthwhile to note that the
k′′ integration in Eq. (7.5) only involves momenta of the
half-shell t matrices, but no energies. The momenta k and
k′ are fixed by requirements of the three-body calculation,
and they typically are not higher than 7 GeV. We tested
that for converged results the k′′ integration has to go up to
about 12 GeV. The singularities in the two denominators of
Eq. (7.5) do not pose any problems and are handled with
standard subtraction techniques.

To obtain insight into the impact of the embedding for
different values of q, we introduce approximations to the
embedded interaction. First, we completely neglect q in the
embedded interaction, which leads to

V (k, k′; q) → V0(k, k′; q) = v(k, k′). (7.6)

Furthermore, we want to test the leading-order terms in a q/m

and v/m expansion as suggested in Ref. [13],

V (k, k′; q) → V1(k, k′; q) = v(k, k′)
(

1 − q2

8m2

)
(7.7)

and

V (k, k′; q) → V2(k, k′; q)

= v(k, k)

(
1 − q2

8
√

m2 + k2
√

m2 + k′2

)
, (7.8)

and explore their validity as a function of projectile energy.

VIII. CROSS SECTIONS FOR ELASTIC SCATTERING

The calculation of the cross section for elastic scatter-
ing, Eq. (6.5), requires knowledge of the matrix element
〈ϕd, q̂, q0|U |ϕd, q0〉. Using the definition of the operator U ,
Eq. (5.5), inserting a complete set of states, and using for the
matrix elements of the permutation operator the expression
from Eq. (6.11), we obtain

〈ϕd, q‖U‖ϕd, q0〉 = 〈ϕd, q‖P (z − M0) + PT ‖ϕd, q0〉
=

∫
dk′dq′dk′′dq′′〈ϕd, q|k′, q′〉〈k′, q′‖P ‖k′′, q′′〉〈k′′, q′′‖(z − M) + T ‖ϕd, q0〉

=
W −

√
m2 + q2

0 −
√√√√4

(
m2 +

(
q + 1

2
q0C(q, q0)

)2
)

+ q2
0


× 2N (q, q0)ϕd

(∣∣∣∣q0 + 1

2
qC(q0, q)

∣∣∣∣) ϕd

(∣∣∣∣q + 1

2
q0C(q, q0)

∣∣∣∣)
+ 2

∫
d3q ′′N (q, q′′)ϕd

(∣∣∣∣q′′ + 1

2
qC(q′′, q)

∣∣∣∣)
×

〈
q + 1

2
q′′C(q, q′′), q′′‖T ‖ϕd, q0

〉
. (8.1)
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In first order the transition amplitudes reads T = tP ; thus
the final expression for the transition amplitude for elastic

scattering becomes

〈ϕd, q‖U‖ϕd, q0〉 =
W −

√
m2 + q2

0 −
√

4[m2 +
(

q + 1

2
q0C(q, q0)

)2

] + q2
0


× 2N (q, q0)ϕd

(∣∣∣∣q0 + 1

2
qC(q0, q)

∣∣∣∣) ϕd

(∣∣∣∣q + 1

2
q0C(q, q0)

∣∣∣∣)
+ 2

∫
dq′′N (q, q′′)ϕd

(∣∣∣∣q′′ + 1

2
qC(q′′, q)

∣∣∣∣) ϕd

(∣∣∣∣q′′ + 1

2
qC(q′′, q0)

∣∣∣∣)
× Ts

(
(q + 1

2
q′′C(q, q′′)), (q0 + 1

2
qC(q0, q)); ε

)
, (8.2)

where ε = W −
√

m2 − q′′2.
In the following we want to compare a nonrelativistic first-

order calculation to a corresponding relativistic one. Common
to both calculations is the input two-body interaction. In the
relativistic case it is transformed to be two-body scattering
equivalent to the nonrelativistic two-body calculation. Though
we consider only spin-isospin-independent interactions, we
nevertheless can provide qualitative insights for various cross
sections in three-body scattering in the intermediate-energy
regime, which we define as ranging from 200 MeV to 1 GeV
projectile energy. The focus of our investigation will be on how
kinematic and dynamic relativistic effects manifest themselves
at different energies and for different scattering observables.

As model interaction we choose a superposition of two
Yukawa interactions of Malfliet-Tjon type [40] with parame-
ters chosen such that the potential supports a bound state, the
deuteron, at −2.23 MeV. The parameters are given in Ref. [12].
With this interaction we solve the nonrelativistic Faddeev
equation in first order as a basis for all comparisons. Then
we need to construct a phase-equivalent relativistic two-body
interaction. We use the procedure suggested by Kamada and
Glöckle [18] and obtain a two-body interaction v(k, k′) as
the Born term of a relativistic two-body Lippmann-Schwinger
equation. This two-body t matrix, t(k, k′; ε) is the starting
point for all calculations that will be presented in the following.
In principle there are other methods to obtain a phase-shift-
equivalent relativistic potential [20]; however, in this work
we want to focus on the relativistic effects visible in three-
body scattering observables, and thus we use only one fixed
scheme.

Following Ref. [13], as an initial assessment of the quality
of different approximations for the embedded interaction
we solve the relativistic 2N Schrödinger equation for the
deuteron as a function of the momentum |q|, which takes the
form

d (k) = 1√
m2

d + q2 −
√

2E2
km

+ q2

×
∫

dk′V (k, k′; q)d (k′), (8.3)

where md is the rest mass of the deuteron. In Fig. 3
we show the deuteron binding energy εd calculated using
the approximations of the embedded interaction given in
Eqs. (7.6), (7.7), and (7.8). A correctly embedded interaction
should of course not change εd at all. We see that εd based on
the calculation using V0 starts to deviate already for very small
q. The approximation V1 gives reasonable results up to q ≈
0.3 GeV, whereas V2 is good to about 0.6 GeV. In the following
we will see how far these simple estimates are reflected in the
calculation of various scattering observables.

As a first observable we consider the total cross section for
elastic scattering, σel, which is given in Table I for projectile
kinetic energies from 10 MeV up to 1 GeV. Starting from
the nonrelativistic cross section, we successively implement
different relativistic features to study them in detail. First, we
only change the phase-space factor in the calculation (psf)
together with the relativistic transformation from laboratory to
c.m. frame, and only then implement the relativistic kinematics
from the Poincaré-Jacobi coordinates (R-kin). The relativistic
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FIG. 3. (Color online) The deuteron binding in energy calculated
with the embedded interaction V (k, p; q) as a function of q. The
solid line labeled “R” represents the binding energy of −2.23 MeV,
which is independent of q, when the full embedded interaction is
employed. The dotted line is obtained if q is set to zero in the
embedded interaction. The dotted, dash-dotted, and dashed lines show
the approximations to the embedded interaction V0, V1, and V2 as
given in Eqs. (7.6), (7.7), and (7.8), respectively.
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TABLE I. The total c.m. cross section σ for elastic scattering calculated from a Malfliet-Tjon-type potential.
The nonrelativistic total cross section is given in the second column, labeled NR, the relativistic one is given in
the last column, labeled R. The other columns give the total cross section for elastic scattering when different
relativistic features are successively implemented: psf shows the effect of the relativistic phase space factor,
R-kin adds the relativistic kinematic effects resulting from the permutation operator, for V0 the relativistic
two-body LS equation is solved with a c.m. interaction, and Vi(i = 1, 2) denote the approximations of the
embedded interaction given in Eqs. (7.7) and (7.8).

Elab (GeV) NR (mb) psf (mb) R-kin (mb) V0 (mb) V1 (mb) V2 (mb) R (mb)

0.01 100027.1 100766.0 100605.6 100363.2 99288.5 99394.2 99276.9
0.1 398.5 445.0 443.9 418.9 397.5 400.1 399.2
0.2 167.5 185.7 184.5 173.4 163.2 164.5 164.1
0.5 67.6 83.2 81.8 73.5 63.9 65.4 65.4
0.8 42.9 58.6 57.1 48.3 38.7 40.4 40.8
1.0 34.2 49.7 48.1 39.6 29.7 31.5 32.3

phase-space factor alone has a large effect on the size of the
total cross section, as was already observed in Ref. [41].
The kinematic effects of the Poincaré-Jacobi coordinates
have the opposite effect and lower the cross section. However,
all kinematic effects taken together increase the total cross
section by about 6% at 0.2 GeV and by about 40% at 1 GeV.
Introducing relativistic dynamic effects into the calculation
changes this considerably. The full relativistic calculation (R)
lowers the total cross section by about 2% at 0.2 GeV and by
about 6% at 1 GeV, so that in total the relativistic cross section
is smaller than the nonrelativistic one. The approximation V2

of Eq. (7.8) is very good in the energy regime considered: Even
at 1 GeV its result only deviates by about 2% from the full
one. As suggested by the calculations of the deuteron binding
energy, the approximation V1 of Eq. (7.7) is still reasonable at
0.2 GeV, but after that it starts to become worse.

Next we consider the differential cross section for elastic
scattering. In Fig. 4 we show the calculation for 0.2 GeV
projectile kinetic energy. Since differences between the cal-
culations disappear on a logarithmic scale, we also show the
quantity

� =
(

dσ
d�

)
R

− (
dσ
d�

)
NR(

dσ
d�

)
NR

(8.4)

expressed in percentage for the different approximations in
the lower panel of Fig. 4. For the backward angles, θ � 135◦,
which correspond to higher momentum transfer, all relativistic
effects increase the cross section. Here it can be clearly seen
that indeed V0 is a bad approximation, whereas V1 and V2 are
of about the same quality. We also see that there is a small
difference between the calculation based on V2 and the full
result. Similar findings, however without the full calculation,
were presented in Ref. [13]. When going to higher projectile
kinetic energies, we expect that the effects increase. This is
indeed so, as shown in Fig. 5 for the differential cross section at
0.5 GeV projectile kinetic energy. Here the second minimum in
the cross section around 90◦ shows a shift toward larger angles
once relativistic dynamics is included. This phenomenon has
been seen and studied in some electron-deuteron scattering
[42] calculations. To study this shift in more detail we show
in the lower panel of Fig. 5 a restricted angular range. Here

we can see that the relativistic kinematics produces a shift
of the minimum by a few degrees. The magnification shows
that the approximations of the embedded interaction oscillate
by a few degrees around the full solution. At the extreme
backward angles, the relativistic cross section is larger than
the nonrelativistic one, as was the case at 0.2 GeV. To
illuminate the details of the two minima of the cross section
at 0.5 GeV even further, we show in Fig. 6 the two terms
contributing to the operator U for elastic scattering separately.
The curves labeled “1st-U” correspond to the first term in
Eq. (8.2) or the operator P (z − M0) in Eq. (5.5), which
contributes to the structure of the cross section at backward
angles and depends only on the product of two deuteron wave
functions evaluated at shifted momenta. Here the relativistic
calculation is pushed slightly toward smaller angles, indicating
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FIG. 4. (Color online) The differential cross section for elastic
scattering at 0.2 GeV projectile kinetic energy as a function of the
laboratory scattering angle (upper panel). The solid line represents
the fully relativistic calculation. The lower panel shows the relative
deviation � with respect to the corresponding nonrelativistic calcula-
tion. The long-dashed curve labeled “R-kin” represents a calculation
in which only relativistic kinematic effects are incorporated. The
dotted, dash-dotted, and dashed curves show the approximations to
the embedded interaction V0, V1, and V2 as given in Eqs. (7.6), (7.7),
and (7.8), respectively.
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FIG. 5. (Color online) The differential cross section for elastic
scattering at 0.5 GeV projectile kinetic energy as a function of the
laboratory scattering angle. The double-dotted curve labeled “NR”
represents the nonrelativistic calculation, and the solid curve labeled
“R” the corresponding fully relativistic one. The long-dashed curve
labeled “R-kin” represents a calculation in which only relativistic
kinematic effects are incorporated. The dotted, dash-dotted, and
dashed curves show the approximations to the embedded interaction
V0, V1, and V2 as given in Eqs. (7.6), (7.7), and (7.8), respectively.

the effect of the functions C(q, q0). The second term in
Eq. (8.2), represented by the curves labeled “int-U,” contains
an integral over the two-body t matrix and a product of
the deuteron wave functions and basically determines the
structure of the cross section for angles up to about 100◦.
Here we see the shift of the minimum toward higher angles
for the relativistic calculation. The interference of both terms
in the calculation gives the final pattern as seen in Fig. 5.
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FIG. 6. (Color online) The differential cross section for elastic
scattering at 0.5 GeV projectile kinetic energy as a function of
the laboratory scattering angle. The double-dotted curve labeled
“NR” represents the nonrelativistic calculation, and the solid curve
labeled “R” the corresponding fully relativistic one. The two other
sets of curves show the contributions from the two different terms
contributing to the transition operator U in the nonrelativistic (NR)
and relativistic (R) calculation. See text for further discussion.

IX. CROSS SECTIONS FOR BREAKUP PROCESSES

The calculation of the breakup cross section, Eq. (6.4),
requires knowledge of the matrix element 〈k, q‖U0‖φd, q0〉.
Energy conservation requires that in Eq. (6.4) Wf =
Wi ≡ W =

√
4(m2 + k2) + q2 +

√
m2 + q2. This gives a re-

lation between the momenta k and q. In fact, for each
given q the magnitude of k is fixed as ka ≡ |ka| =
1
2

√
W2 − 3m2 − 2W

√
m2 + q2. This leads to

σ c.m.
br = (2π )4

3

E(q0)Ed (q0)

q0W

∫
d�pd�qdqq2 ka

4

×
√

4
(
m2 + k2

a

) + q2 |〈p, q‖U0‖ϕd, q0〉|2 . (9.1)

We will consider here the cross sections for two different
breakup processes, the inclusive breakup, where only one of
the outgoing particles is detected, and the full or exclusive
breakup. To obtain the differential cross section for inclusive
breakup, one still needs to integrate over the solid angle of the
undetected particle to arrive at the invariant cross section:

d3σ c.m.
br

d�qdEq

= (2π )4

3

E(q0)Ed (q0)E(q)q

q0W

∫
d�k

ka

4

×
√

4(m2 + k2
a) + q2 |〈k, q‖U0‖ϕd, q0〉|2 .

(9.2)

Here we changed from the variable dq to the more utilized
dEq . The five-fold differential cross section for exclusive
scattering, where both particles are detected, is given by

d5σ c.m.
br

d�kd�qdEq

= (2π )4

3

E(q0)Ed (q0)E(q)q

q0W
pa

4

×
√

4(m2 + k2
a) + q2 |〈k, q‖U0‖ϕd, q0〉|2 .

(9.3)

Next we need to explicitly evaluate the matrix element
for breakup scattering, 〈k, q‖U0‖ϕd, q0〉, with U0 given in
Eq. (5.5):

〈k, q‖U0‖ϕd, q0〉
= 〈k, q‖T ‖ϕd, q0〉 + 〈k, q‖P12P23T ‖ϕd, q0〉

+ 〈k, q‖P13P23T ‖ϕd, q0〉. (9.4)

The two terms containing the permutations can be calculated
analytically, as we show explicitly for the second term using
the expressions of Eqs. (6.8) and (6.10) for the Poincaré-Jacobi
coordinates:

〈k, q‖P12P23T ‖ϕd, q0〉
=

∫
dq1dq2dq3

∫
dk′dq′〈k, q|q1, q2, q3〉

× 〈q1, q2, q3‖P12P23‖k′, q′〉〈k′, q′‖T ‖ϕd, q0〉
=

∫
dq1dq2dq3

∫
dk′dq′δ(q1 + q2 + q3 − P)n̂

× (q1; q2, q3)n̂(q2; q3, q1)

× δ(q − q1)δ(k − k23)δ(q′ − q2)δ(k′ − k31)

×〈k′, q′‖T ‖ϕd, q0〉. (9.5)
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Taking particle 1 as spectator we can evaluate the momenta qi

explicitly as

q1 = q,

q2 = k − q
2E(k)

(
−k · q√

(2E(k))2 + q2 + 2E(k)
+ E(k)

)
,

(9.6)

q3 = −k − q
2E(k)

(
k · q√

(2E(k))2 + q2 + 2E(k)
+ E(k)

)
.

From this q′ and k′ can be obtained as q′ = q3 and k′ = k31

by inserting the expressions of Eq. (9.6) into Eq. (6.8), leading
to

〈k, q‖P12P23T ‖ϕd, q0〉
= n̂(q1; q2q3)n̂(q2; q3q1)〈k31, q2‖T ‖ϕd, q0〉. (9.7)

In first order we have T = tP , and an explicit evaluation leads
to

〈k, q‖P12P23T ‖ϕd, q0〉
= n̂(q1; q2q3)n̂(q2; q3q1)N (q2, q0)Ts

×
(

k31,q0 + C(q0, q2)

2
q2;ε

)
ϕd

(
q2 + C(q2,q0)

2
q0

)
.

(9.8)

The functions N (q2, q0) and C(q0, q2) are defined in
Eqs. (6.12) and (6.13). The last term in Eq. (9.4),
〈k, q‖P13P23T ‖ϕd, q0〉, is calculated analogously. Having
calculated the matrix element of U0, Eq. (9.4), we can obtain
the differential cross section for inclusive as well as exclusive
breakup scattering. The expressions for the invariant cross
sections in the laboratory variables are derived in Appendix B.

First, we consider inclusive breakup scattering and compare
the cross sections for a nonrelativistic first-order calculation
in the two-body t operator with the corresponding relativistic
one. One can expect that the evaluation of the delta function
in the cross section, Eq. (4.20), will have a substantial effect
on breakup cross sections, since it fixes the relation between
the magnitudes of the vectors k and q. This in turn determines
the maximum allowed kinetic energy the ejected particle is
allowed to have as a function of the emission angle. To get a
global impression of those differences Fig. 7 shows a contour
plot of the differential cross section for inclusive breakup
scattering as a function of the kinetic energy and the emission
angle of the ejected particle for the nonrelativistic and the fully
relativistic calculation. The figure shows that for each angle
the maximum allowed kinetic energy of the ejectile is shifted
in the relativistic calculation toward smaller values compared
to the nonrelativistic calculation. Specifically, one can expect
a shift of the quasi-free scattering (QFS) peak usually studied
in inclusive breakup scattering experiments. In Figs. 8 and
9 we present specific cuts at different constant angles to
study details of the calculation. The upper panel of Fig. 8
shows the entire energy range of the ejectile at emission angle
θ1 = 24◦ on a logarithmic scale; the lower two panels give a
close-up of both peaks on a linear scale. The QFS peak at the
large ejectile energy clearly exhibits a shift toward a slightly
lower energy compared with the peak position calculated

 0  100  200  300  400  500
 0

 45

 90

 135

 180
Elab = 500 MeV 

NR

R

       5
       1

     0.1
   0.001

       5
       1

     0.1
   0.001

E1 [MeV]

θ 1
 [

d
eg

]

FIG. 7. (Color online) The inclusive cross section at 0.5 GeV
laboratory projectile kinetic energy as a function of the energy E of
the emitted particle and its emission angle θ . The angles above the thin
dashed line for larger energies and angles are kinematically forbidden.
The thin lines represent the contours of the nonrelativistic calculation,
whereas the thick lines represent the corresponding contours of the
relativistic calculation.

nonrelativistically. At this angle, relativistic kinematics given
by the phase-space factor and the Poincaré-Jacobi coordinates
(indicated by the line labeled “R-kin”) results in a peak height
that is almost double that of the full relativistic calculation
(shown as a solid line labeled “R”). For breakup scattering we
also study the different approximations to the full calculation
as introduced in Sec. IV. In the QFS peak, which is defined
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FIG. 8. (Color online) The inclusive cross section at 0.5 GeV
laboratory projectile kinetic energy as a function of the energy E

of the emitted particle and a 24◦ emission angle. The upper panel
displays the entire energy range of the emitted particle, whereas the
two lower panels show only the low and the high energies on a
linear scale. The solid line represents the fully relativistic calculation,
and the double-dotted line the corresponding nonrelativistic one. The
long-dashed curve labeled “R-kin” represents a calculation in which
only relativistic kinematic effects are incorporated. The dotted, dash-
dotted, and dashed curves show the approximations to the embedded
interaction V0, V1, and V2 as given in Eqs. (7.6), (7.7), and (7.8),
respectively.
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FIG. 9. (Color online) Same as Fig. 8 but for different fixed angles
of the emitted particle.

by the condition that one of the particles is at rest, even
the crudest approximation V0, Eq. (7.6), is very close to
the full calculation, and the approximations V1 and V2 are
indistinguishable. This is not surprising, since having one
particle at rest means that the remaining two are almost in
their own c.m. frame, and thus “boost” effects should be
extremely small. Note that we work here in the total c.m.
frame. It is quite illuminating to consider the second peak
at very small ejectile kinetic energies. Because the energy
of the particle is very small, it should become essentially
nonrelativistic. This is indeed the case, and the full relativistic
calculation almost coincides with the nonrelativistic one.
Noteworthy is that neither relativistic kinematics alone nor
the approximation V0, which neglects the dependence of the
embedded interaction on the pair momentum, is close to the
nonrelativistic and full relativistic calculations. However, an
approximate consideration of this dependence as given by V1

or V2 seems to suffice. We found that this behavior is similar
for low-energy ejectiles, independent of whether the energy
of the projectile is 0.5 or 1 GeV. In Fig. 9 we show the QFS
peak for two different angles to convey that the increase or
decrease of the height of the peak depends on the emission
angle under consideration. In Fig. 10 we show the QFS peak
calculated for a projectile energy of 0.495 GeV and emission
angles of 18◦ and 24◦, since there is experimental information
available for one of the angles. Here we see that the relativistic
calculation puts the peak at a position consistent with the
data. Because we only carry out a first-order calculation with a
model potential, we are not surprised that the height of the peak
is not described. A similar observation concerning the peak
position was already made in Ref. [44], where a first-order
calculation with two realistic NN interactions was carried
out. To give an indication of how the position of the QFS peak
shifts with increasing projectile energy, we show in Fig. 11
the inclusive cross section for an emission angle of 24◦ for
projectile energies of 0.8 and 1.0 GeV. We see again that in
the QFS regime the approximations V1 and V2 are essentially
indistinguishable from the full calculation. Considering only
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FIG. 10. (Color online) The inclusive cross section at 0.495 GeV
laboratory projectile kinetic energy as a function of the energy E

of the emitted particle and fixed emission angles of 18◦ and 24◦

degrees. The solid line represents the fully relativistic calculation and
the double-dotted line the nonrelativistic one. The long-dashed curve
labeled “R-kin” represents a calculation in which only relativistic
kinematic effects are incorporated. The data are from Ref. [43].

effects of relativistic kinematics results in a peak height twice
as large as the full calculation, indicating that dynamic effects
are very important at those high projectile energies.

When considering exclusive breakup one faces many
possible configurations that could be considered. Since we
are carrying out a model study, we only want to show
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FIG. 11. (Color online) The inclusive cross section at 0.8 GeV
(upper panel) and 1 GeV (lower panel) laboratory projectile kinetic
energy as a function of the energy E of the emitted particle and the
fixed emission angle of 24◦. The notation of the curves is the same as
in Fig. 9.

014010-17



T. LIN, CH. ELSTER, W. N. POLYZOU, AND W. GLÖCKLE PHYSICAL REVIEW C 76, 014010 (2007)
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FIG. 12. (Color online) The exclusive breakup cross section at
0.5 GeV projectile kinetic energy as a function of the ejected particle
kinetic energy for three different configurations defined in the three-
body c.m. frame. For all configurations the angle φpq is 0◦. For the
upper panel the cosine of the angle between q and the beam q0 is
xq = 1 (i.e., the scattering occurs along the beam line), in the middle
panel xq = √

3/2, and in the lower panel xq = −0.25. The cosine
of the angle between p and q0 in the upper panel is xp = 0, in the
middle panel xp = −0.5, and in the lower panel xp = −0.9.

three specific configurations at two selected energies, 0.5 and
1 GeV (see Figs. 12 and 13). In all three configurations
the angle φkq between the projections of the vectors q and
k into the plane perpendicular to the beam direction q0 is
zero. Naive expectation is that when considering scattering
in first order in the t operator the probability that one of
the particles is scattered along the beam is large. That is
indeed the case, as shown in the upper panels of Figs. 12
and 13, depicting a so-called collinear configuration in which
the angle between the vector q and the beam direction q0
is zero (q̂ · q̂0 ≡ xq = 1) and the angle between the vector
p and the beam direction is 90◦ (k̂ · q̂0 ≡ xk = 0). Once the
collinear condition is no longer fulfilled, the cross section
becomes considerably smaller, as can be seen in the middle
and lower panels of Figs. 12 and 13. For the middle panels the
angles are given by xq = √

3/2 and xp = −0.5; for the lower
panels they are xq = −0.25 and xk = −0.9. All configurations
in Figs. 12 and 13 show considerable difference between
the nonrelativistic and relativistic calculations. At 1 GeV we
were specifically looking for possible configurations where
the approximations V1 and V2 of Eqs. (7.7) and (7.8) are no
longer close to the full relativistic calculation. Considering
the two-body binding energy displayed in Fig. 3, one should
expect that the approximation V2 can exhibit deviations from
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FIG. 13. (Color online) Same as Fig. 12 but for projectile energy
1.0 GeV.

the full result at 1 GeV. One such configuration is shown in the
lower panel of Fig. 13, where there is a big difference between
the calculation with V1 and the full result and a discernible
difference between the calculation based on V2 and the full
result. However, we note that, in the majority of configurations
where the cross section is still relatively large, V2 is still a very
good approximation at 1 GeV. For the same configuration at
0.5 GeV, V2, and even V1, are extremely good approximations
to the full result.

X. SUMMARY AND CONCLUSIONS

We investigated relativistic three-nucleon scattering with
spinless interactions in the framework of Poincaré invariant
quantum mechanics. Since that framework is not widely used
in the nuclear physics few-body community we thought it
adequate to discuss the formulation of that scheme in some
detail, as well as the formulation of scattering theory in this
framework. The main points are the construction of unitary
irreducible representations of the Poincaré group, both for
noninteracting particles as well as for interacting ones. The
Poincaré interacting dynamics is constructed by adding an
interaction to the noninteracting mass operator that commutes
with and is independent of the total linear momentum and the
z component of the total spin.

In this work we do not use partial waves but rather
internal vector variables. This leads to what we call Poincaré-
Jacobi momenta. They Wigner rotate under kinematic Lorentz
transformations of the underlying single-particle momenta.
In the interacting three-body mass operator the two-body
interactions are embedded in the three-particle Hilbert space
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and are given as [31]

Vij := Mij − M0 =
√

(m0,ij + vij )2 + q2
k −

√
m2

0,ij + q2
k.

(10.1)

This expression shows explicitly the dependence on the
total momentum of the two-body system. For the sake of
completeness we also discuss multichannel scattering theory
in that relativistic framework and establish the manifestly
invariant form of the differential cross section.

The application to three-body scattering is based on the
Faddeev scheme, which is reformulated relativistically by
working with various types of mass operators. The usage of
the Poincaré-Jacobi momenta leads to algebraic modifications
of corresponding standard nonrelativistic expressions (e.g.,
the momentum representation of the permutation operator
and Jacobians for the transitions between individual Jacobi
momenta). Due to its dependence on the total momentum of
the two-body interaction embedded in the three-body system,
the two-body off-shell t operator entering the Faddeev equation
acquires additional momentum dependence beyond the usual
energy shift characteristic in nonrelativistic calculations. This
two-body t operator is then evaluated by expressing it exactly
in terms of the solution of half-shell Lippmann-Schwinger
equations for a given two-body force in its c.m. frame. We
also solve the relativistic Lippmann-Schwinger equation for
three different momentum-dependent two-body forces, which
are approximations to the relativistic embedded interaction.

To compare a nonrelativistic calculation to a relativistic
one, scattering-equivalent two-body forces in the relativistic
and nonrelativistic formulations have to be used. In this work
we follow the Kamada and Glöckle prescription to arrive
at scattering-equivalent two-body forces. There are different
schemes, and a detailed study on differences among those
schemes will be the subject of a forthcoming work. We also
restrict ourselves to a first-order calculation in the two-body t

operator, which, however, already exhibits most of the new rel-
ativistic ingredients, both kinematically and dynamically. The
two-body force was chosen as a superposition of two Yukawas
of Malfliet-Tjon type supporting a bound state, the deuteron, at
−2.23 MeV. We calculate three-body scattering observables in
the intermediate-energy regime, which we take to range from
0.2 to 1 GeV. Those observables are cross sections for elastic
as well as breakup scattering, namely inclusive and exclusive
scattering. Not surprisingly we find that the difference between
nonrelativistic and relativistic calculations increases with
increasing energy. This is specifically apparent when looking
at the positions of minima in the differential cross section
as well positions of QFS peaks in inclusive scattering. When
studying various approximations to the relativistic embedded
interaction, we find that if the approximations contain terms
proportional to the first order in a p/m and q/m expansion, it
captures the features of the exact relativistic calculation very
well. Only at 1 GeV do we start to find discernible deviations
in selected configurations for exclusive scattering. Our results
clearly indicate an interesting interplay of kinematically and
dynamically relativistic effects, which, as expected, increase
with energy. For example, the total cross section is increased
by kinematical effects, whereas the dynamical effects resulting

from the q dependence of the embedded two-body force
decrease it. This tendency is also seen in the height of the
QFS peak, where in most cases the full calculation is lower
than the one allowing only for relativistic kinematic effects.
Thus, considering only relativistic kinematic effects leads in
general to an overprediction of cross sections, which becomes
more dramatic the higher the projectile energy is.

The Poincaré invariant relativistic framework is formally
close to the nonrelativistic one, and therefore standard nonrel-
ativistic formulations, in our case the Faddeev scheme, can
be used with proper modifications. The present restriction
to a first-order calculation in the t operator will soon
be replaced by a complete solution of the corresponding
relativistic Faddeev equation following Ref. [12], where the
nonrelativistic Faddeev equation has been successfully solved
by employing vector variables. The application to the realistic
world of proton-deuteron (pd) scattering at the energies up
to 1 GeV considered in this study requires of course two-and
three-nucleon forces high above the pion production threshold.
Though these forces are not yet available, they can also be
included in the framework of Poincaré invariant quantum
mechanics.
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APPENDIX A: INVARIANCE OF S AND RELATION TO T

The expressions (4.20) and (4.21) for the differential cross
section can be rewritten in a manifestly invariant form. We
write them as a product of an invariant phase-space factor,
an invariant factor that includes the relative speed, and an
invariant scattering amplitude.

To identify and establish the invariance of the invariant
scattering amplitude note that the scattering operator S is
Poincaré invariant:

U0(�, a)Ŝ = U0(�, a)�†
+(H,H0)�−(H,H0)

= �
†
+(H,H0)U (�, a)�−(H,H0)

= �
†
+(H,H0)�−(H,H0)U0(�, a) = ŜU0(�, a).

(A1)

The Poincaré invariance of the S operator here is a conse-
quence of the intertwining relations for the wave operators,

U (�, a)�±(H,H0) = �±(H,H0)U0(�, a). (A2)

To show the intertwining property of the wave operators first
note that the invariance principle gives the identity

�±(H,H0) = �±(M,M0). (A3)
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The mass operator intertwines by the standard intertwining
properties of wave operators. For our choice of irreducible
basis the intertwining of the full Poincaré group follows
because all of the generators can be expressed as functions of
the mass operator and a common set of kinematic operators,
{K, jz, jx, j

2,−i∇K}, that commute with the wave operators.
The covariance of the S-matrix elements follows from the

Poincaré invariance of the S operator if the matrix elements of
S are computed in a basis with a covariant normalization.

The S-matrix elements can be evaluated in the channel mass
eigenstates. After some algebra one obtains

〈β|Sba|α〉 = lim
τ→∞〈β|eiMβτ e−2iMτ eiMατ |α〉

= 〈β|α〉 + lim
τ→∞

∫ τ

0
dτ ′ d

dτ ′ 〈β|ei(Wβ+Wα−2M)τ ′ |α〉

= 〈β|α〉 lim
ε→0+

[
2iε

Wβ − Wα + 2iε

]
+ lim

ε→0+

[ −4iε

(Wβ − Wα)2 + 4ε2

]
×〈β|(V α + V βG(W̄ + iε)V α)|α〉, (A4)

where Mα|α〉 = Wα|α〉 and Mβ |β〉 = Wβ |α〉 and W̄ :=
1
2 (Wα + Mβ) is the average invariant mass eigenvalue of the
initial and final asymptotic states. In deriving Eq. (A4) the
two strong limits in Eq. (4.6) are replaced a single weak
limit. Equation (A4) is interpreted as the kernel of an integral
operator. S-matrix elements are obtained by integrating the
sharp eigenstates in Eq. (A4) over normalizable functions
of the energy and other continuous variables. To simply this
expression define the residual interactions V α and V β by

V α := M − Mα; V β = M − Mβ, (A5)

where

V α|α〉 = (M − Wα)|α〉; V β |β〉 = (M − Wβ)|β〉. (A6)

The resolvent operators of the mass operator and the channel
mass operator,

G(z) := 1

z − M
, Gα(z) := 1

z − Mα

, (A7)

are related by the second resolvent relations [45]

G(z) − Gα(z) = Gα(z)V αG(z) = G(z)V αGα(z). (A8)

It is now possible to evaluate the limit as ε → 0. It is
important to remember that this is the kernel of an integral
operator.

The first term in square brackets is unity when the initial
and final mass eigenvalues are identical and is zero otherwise;
however, the limit in the brackets is a Kronecker delta and not a
Dirac delta function. For α 	= β, 〈β(W′)|α(W)〉 are Lebesgue
measurable in W′ for fixed W, so there is no contribution from
the first term in Eq. (A4). For the case that Wα = Wβ , we have
〈β(W′)|α(W)〉 ∝ δ(W′ − W). The matrix element vanishes by
orthogonality unless Wβ = Wα , but then the coefficient is
unity. Thus, the first term in Eq. (A4) is 〈β|α〉 if the initial
and final channels are the same, but it is zero otherwise. The
matrix elements also vanish by orthogonality for two different

channels governed by the same asymptotic mass operator with
the same invariant mass. The first term in Eq. (A4) therefore
includes a channel delta function.

For the second term, the quantity in square brackets
becomes −2πiδ(Wβ − Wα), which leads to the relation

〈β|S|α〉 = 〈α|β〉− 2πiδ(Wβ − Wα)〈β|T βα(Wα + i0+)|α〉,
(A9)

where

T βα(z) = V α + V βG(z)V β (A10)

and 〈α|β〉 is zero if the initial and final channels are diff-
erent and is the overlap of the initial and final states if the
initial and final channels are the same. Equation (A9) is exactly
Eq. (4.13).

With our choice of irreducible basis the residual interactions
and the resolvent commute with the total linear momentum
operator, and if the sharp channel states |α〉 and |β〉 are
simultaneous eigenstates of the appropriate partition mass
operator and the linear momentum, then a three-momentum-
conserving delta function can be factored out of the T -matrix
element:

〈β|T βα(Wα + i0+)|α〉
= δ3(Pβ − Pα)〈β‖T βα(Wα + i0+)‖α〉. (A11)

When combined with the three-momentum-conserving delta
function the invariant mass delta function can be replaced by
an energy conserving delta function:

δ(Wβ − Wα) =
∣∣∣∣dW
dE

∣∣∣∣ δ(Eβ − Eα),

∣∣∣∣dW
dE

∣∣∣∣ = W
E

. (A12)

The S-matrix elements can be expressed in terms of the
reduced channel transition operators as follows:

〈β|S|α〉 = 〈α|β〉δβα − i(2π )δ4(Pβ − Pα)

× Wα

Eα

〈β‖T βα(Wα + i0+)‖α〉. (A13)

In this expression the S operator is invariant whereas the single-
particle asymptotic states have a noncovariant normalization.

To extract the standard expression for the invariant ampli-
tude the single-particle states are replaced by states with the
covariant normalization used in the particle data book [36]:

|p, µ〉 −→ |p,µ〉cov = |p, µ〉√2Epm
(2π )3/2. (A14)

The resulting expression

− i(2π )δ4(Pβ − Pα)
Wα

Eα
cov〈β‖T βα(Wα + i0+)‖α〉cov (A15)

is invariant (up to spin transformation properties). Since
the four-dimensional delta function is invariant, the factor
multiplying the delta function is also invariant (up to spin
transformation properties). This means that

cov〈α‖Mαβ‖β〉cov := 1

(2π )3

Wα

Eα
cov〈β‖T βα(Wα + i0+)‖α〉cov

(A16)
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is a Lorentz covariant amplitude. The factor of 1/(2π )3 is
chosen to agree with the normalization convention used in the
particle data book [36].

The differential cross section becomes

dσ = (2π )4

4Emt
(pt )Emb

(pb)vbt

|cov〈p1, . . . , pn,‖Mαβ‖p̄b, p̄t 〉cov|2

× δ4

(∑
i

pi − p̄b − p̄t

)
dp1

2Em1 (2π )3
· · · dpn

2Emn
(2π )3

.

(A17)

The identity

vbt =
√

(pt · pb)2 − m2
bm

2
t

Emb
Emt

(A18)

can be used to get an invariant expression for the relative speed
between the projectile and target and

dn(pb + kt ; p1, . . . , pn)

= δ4

(∑
i

pi − p̄b − p̄t

)
dk1

2Em1 (2π )3
· · · dkn

2Emn
(2π )3

(A19)

is the standard Lorentz invariant phase-space factor. Inserting
these covariant expressions in the definition of the differential
cross section gives the standard formula for the invariant cross
section:

dσ = (2π )4

4
√

(pt · pb)2 − m2
bm

2
t

|cov〈p1, . . . , pn,

×‖Mαβ‖p̄b, p̄t 〉cov|2dn(pb + pt ; p1, . . . , pn). (A20)

Because of the unitarity of the Wigner rotations and the co-
variance of

∣∣
cov〈p1, . . . , pn, ‖Mαβ‖p̄b, p̄t 〉cov

∣∣2
this becomes

an invariant if the initial spins are averaged and the final spins
are summed.

This manifestly invariant formula for the cross section is
identical to Eqs. (4.20) and (4.21); in this form the invariant
cross section can be evaluated in any frame. The index t refers
to the target, which is in our case the deuteron.

APPENDIX B: BREAKUP CROSS SECTION IN THE
LABORATORY FRAME VARIABLES

The total breakup cross section is Lorentz invariant. The
expression for the differential cross sections [Eq. (4.20)]
is given in terms of single-particle variables, whereas the
solutions of the Faddeev equations give transition matrix
elements as functions of the Poincaré-Jacobi momenta defined
in Sec. II. To compute the total cross section it is useful to work
in a single representation. Since the single-particle momenta
are directly related to measured parameters of the differential
cross section, we change variable in the transition amplitudes
from Poincaré-Jacobi moment to single-particle momenta. In
this section the single-particle variables are computed in the
laboratory frame.

The relations between the product of single-particle basis
states and states expressed in terms of the Poincaré-Jacobi
momenta are given by

|pn, pd〉 =
∣∣∣∣ ∂(q0, Pi)

∂(pn, pd )

∣∣∣∣1/2

|q0, Pi〉,

|p1,p2,p3〉 =
∣∣∣∣∂(k,p2 + p3)

∂(p2,p3)

∣∣∣∣1/2 ∣∣∣∣ ∂(q,Pf )

∂(p1,p2 + p3)

∣∣∣∣1/2

|Pf ,k,q〉.
(B1)

The Jacobians in these transformations are

∣∣∣∣ ∂(q0, Pi)

∂(pn, pd )

∣∣∣∣ = E(q0)Ed (q0)Ei

E(pn)Ed (pd )W
,∣∣∣∣∂(k, p2 + p3)

∂(p2, p3)

∣∣∣∣ =
√

(E(k2) + E(p3))2 − (p2 + p3)2(E(p2) + E(p3))

4E(p2)E(p3)
, (B2)∣∣∣∣ ∂(q, Pf )

∂(p1, p2 + p3)

∣∣∣∣ =
√

(E(p2) + E(p3))2 − (p2 + p3)2 + q2E(q)Ef

E(p1)(E(p2) + E(p3))W
.

By defining

�(W, k, q)

= W 2

E2
i

∣∣∣∣ ∂(q0, Pi)

∂(pn, pd )

∣∣∣∣ ∣∣∣∣∂(k, p2 + p3)

∂(p2, p3)

∣∣∣∣ ∣∣∣∣ ∂(q, Pf )

∂(p1, p2 + p3)

∣∣∣∣,
(B3)

the total cross section for breakup scattering becomes

σ lab
br = 1

3

(2π )4

vbt

∫
dp1dp2dp3δ(Ef − Ei)

× δ3(Pf − Pi)�(W, p, q) |〈p, q‖U0‖ϕd, q0〉|2

= 1

3

(2π )4

vbt

∫
dp1dp2δ(Ef − Ei)�(W, p, q)

× |〈p, q‖U0‖ϕd, q0〉|2 , (B4)
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where we used P = Pi = Pf . The δ function in the energy
can be eliminated by a variable change. The total energy

of the system is E = Ei = Ef =
√

m2 + p2
1 +

√
m2 + p2

2 +√
m2 + (P − p1 − p2)2. With p1 ≡ |p1| and p̂2 ≡ p2/|p2| this

gives

dE
dp2

= p2

E(p2)
+ p2 − (P − p1) · p̂2

E − E(p1) − E(p2)

= p2(E − E(p1)) − E(p2)(P − p1) · p̂2

E(p2)E(p3)
. (B5)

Since dp1 = E(p1)/p1dE1 and vbt = pn/E(pn), Eq. (B4)
becomes

σ lab
br = (2π )4

3

E(pn)

pn

∫
d�1d�2dE1

× p1p
2
2E(p1)E(p2)E(p3)

p2(E − E(p1)) − E(p2)(P − p1) · p̂2

×�(W, k, q) |〈k, q‖U0‖ϕd, q0〉|2 (B6)

Inserting the explicit expression of Eqs. (B2) and (B3) we
obtain

σ lab
br = (2π )4

3

E(q0)Ed (q0)

2pnmd

∫
d�1d�2dE1E(q)

×
√

m2 + k2
√

4(m2 + k2) + q2

× p1p
2
2

p2(E − E(p1)) − E(p2)(P − p1) · p̂2

×�(W, k, q) |〈k, q‖U0‖ϕd, q0〉|2 . (B7)

This gives the total invariant cross section as a five-dimensional
integral. We have expressed it as a function of the incident
laboratory momenta.

It follows that the five-fold differential cross section for
exclusive breakup scattering is

d5σ lab
br

d�1d�2dE1
= (2π )4

3

E(q0)Ed (q0)

2pnmd

E(q)

×
√

m2 + k2
√

4(m2 + k2) + q2

× p1p
2
2

p2(E − E(p1)) − E(p2)(P − p1) · p̂2

×�(W, k, q)|〈k, q‖U0‖ϕd, q0〉|2. (B8)

In inclusive breakup scattering only one of the outgoing
particles is detected. Thus the cross section still contains an
integration over the coordinates of the undetected particle.
To calculate this cross section, it is convenient to start again
from Eq. (B4). However, since we need to integrate over the
coordinates of one of the particles, we pick without loss of
generality particle 1 as spectator and use as coordinates

σ lab
br = 1

3

(2π )4

vbt

∫
dp1dkdp23

∣∣∣∣ ∂(p2, p3)

∂(k, p2 + p3)

∣∣∣∣ δ(Ef − Ei)

× δ3(Pf − Pi)�(W, k, q) |〈k, q‖U0‖ϕd, q0〉|2

= 1

3

(2π )4

vbt

∫
dp1dkδ(Ef − Ei)

×�′(W, k, q)|〈k, q‖U0‖ϕd, q0〉|2, (B9)

where we define

�′(W, k, q) =
∣∣∣∣ ∂(p2, p3)

∂(k, p2 + p3)

∣∣∣∣ �(W, k, q). (B10)

Since δ(Ef − Ei) = E
W

δ(Wf − Wi) and dW/dk =
4k/

√
4(m2 + k2) + q2, the integration over k is eliminated,

leading to

σ lab
br = 1

3

(2π )4

vbt

∫
d�1dE1k1E(k1)�′(W, k, q)

×
∫

d�k |〈k, q‖U0‖ϕd, q0〉|2 . (B11)

Inserting Eq. (B10) gives the explicit expression for the
inclusive breakup scattering cross section,

σ lab
br = (2π )4

3

E(q0)Ed (q0)

4pnmd

×
∫

d�1dE1
p1kE(q)(4(m2 + k2) + q2)√

4(m2 + k2) + (P − p1)2

×
∫

d�k |〈k, q‖U0‖ϕd, q0〉|2 , (B12)

and the differential cross section,

d3σ lab
br

d�1dE1
= (2π )4

3

E(q0)Ed (q0)

4pnmd

p1pE(q)(4(m2 + k2) + q2)√
4(m2 + k2) + (P − p1)2

×
∫

d�k |〈k, q‖U0‖ϕd, q0〉|2 . (B13)
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