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Three-body decays of resonant states are studied using integral formulas for decay widths. The theoretical
approach with a simplified Hamiltonian allows semianalytical treatment of the problem. The model is applied
to decays of the first excited 3/2− state of 17Ne and the 3/2− ground state of 45Fe. The convergence of
three-body hyperspherical model calculations to the exact result for widths and energy distributions are studied.
The theoretical results for 17Ne and 45Fe decays are updated, and uncertainties of the derived values are discussed
in detail. Correlations for the decay of the 17Ne 3/2− state are also studied.
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I. INTRODUCTION

The idea of a “true” two-proton radioactivity was proposed
about 50 years ago in the classical paper of Goldansky [1].
The word “true” denotes here that we are dealing not with a
relatively simple emission of two protons, which becomes pos-
sible in every nucleus above the two-proton decay threshold,
but with a specific situation in which one-proton emission
is prohibited either energetically (because of the proton
separation energy in the daughter system) or dynamically
(because of various factors). Only the simultaneous emission
of two protons is possible in that case (see Fig. 1; more details
on the modes of three-body decays can be found in Ref. [2]).
The dynamics of such decays cannot be reduced to a sequence
of two-body decays, and from a theoretical point of view
we have to deal with a three-body Coulomb problem in the
continuum, which is known to be very complicated.

Progress in this field has been quite slow. Only recently,
a consistent quantum mechanical theory of the process was
developed [2–4], which allows one to study the two-proton
(three-body) decay phenomenon in a three-body cluster model.
It has been applied to a range of a light nuclear systems (12O,
16Ne [5], 6Be, 8Li∗,9Be∗ [6], 17Ne∗,19Mg [7]). Systematic
exploratory studies of the heavier prospective 2p emitters 30Ar,
34Ca, 45Fe, 48Ni, 54Zn, 58Ge, 62Se, and 66Kr [4,8] have provided
predictions of lifetime ranges and possible correlations among
fragments.

Experimental studies of the two-proton radioactivity is
presently an actively developing field. Since the first exper-
imental identification of 2p radioactivity in 45Fe [9,10], it has
also been found in 54Zn [11]. Some fingerprints of the 48Ni 2p

decay have been observed, and the 45Fe lifetime and decay
energy have been measured with improved accuracy [12].
There was an intriguing discovery of the extreme enhancement
of the 2p decay mode for the high-spin 21+ isomer of 94Ag,
interpreted so far only in terms of the hyperdeformation of
this state [13]. New experiments aimed at more detailed 2p

decay studies (e.g., the observation of correlations) are under
way at Gesellschaft für Schwerionenforschung (GSI) (19Mg),

Michigan State University (MSU) (45Fe), Grand Accelerateur
National D’Ions Lourds (GANIL) (45Fe), and the University
of Jyväskylä (94Ag).

Several other theoretical approaches have been applied to
the problem in recent years. We should mention the diproton
model [14,15], R-matrix approach [16–19], continuum shell
model [20], and adiabatic hyperspherical approach [21]. Some
issues of a compatibility between different approaches will be
addressed in this work and in the companion paper [22].

Another, possibly very important, field of application of the
two-proton decay studies was shown in Refs. [23,24]. It was
demonstrated in Ref. [23] that the importance of direct resonant
two-proton radiative capture processes was underestimated in
earlier treatment of the rp-process waiting points [25]. The
scale of modification of the astrophysical 2p capture rates
can be as large as several orders of magnitude in certain
temperature ranges. In paper [24] it was found that nonresonant
E1 contributions to three-body (two-proton) capture rates can
also be much larger than was expected before. The updated
2p astrophysical capture rate for the 15O(2p, γ )17Ne reaction
appears to be competing with the standard 15O(α, γ )19Ne
breakout reaction for the hot carbon-nitrogen-oxygen (CNO)
cycle. The improvements of the 2p capture rates obtained in
Refs. [23,24] are connected to consistent quantum mechanical
treatment of the three-body Coulomb continuum in contrast
to the essentially quasiclassical approach typically used in
astrophysical calculations of three-body capture reactions
(e.g., [25,26]).

The growing quality of the experimental studies of the 2p

decays and the high precision required for certain astrophysical
calculations inspired us to revisit the issues connected with the
various uncertainties and technical difficulties of our studies.
In this work, we perform the following: (i) We extend the
two-body formalism of the integral formulas for width to
the three-body case. We perform the relevant derivations for
the two-body case to make the necessary approximations and
assumptions explicit. (ii) We formulate a simplified three-body
model which has many dynamical features similar to the
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FIG. 1. Energy conditions for different modes of the two-nucleon
emission (three-body decay): (a) true three-body decay, (b) sequential
decay.

realistic case, but allows the exact semianalytical treatment
and thus makes possible a precise calibration of three-body
calculations. It is also possible to study in detail several
important dependencies of three-body widths in the frame
of this model. (iii) We perform practical studies of some
systems of interest and demonstrate a connection between the
simplified semianalytical formalism and the realistic three-
body calculations.

The unit system h̄ = c = 1 is used in the article.

II. INTEGRAL FORMULA FOR WIDTH

Integral formalisms of width calculations for narrow two-
body states have been known for a long time, e.g., see
Refs. [27,28]. The prime objective of those studies was
α-decay widths. An interesting overview of this field can
be found in Ref. [29]. This approach, in our opinion, did
not produce novel results as the inherent uncertainties of the
method are essentially the same as those of the R-matrix
phenomenology, which is technically much simpler (see, e.g.,
a discussion in Ref. [30]). An important nontrivial application
of the integral formalism was the calculation of widths for
proton emission off deformed states [31,32]. There were
attempts to extend the integral formalism to the three-body
decays, using a formal generalization for the hyperspherical
space [2,33]. These were shown to be difficult with respect to
technical realization and inferior to other methods developed
in Refs. [2,3].

Here we develop an integral formalism for the three-body
(two-proton) decay width in a different way. However, first
we review the standard formalism to define (more clearly) the
approximations used.

A. Width definition, complex energy wave function

For decay studies we consider the wave function (WF) with
complex pole energy

Ẽr = k̃2
r /(2M) = Er − i�/2, k̃r ≈ kr − i�/(2vr ),

where v = √
2E/M . The pole solution for the Hamiltonian

(H − Ẽr )�(+)
lm (r) = (T + V − Ẽr )�(+)

lm (r) = 0

provides the WF with the outgoing asymptotic

�
(+)
lm (r) = r−1ψ

(+)
l (kr)Ylm(r̂). (1)

For the single-channel two-body problem, the pole solution is
formed only for one selected value of angular momentum l.

In the asymptotic region,

ψ
(+)
l (k̃r r)

r>R= H
(+)
l (k̃r r) = Gl(k̃r r) + iFl(k̃r r). (2)

The above asymptotic is growing exponentially

ψ
(+)
l (k̃r r)

r>R∼ exp [+ik̃r r] ≈ exp [+ikrr] exp [+�r/(2vr )]

as a function of the radius at pole energy. This unphysical
growth is connected to the use of time-independent formalism
and could be reliably neglected for the typical radioactivity
time scale as it has a noticeable effect at very large distances.

Applying Green’s procedure to the complex energy WF

�(+)†[(H − Ẽr )�(+)] − [(H − Ẽr )�(+)]†�(+) = 0,

we get for the partial components at pole energy Ẽr

i�ψ
(+)∗
l ψ

(+)
l = 1

2M

[
ψ

(+)∗
l

d2ψ
(+)
l

dr2
− d2ψ

(+)∗
l

dr2
ψ

(+)
l

]
.

After radial integration from 0 to R (here and below, R

denotes the radius sufficiently large that the nuclear interaction
disappears), we obtain

� =

[
ψ

(+)∗
l

(
d
dr

ψ
(+)
l

)
−

(
d
dr

ψ
(+)∗
l

)
ψ

(+)
l

]∣∣∣
r=R

2Mi
∫ R

0

∣∣ψ (+)
l

∣∣2
dr

= jl

Nl

, (3)

which corresponds to a definition of the width as a decay
probability (reciprocal of the lifetime):

N = N0 exp [−t/τ ] = N0 exp [−�t].

The width � is then equal to the outgoing flux jl through the
sphere of sufficiently large radius R, divided by the number of
particles Nl inside the sphere.

Using Eq. (2), the flux in the asymptotic region could be
rewritten for k̃r → kr in terms of a Wronskian, that is,

jl = 1

2Mi

[
ψ

(+)∗
l

(
d

dr
ψ

(+)
l

)
−

(
d

dr
ψ

(+)∗
l

)
ψ

(+)
l

]∣∣∣∣
r=R

= (kr/M)W (Fl(krR),Gl(krR)) = vr, (4)

where the Wronskian for the real energy functions Fl,Gl is

W (Fl,Gl) = GlF
′
l − G′

lFl ≡ 1.

The effect of the complex energy is easy to estimate (actually
without loss of a generality) in a small energy approximation

Fl(kr)
kr→0∼ Cl(kr)l+1, Gl(kr)

kr→0∼ (kr)−l

(2l + 1)Cl

, (5)

where Cl is a Coulomb coefficient (defined, e.g., in Ref. [34]).
The flux is then

jl = k̃rH
(−)
l (k̃∗

r r)H (+)′
l (k̃r r) − k̃∗

r H
(−)′
l (k̃∗

r r)H (+)
l (k̃r r)

2iM

= vr

(
1 − 2l(l + 1)

k2
r

(
�

2vr

)2

+ l × o[�3]

)
.

So, the equality (4) is always valid for l = 0, and for l �= 0 we
get

� 	
(

8

l(l + 1)

)1/2

Er.
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B. Two-body case, real energy WF

Now we need a WF for the real energy E = k2/2M solution
of the Schrödinger equation

(H − E)�k(r) = (T + V nuc + V coul − E)�k(r) = 0,

�k(r) = 4π
∑

l
il(kr)−1ψl(kr)

∑
m

Y ∗
lm(k̂)Ylm(r̂),

in the S-matrix representation, which means that for r > R,

ψl(kr) = i

2
[(Gl(kr) − iFl(kr)) − Sl(Gl(kr) + iFl(kr))].

At resonance energy Er ,

Sl(Er ) = e2iδl (Er ) = e2iπ/2 = −1,

and in the asymptotic region, defined by the maximal size of
the nuclear interaction R,

ψl(krr)
r>R= iGl(krr).

At resonance energy, we can define a “quasibound” WF ψ̃l as
matching the irregular solution Gl and normalized to unity for
the integration in the internal region limited by radius R:

ψ̃l(krr) = (−i)ψl(krr)( ∫ R

0 |ψl(krx)|2dx
)1/2 = −i

ψl(krr)

Nl
1/2 . (6)

Now we introduce an auxiliary Hamiltonian H̄ with
different short range nuclear interaction V̄ nuc,

(H̄ − E)	k(r) = (T + V̄ nuc + V coul − E)	k(r) = 0,

and also construct the other WF in an S-matrix representation

	k(r) = 4π
∑

l
il(kr)−1ϕl(kr)

∑
m

Y ∗
lm(k̂)Ylm(r̂),

ϕl(kr) = i

2
[(Gl(kr) − iFl(kr)) − S̄l(Gl(kr) + iFl(kr))],

for r > R. Or in the equivalent form

ϕl(kr) = exp (iδ̄l)[Fl(kr) cos(δ̄l) + Gl(kr) sin(δ̄l)]. (7)

The Hamiltonian H̄ should provide the WF 	k(r) which at
energy Er is sufficiently far from being a resonance WF;
therefore, for this WF δ̄l(Er ) ∼ 0.

For real energy WFs �k(r) and 	k(r), we can write

	k(r)†[(H − E)�k(r)] − [(H̄ − E)	k(r)]†�k(r) = 0,

ϕ∗
l (V − V̄ )ψl = 1

2M

[
ϕ∗

l

(
d2

dr2
ψl

)
−

(
d2

dr2
ϕ∗

l

)
ψl

]
. (8)

For WFs taken at resonance energy Er , this expression
provides

2M

∫ R

0
ϕ∗

l (V − V̄ )ψldr = 2MiNl
1/2

∫ R

0
ϕ∗

l (V − V̄ )ψ̃ldr

= exp (−iδ̄l) cos(δ̄l)krW (Fl(krR),

×Gl(krR)),

Nl
1/2 = −i exp (−iδ̄l) cos(δ̄l)kr

2M
∫ R

0 ϕ∗
l (V − V̄ )ψ̃ldr

. (9)

From Eqs. (3), (4), and (6) and the approximation ψ
(+)
l ≈ ψl,

it follows that

� = vr∫ R

0

∣∣ψ (+)
l

∣∣2
dr

≈ vr∫ R

0 |ψl|2dr
= vr∣∣N1/2

l

∣∣2 ,

� = 4

vr cos2(δ̄l)

∣∣∣∣
∫ R

0
ϕ∗

l (V − V̄ )ψ̃ldr

∣∣∣∣
2

. (10)

So, the idea of the integral method is to define the internal
normalizations for the WF with resonant boundary conditions
(this is equivalent to determining the outgoing flux for a
normalized “quasibound” WF) by the help of the eigenfunction
of the auxiliary Hamiltonian H̄ , which has the same long-range
behavior and differs only in the compact region.

III. ALTERNATIVE DERIVATION

Let us reformulate the derivation of Eq. (10) in a more
general way, so that the detailed knowledge of the WF structure
for ψl and ψ

(+)
l is not required. It would allow a straightforward

extension of the formalism to the three-body case. We start
from the Schrödinger equation in continuum with solution
�(+) at the pole energy Ẽr = Er + i�/2:

(H − Ẽr )�(+) = (T + V − Ẽr )�(+) = 0. (11)

Then we rewrite it identically via the auxiliary Hamiltonian
H̄ = T + V̄

(H + V̄ − V − Ẽr )�(+) = (V̄ − V )�(+),

(H̄ − Er )�(+) = (V̄ − V + i�/2)�(+). (12)

Thus we can use the real energy Green’s function ḠEr
of

auxiliary Hamiltonian H̄ to “regenerate” the WF with the
outgoing asymptotic

�̄(+) = Ḡ
(+)
Er

(V̄ − V + i�/2)�(+). (13)

At this point in Eq. (13), �̄(+) ≡ �(+) and the bar in the
notation for the “corrected” WF �̄(+) is introduced for later
use to distinguish it from the “initial” WF �(+) [the one
before application of Eq. (13)]. Further assumptions we should
consider separately in two-body and three-body cases.

A. Two-body case

To define the width � by Eq. (3) we need to know the
complex energy solution �(+) at pole energy. For narrow states
� 	 Er, this solution can be obtained in a simplified way
using the following approximations.

(i) For narrow states, we can always choose the auxiliary
Hamiltonian in such a way that � 	 V̄ − V , and we
can assume � → 0 in the Eq. (13).

(ii) Instead of a complex energy solution �(+) in the
right-hand side of Eq. (13), we can use the normalized
real energy quasibound solution �̃ defined for one real
resonant value of energy Er = k2

r /2M , that is,

Nl =
∫

d�

∫ R

0
drr2|�̃lm(r)|2 ≡ 1.
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So, Eq. (13) is used in the form

�̄
(+)
lm = Ḡ

(+)
Er

(V̄ − V )�̃lm. (14)

The solution �̄(+) is matched to the function

h
(+)
l (kr) = Gl(kr) + iFl(kr), (15)

while the solution �̃ is matched to the function Gl . For deep-
subbarrier energies, it is reasonable to expect that in the internal
region r � R,

Gl 
 Fl → ‖Re[�̃(+)]‖ ≈ ‖�̃‖ 
 ‖Im[�̃(+)]‖,
where tildes denote that WFs are normalized in the internal
region. In the single-channel case, it can be shown by direct
calculation that an approximate equality

MR2�

π
‖Re[�̃(+)]‖ >∼ ‖Im[�̃(+)]‖

holds in the internal region, and thus for narrow states � 	 Er,

the approximation (13) → (14) should be very reliable.
To derive Eq. (10), the WF with an outgoing asymptotic

is generated using the Green’s function of the auxiliary
Hamiltonian H̄ and the “transition potential” (V − V̄ ). The
standard two-body Green’s function is

Ḡ
(+)
k2/(2m)(r, r′) = 2M

krr ′
∑

l

{
ϕl(kr)h(+)

l (kr ′), r � r ′

h
(+)
l (kr)ϕl(kr ′), r > r ′

}

×
∑

m
Ylm(r̂)Y ∗

lm(r̂ ′), (16)

where the radial WFs h
(+)
l and ϕl of the auxiliary Hamiltonian

are defined in Eqs. (15) and (7).

�̄
(+)
lm (r) =

∫
dr′Ḡ(+)

k2/(2m)(r, r′)(V̄ − V )�̃l′m′(r′).

For the asymptotic region r > R,

�̄
(+)
lm (r) = 2M

krr
h

(+)
l (krr)Ylm(r̂)

×
∫ R

0
dr ′ϕl(krr

′)(V̄ − V )ψ̃l(kr , r
′).

The outgoing flux is then calculated [see Eq. (4)]

jl = R2

2l + 1

∑
m

∫
d�

1

M
Im

[
�̄

(+)∗
lm (r)∇�̄

(+)
lm

]∣∣
r=R

.

As far as function �̃ is normalized by construction, then

� ≡ jl = 4

vr

∣∣∣∣
∫ R

0
drϕl(krr)(V̄ − V )ψ̃l(kr , r)

∣∣∣∣
2

. (17)

Note, that this equation differs from Eq. (10) only by a factor of
1/(cos2[δ̄l]) which should be very close to unity for sufficiently
high barriers.

B. Simplified model for three-body case

In papers [2,3], the widths for three-body decays were
defined by the following procedure. We solve numerically the

three-body problem

(H − E3r )�̃ = 0.

The equation is solved using the hyperspherical harmonic
(HH) method with some box boundary conditions (e.g., zero
or quasibound in diagonal channels at large distances) getting
the WF �̃ (normalized in the finite domain) and the value
of the real resonant energy E3r . Thereupon we search for the
outgoing solution �(+) of the equation

(H − E3r )�(+) = −i�/2�̃

with the approximate boundary conditions of a three-body
Coulomb problem (see Ref. [2] for details) and arbitrary �.
The width is then defined as the flux through the hypersphere
of the large radius divided by normalization within this radius:

� = j

N
=

∫
d�5 �(+)∗ρ5/2 d

dρ
ρ5/2�(+)

∣∣∣
ρ=ρmax

M
∫

d�5
∫ ρmax

0 ρ5dρ|�(+)|2 . (18)

The three-body WF with outgoing asymptotic is

�
(+)
JM (ρ,�5) = ρ−5/2

∑
Kγ

χ
(+)
Kγ (ρ)J JM

Kγ (�5), (19)

where the definitions of the hyperspherical variables ρ,�5 and
hyperspherical harmonics J JM

Kγ can be found in Ref. [4].
Here we formulate the simplified three-body model in the

way which, on one hand, keeps the important dynamical
features of the three-body decays (typical sizes of the nuclear
potentials, typical energies in the subsystems, correct ratios of
masses, etc.), and, on the other hand, allows a semianalytical
treatment of the problem. Two types of approximations are
made here.

The three-body Coulomb interaction is

V coul = Z1Z2α

X
+ Z1Z3α∣∣∣Y + A2X

A1+A2

∣∣∣ + Z2Z3α∣∣∣Y − A1X
A1+A2

∣∣∣ , (20)

where α is the fine structure constant. By convention, see, e.g.,
Fig. 2, in the “T” Jacobi system, the core is particle number 3
and in the “Y” system it is particle number 2. We assume that
the above potential can be approximated by Coulomb terms
which depend on Jacobi variables X and Y only, that is,

V coul
x (X) = Zxα

X
, V coul

y (Y ) = Zyα

Y
,

(in reality for small X and Y values, the Coulomb form
factors of the homogeneously charged sphere with radius rsph

N2
(c) N2N1

N2N1

X , lx

Y , ly

corecore

Y , ly
X , lx

(b)N1

core

r1 , l1

(a)

r2 , l2

FIG. 2. Single-particle coordinate systems: (a) V system typical
for a shell model. (b) T Jacobi system, where the diproton and core
are explicitly in configurations with definite angular momenta lx and
ly . (c) Y Jacobi system, which for a heavy core, is close to the
single-particle system (a).
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are always used). The effective charges Zx and Zy could be
considered in two ways.

(i) We can neglect one of the Coulomb interactions. This
approximation is consistent with the physical situation
of a heavy core and treatment of two final state
interactions. Such a situation presumes that the Y Jacobi
system is preferable and there is a symmetry in the
treatment of the X and Y coordinates, which are close
to shell-model single-particle coordinates:

Zx = Z1Zcore, Zy = Z2Zcore. (21)

Further we refer to this approximation as the “no
p-p Coulomb” case, as typically the proton-proton
Coulomb interaction is neglected compared to the
Coulomb interaction of a proton with a heavy core.

(ii) We can also consider two particles on the X coordinate
as one single particle. The Coulomb interaction in
the p-p channel is thus somehow taken into account
effectively via a modification of the Zy charge:

Zx = Z1Zcore, Zy = Z2(Zcore + Z1). (22)

Below we call this situation the “effective p-p
Coulomb” case.

For nuclear interactions, we can make the following
assumptions:

(i) There is only one nuclear pairwise interaction and

H = T + V3(ρ) + V coul
x (X)

+V nuc
x (X) + V coul

y (Y ),

�V (X, Y ) = V nuc
y (Y ) − V3(ρ). (23)

This approximation is good for methodological pur-
poses, as it allows us to focus on one degree of freedom
and isolate it from the others. From a physical point of
view, it could be reasonable if only one FSI is strong,1

or we have reason to think that the decay mechanism
associated with this particular FSI is dominating.
Potential V nuc

y (Y ) in the auxiliary Hamiltonian (27) is
“unphysical” in that case and can be put to zero.2 We
further refer to this model as “one final state interaction”
(OFSI).

1A realistic example of this situation is the case of “E1” (coupled
to the ground state by the E1 operator) continuum considered in
Ref. [24]. This case is relevant to the low energy radiative capture
reactions, important for astrophysics, but deal with nonresonant
continuum only.

2An interesting numerical stability test is a variation of the un-
physical (for OFSI approximation) potential V nuc

y (Y ) in the auxiliary
Hamiltonian (27). It can be used for numerical tests of the procedure
as it should not influence the width. Really, for variation of this
potential from weak attraction (we should not allow an unphysical
resonance into the decay window) to strong repulsion (scale of the
variation is tens of MeV for potential with some typical radius) the
width is varied only within a couple of percents. This shows high
numerical stability of the procedure.

(ii) We can consider two final state interactions (TFSI). A
simple form of Green’s function in that case can be
preserved only if the core mass is considered as infinite
(the X and Y coordinates in the Y Jacobi system co-
incide with single-particle core-p coordinates). In that
case, both pairwise interactions V nuc

x (X) and V nuc
y (Y )

are treated as “physical,” which means that they are both
present in the initial and in the auxiliary Hamiltonians.
Thus only the three-body potential “survives” the
V̄ − V subtraction:

H = T + V3(ρ) + V coul
x (X) + V nuc

x (X)

+V coul
y (Y ) + V nuc

y (Y ),

�V (X, Y ) = −V3(ρ). (24)

The three-body potential is used in this work in the Woods-
Saxon form

V3(ρ) = V 0
3 (1 + exp [(ρ − ρ0)/aρ])−1, (25)

with ρ0 = 5 fm for 17Ne, ρ0 = 6 fm for 45Fe,3 and a small
value of diffuseness parameter aρ = 0.4 fm. Use of such three-
body potential is an important difference from our previous
calculations, where it was utilized in the form

V3(ρ) = V 0
3 (1 + (ρ/ρ0)3)−1, (26)

which provides the long-range behavior ∼ρ−3. Such an
asymptotic in the ρ variable is produced by short-range
pairwise nuclear interactions, and thus the interpretation of
three-body potential (26) is phenomenological taking into
account those components of pairwise interactions which were
omitted for some reason in the calculations. In this work, the
aim of the potential V3 is different. On the one hand, we would
like to keep the three-body energy fixed while varying the
properties (and number) of pairwise interactions. On the other
hand, we do not want to change the properties of the Coulomb
barriers beyond the typical nuclear distance (this is achieved
by the small diffuseness of the potential). Thus the potential
(25) is phenomenological taking into account interactions that
act only when both valence nucleons are close to the core (both
move in the mean field of the nucleus).

The auxiliary Hamiltonian is taken in the form that allows
a separate treatment of X and Y variables, that is,

H̄ = T + V coul
x (X) + V nuc

x (X) + V coul
y (Y ) + V nuc

y (Y ). (27)

In this formulation of the model, the Coulomb potentials are
fixed as shown above. The nuclear potential V nuc

x (X) [and
V nuc

y (Y ) if present] defines the position of the state in the X

[and Y ] subsystem. The three-body potential V3(ρ) defines
the position of the three-body state, which is found using
the three-body HH approach of Refs. [2,4]. After that, a new
WF with outgoing asymptotic is generated by means of the
three-body Green’s function which can be written for Eq. (27)
in a factorized form (without paying attention to the angular

3These values can be evaluated as a typical nuclear radius (here
potential radius) for the system multiplied by

√
2; i.e., 3.53

√
2 ≈ 5

and 4.29
√

2 ≈ 6.
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coupling)

G
(+)
E3r

(XY, X′Y′) = 1

2πi

∫ ∞

−∞
dExG

(+)
Ex

(X, X′)G(+)
Ey

(Y, Y′),

where E3r = Ex + Ey (Ex,Ex are energies of subsystems).
The two-body Green’s functions in the expressions above
are defined as in Eq. (16) via eigenfunctions of the sub-
Hamiltonians{

H̄x − Ex = Tx + V coul
x (X) + V nuc

x (X) − Ex,

H̄y − Ey = Ty + V coul
y (Y ) + V nuc

y (Y ) − Ey.

In the OFSI case, the nuclear potential in the Y subsystem
should be V nuc

y (Y ) ≡ 0. The “corrected” continuum WF �̄(+)

is

�̄(+)(X, Y) = 1

2πi

∫
dX′dY′

∫ ∞

−∞
dExG

(+)
Ex

(X, X′)

×G
(+)
Ey

(Y, Y′)�V (X′, Y ′)�(+)(X′Y′).

The “initial” solution �(+) of Eq. (19) rewritten in the
coordinates X and Y is

�
(+)
JM (X, Y) = ϕLlx lyS(X, Y )

XY
[[ly ⊗ lx]L ⊗ S]JM. (28)

The asymptotic form of the “corrected” continuum WF �̄
(+)
JM

is

�̄
(+)
JM (X, Y) = 1

2πi

E3r

XY

∫ 1

0
dε

4

vx(ε)vy(ε)
A(ε)

× eikx (ε)X+iky (ε)Y [[ly ⊗ lx]L ⊗ S]JM,

Ex = εE3r , Ey = (1 − ε)E3r , vi(ε) =
√

2Ei/Mi,

A(ε) =
∫ R

0
dX′

∫ R

0
dY ′ϕlx (kx(ε)X′)ϕly (ky(ε)Y ′)

×�V (X′, Y ′)ϕLlx lyS(X′, Y ′). (29)

The corrected outgoing flux jc can be calculated on the sphere
of the large radius for any of two Jacobi variables. For example,
for the X coordinate, we have 4

jc(E3r ) = Im

[
X2

∫
d�x

∫
dY

(
�̄(+)∗ ∇X

Mx

�̄(+)

)]∣∣∣∣
X→∞

= E2
3r

∫ 1

0
dε

A∗(ε)

2π

4

vxvy

∫ 1

0
dε′ kx(ε)

Mx

A(ε′)
2π

× 4

v′
xv

′
y

2πδ(ky(ε′) − ky(ε)). (30)

Values v′
i above denote vi(ε′). The flux is obtained as

jc(E3r ) = 8

π
E3r

∫ 1

0
dε

1

vx(ε)vy(ε)
|A(ε)|2. (31)

4The derivation of the flux here is given in a schematic form. The
complete proof is to bulky to be provided in the limited space.
We mention only that it is easy to check directly that the derived
expression for flux preserves the continuum normalization.

In principle, the widths obtained with both fluxes in Eqs. (18)
and (31) should be equal, that is,

� = j

N
≡ �c = jc

N
. (32)

This is the idea of the calibration procedure for the simplified
three-body model. The convergence of the HH method (for
WF �

(+)
JM ) is expected to be fast in the internal region and

much slower in the distant subbarrier region. This should
affect the width � calculated in the HH method, which is
sensitive to the asymptotic behavior of the WF. However, the
procedure for calculation of the “corrected” width �c is exact
under the barrier, and it is sensitive only to HH convergence
in the internal region, which is achieved easily. Below we
demonstrate this in particular calculations.

IV. DECAYS OF THE 17Ne 3/2− AND 45Fe 3/2− STATES
IN A SIMPLIFIED MODEL

In this section, when we refer to widths of 17Ne and 45Fe we
always mean the 17Ne 3/2− state (E3r = 0.344 MeV) and the
45Fe 3/2− ground state (E3r = 1.154 MeV) calculated in very
simple models. We expect that important regularities found
for these models should be true also in realistic calculations.
However, particular values obtained in realistic models may
differ significantly, and this issue is considered specially in the
Sec. V.

To keep only the most significant features of the systems,
we assume a pure sd structure (lx = 0, ly = 2) for 17Ne and
a pure p2 structure (lx = 1, ly = 1) for 45Fe in the Y Jacobi
system (see Fig. 2). Spin dependencies of the interactions are
neglected. The Gaussian form factor

V nuc
i (r) = Vi0 exp [−(r/r0)2],

where i = {x, y} is taken for 17Ne (see Table I), and a standard
Woods-Saxon form factor is used for 45Fe (see Table II),

V nuc
i (r) = Vi0[1 + exp [(r − r0)/a]]−1. (33)

The simplistic structure models can be expected to overes-
timate the widths. There should be a considerable weight of d2

component (lx = 2, ly = 2) in 17Ne and f 2 component (lx =
3, ly = 3) in 45Fe. Also, the spin-angular coupling should lead
to splitting of the single-particle strength and corresponding
reduction of the width estimates (e.g., we assume one s-wave
state at 0.535 keV in the X subsystem of 17Ne, while in reality
there are two s-wave states in 16F: 0− at 0.535 MeV and 1− at
0.728 MeV). Thus, the results of the simplified model should
most likely be regarded as upper limits for widths.

A. One final state interaction: Core- p channel

First we take into account only the 0.535 MeV s-wave two-
body resonance in the 16F subsystem (this is the experimental
energy of the first state in 16F). Convergence of the 17Ne
width in a simplified model for the Y Jacobi system is shown
in Fig. 3. The convergence of the corrected width �c as a
function of Kmax is very fast: Kmax > 8 for the width is stable
within ∼1%. For the maximal achieved in the fully dynamic
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TABLE I. Parameters for 17Ne calculations. Potential parameters
for 15O+p channel in s wave (Vx0 in MeV, r0 = 3.53 fm) and 16F+p

channel in d wave (Vy0 in MeV). Radius of the charged sphere
is rsph = 3.904 fm. Widths �i of the state in the subsystem and
experimental width values �exp for really existing at these energies
states are given in keV. The corrected three-body width �c is given
in the units 10−14 MeV. TFSI calculations with the d-wave state at
1.2 MeV are made with the s-wave state at 0.728 MeV.

E2r lx (ly) Vx0 (Vy0) �x (�y) �exp �c

0.258 0 −14.4 0.221 144
0.275 0 −14.35 0.355 16.6
0.292 0 −14.3 0.544 7.75
0.360 0 −14.1 2.09 2.34
0.535 0 −13.55 17.9 25(5) [35] 0.545
0.728 0 −12.89 72.0 70(5) [35] 0.211
1.0 0 −12.0 252 0.093
2.0 0 −9.0 ∼1500 0.021
0.96 2 −87.06 3.5 6(3) [35] 4.73a

1.256 2 −85.98 12.2 <15 [36] 2.0a

0.96 2 −66.46 3.6 6(3) [35] 1.37b

1.256 2 −65.4 13.7 <15 [36] 0.584b

aThis is the TFSI calculation with “no p-p” Coulomb, r0 =
2.75 fm.

bThis is the TFSI calculation with “effective” Coulomb, r0 =
3.2 fm.

calculation Kmax = 24, the three-body width � is calculated
within 30% precision. Further increase of the effective basis
size is possible within the adiabatic procedure based on the
so-called Feschbach reduction (FR).

The Feschbach reduction is a procedure that eliminates
from the total WF � = �p + �q an arbitrary subspace q using
the Green’s function of this subspace:

Hp = Tp + Vp + VpqGqVpq.

In a certain adiabatic approximation, we can assume that
the radial part of kinetic energy is small and constant under
the centrifugal barrier (in the channels where the centrifugal
barrier is much higher than any other interaction). In this
approximation, the FR procedure becomes trivial, as it is
reduced to the construction of effective three-body interactions

TABLE II. Parameters for 45Fe calculations. Potential parameters
for p-wave interactions [Eq. (33)] in 43Cr+p channel (Vx0 in MeV,
r0 = 4.236 fm, rsph = 5.486 fm) and 44Mn+p (Vy0 in MeV, r0 =
4.268 fm, rsph = 5.527 fm), a = 0.65 fm. Calculations are made with
the “effective Coulomb” of Eq. (22). Widths �x, �y of the states in
the subsystems are given in keV. Corrected three-body widths are
given in units of 10−19 MeV.

E2r Vx0 �x Vy0 �y �c

1.0 −24.350 4.3 × 10−3 −24.54 2.1 × 10−3 23.4
1.2 −24.03 0.032 −24.224 0.018 10.4
1.48 −23.58 0.26 −23.78 0.15 4.94
2.0 −22.7 3.6 −22.93 2.3 2.02
3.0 −20.93 58 −21.19 44 0.74
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14
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M
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FIG. 3. Convergence of the 17Ne width in a simplified model
in the Y Jacobi system. OFSI model with experimental position
E2r = 0.535 KeV of the s-wave two-body resonance. Diamonds show
the results of dynamic HH calculations. Solid curves correspond to
calculations with effective FR potentials.

V eff
Kγ,K ′γ ′ by matrix operations

G−1
Kγ,K ′γ ′ = (H − E)Kγ,K ′γ ′ = VKγ,K ′γ ′

+
[
Ef − E + (K + 3/2)(K + 5/2)

2Mρ2

]
δKγ,K ′γ ′ ,

V eff
Kγ,K ′γ ′ = VKγ,K ′γ ′ +

∑
VKγ,K̄γ̄ GK̄γ̄ ,K̄ ′γ̄ ′VK̄ ′γ̄ ′,K ′γ ′ .

Summation over indexes with bar is made for eliminated
channels. No strong sensitivity to the exact value of the
“Feshbach energy” Ef is found, and we take it as Ef ≡ E

in our calculations. More detailed account of the procedure
applied within HH method can be found in Ref. [37].

It can be seen in Fig. 3 (solid line) that the Feschbach
reduction procedure drastically improves the convergence.
However, the calculation converges to a width value, which
is somewhat smaller than the corrected width value (that
should be exact). The reason for this effect can be understood
if we make a reduction to a smaller “dynamic” basis size
(Kmax = 12, gray line). The calculation in these conditions also
converges, but even to a smaller width value. We can conclude
that the FR procedure allows us in any case to approach the
real width value from below, but it provides a precise result
only for sufficiently large size of the dynamic sector of the
basis.

The next issue to be discussed is a convergence of the
width in calculations with different positions E2r of the two-
body resonance in the core+p subsystem. It is demonstrated
for several energies E2r in Fig. 4. When the resonance
in the subsystem is absent (or located relatively high), the
convergence of the width value to the exact result is very fast
both in the pure three-body and in the corrected calculation (in
that case, however, much faster). Here even FR is not required,
as the convergent result is achieved in the HH calculations by
Kmax = 10–24. The closer the two-body resonance approaches
the decay window, the worse is the convergence of the HH
calculations. At energy E2r = 360 keV (which is already close
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m
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FIG. 4. Convergence of widths in OFSI model for different
positions E2r of the two-body resonance in the core-p channel
(Y Jacobi system). For Kmax > 24, the value of Kmax denotes the
size of the basis for the Feshbach reduction to Kmax = 24.

to the three-body decay window E3r = 344 keV) even the FR
procedure provides a convergence to the width value which is
only about 65% of the exact value.

In Fig. 5, the calculations with different E2r values
are summarized. The width grows rapidly as the two-body
resonance moves closer to the decay window. The penetrability
enhancement provided by the two-body resonance even before
it moves into the three-body decay window is very important.
Difference of widths with no core-p FSI and FSI providing
the s-wave resonance to be at its experimental position
E2r = 0.535 MeV is more than two orders of magnitude.
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Γ 
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   Kmax = 24
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  Transition region 
E2r = (0.7−0.85) E3r
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FIG. 5. Width of the 17Ne 3/2− state as a function of two-body
resonance position E2r . Dashed, dotted, and solid lines show cases of
pure HH calculations with Kmax = 24, the same but with Feshbach
reduction from Kmax = 100, and the corrected width �c. Inset shows
the same, but as a function of the potential depth parameter Vx0. Gray
area shows the transition region from the three-body to the two-body
decay regime. The gray curve shows the simple analytical dependence
of Eq. (34).
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FIG. 6. Convergence of energy distribution for 17Ne in the
Y Jacobi system.

The convergence of HH calculations also deteriorates as E2r

moves closer to the decay window. However, the disagreement
between the HH width and the exact value is within an
order of magnitude, until the resonance achieves the range
E2r ∼ (0.7–0.85)E3r . Within this range, a transition from
the three-body to the two-body regime happens (see also
discussion in Ref. [8]), which can be seen as a drastic change
of the width dependence on E2r . This means that a sequential
decay via two-body resonance E2r becomes more efficient
than the three-body decay. In that case, the hyperspherical
expansion cannot treat the dynamics efficiently any more, and
the disagreement with an exact result becomes as large as
orders of magnitude. The decay dynamics in the transition
region is also discussed in details below.

It can be seen in Fig. 5 that in the three-body regime, the
dependence of the three-body width follows well the analytical
expression

� ∼ (E3r/2 − E2r )−2. (34)

The reasons for such a behavior will be clarified in the
companion paper [22]. The deviations from this dependence
can be found in the decay window (close to the “transition
regime”) and at higher energies. This dependence is quite
universal; e.g., for 45Fe it is demonstrated in Fig. 14,
where it follows the calculation results even with higher
precision.

Another important issue is a convergence of energy dis-
tributions in the HH calculations, demonstrated in Fig. 6 for
calculations with E2r = 535 keV. The distribution is calculated
in the Y Jacobi system; thus Ex is the energy between the core
and one proton. The energy distribution convergence is fast:
the distribution is stable at Kmax = 10–14 and does not change
visibly with a further increase of the basis. There remains a
visible disagreement with the exact (corrected) results, which
give a narrower energy distribution. We think that this effect
was understood in our work [4]. The three-body calculations
are typically done for ρmax ∼ 500–2000 fm (ρmax = 1000 fm
everywhere in this work). It was demonstrated in Ref. [4] by
construction of classical trajectories that we should expect a
complete stabilization of the energy distribution in the core+p
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FIG. 7. Energy distributions for 17Ne in the Y Jacobi system for
different two-body resonance positions E2r . The three-body decay
energy is E3r = 0.344 MeV. The distributions are normalized to have
unity value on a maximum of three-body components. The values
near the peaks show the fraction of the total intensity concentrated
within the peak. Note the change of the scale on the vertical
axis.

subsystem at ρmax ∼ 30 000–50 000 fm, and the effect on the
width of the energy distribution should be comparable to the
one observed in Fig. 6.

The evolution of the energy distribution in the core+p

subsystem with variation of E2r is shown in Fig. 7. When
we decrease the energy E2r the distribution is very stable
until the two-body resonance enters the three-body decay
energy window. After that, first the peak at about ε ∼ 0.5
drifts to a higher energy, and then for E2r ∼ 0.85E3r the
noticeable second narrow peak for sequential decay is formed.
At E2r ∼ 0.7E3r the sequential peak becomes so high that the
three-body component of the spectrum practically disappears
in the background.

The result concerning the transition region obtained in this
model is consistent with the conclusion of Ref. [8] (where a
much simpler model was used for making estimates). Three-
body decay is the dominant decay mode not only when the
sequential decay is energy prohibited as E2r > E3r , but also
when the sequential decay is formally allowed (because E2r <

E3r ) but does not take place in reality because of Coulomb
suppression at E2r >∼ 0.8E3r .

Geometric characters of potentials can play an important
role in the width convergence. To test this aspect of the
convergence, we have also made calculations for the potential
with a repulsive core. This class of potentials was employed
in studies of 17Ne and 19Mg in Ref. [7]. A comparison of the
convergence of HH calculations with s-wave 15O+p potential
from Ref. [7] and Gaussian potential is given in Fig. 8. The
width convergence in the case of the “complicated” potential
with a repulsive core is drastically worse than in the “easy” case
of Gaussian potential. For typical dynamic calculations with
Kmax = 20–24, the HH calculations provide only 20–25% of
the width for the potential with a repulsive core. On the other
hand, the calculations with both potentials provide practically
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Potential with repulsive core in s-wave
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m
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17Ne, "Y"-system 

FIG. 8. Convergence of the 17Ne width in a simplified model,
Y Jacobi system. OFSI model with s-wave two-body resonance at
E2r = 0.535 MeV; Gaussian potential and potential with repulsive
core. TFSI model with d-wave two-body resonance at E2r =
0.96 MeV.

the same widths �c,5 and FR provides practically the same and
very well converged results in both cases.

B. One final state interaction: p- p channel

Because two-proton decay is often interpreted as “diproton”
decay, we should also consider this case and study how
important this channel could be. For this calculation, we use
a simple s-wave Gaussian p-p potential, providing a good
low-energy p-p phase shift,

V (r) = −31 exp [−(r/1.8)2]. (35)

Calculations with this potential are shown in Fig. 9 (see also
Table V). First of all, the penetrability enhancement provided
by the p-p FSI is much less than the enhancement provided

5We demonstrate in paper [22] that a three-body width should
depend linearly on two-body widths of the subsystems and only very
weakly on various geometrical factors. This is confirmed very well
by direct calculations.
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FIG. 9. Convergence of the 17Ne width in a simplified model,
T Jacobi system. Final state interaction describes s-wave p-p
scattering.
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FIG. 10. Energy distributions for 17Ne in the T Jacobi system
(between two protons).

by the core-p FSI (widths differ by more than two orders of
magnitude, see Fig. 3). This is the feature that has already
been outlined in our previous works. The p-p interaction
may strongly boost the penetrability, but only in the situation
when protons occupy predominantly orbitals with high orbital
momenta. In such a situation, the p-p interaction allows
transitions to configurations with smaller orbital momenta in
the subbarrier region, which provide a large increase of the
penetrability. In our simple model for the 17Ne 3/2− state, we
have already assumed the population of orbitals with minimal
possible angular momenta, and thus no strong effect of the
p-p interaction is expected.

Also, a very slow convergence of the decay width should be
noted in this case. For the core-p interaction, Kmax ∼ 10–40 is
sufficient to obtain a reasonable result. In the case of the p-p
interaction, Kmax ∼ 100 is required.

Energy distributions between two protons obtained in this
model are shown in Fig. 10. An important feature of these
distributions is a strong focusing of protons at small p-p
energies. This feature is connected, however, not with an
attractive p-p FSI, but with a dominating Coulomb repulsion
in the core-p channel. This is demonstrated by the calculation
with nuclear FSI turned off, which provides practically the
same energy distributions. Similar to the case of the core-p
FSI, very small Kmax >∼ 10 is sufficient to provide the well-
converged energy distribution. The converged HH distribution
is very close to the exact (corrected) one, but it is, again,
somewhat broader.

So far the diproton model has been treated by us as a reliable
upper limit for the three-body width [8]. With some technical
improvements, this model was used for the two-proton widths
calculations in Refs. [16–19]. It is important therefore to try to
understand qualitatively the reason for the small width values
obtained in this form of the OFSI model, which evidently
represents an appropriately formulated diproton model.6 In
Fig. 11, we compare the results of the OFSI calculations for

6The assumed nuclear structure is very simple, but the diproton
penetration process is treated exactly, without assumptions about the
emission of the diproton from some nuclear surface, which should be
made in the R-matrix approach.

0 4 8 12 16 20
0

4

8

12

16

r c
h 

(d
p

) 
  

(f
m

)

ρ0 /√2 (fm)

ρ
 0 = 6 fm

(a)

0 2 4 6 8
0

2

4

6

8

Ypeak (fm)

(b)

FIG. 11. Comparison of the OFSI calculations for 45Fe in the
T system with diproton model Eq. (36). Solid lines show effective
equivalent channel radius rch(dp) for “diproton emission” as a
function of (a) radius ρ0 of the three-body potential [Eq. (25)], where
the value ρ0/

√
2 should be comparable with typical nuclear sizes,

and (b) position of the peak Ypeak in the three-body WF � (+) in the Y

coordinate. The dashed lines are given to guide the eye.

45Fe in the T system with the diproton width estimated by the
expression

�dp = 1

Mredr
2
ch(dp)

Pl=0(0.95E3r , rch(dp), 2Zcore), (36)

where Mred is the reduced mass for 43Cr-pp motion, and
rch(dp) is the channel radius for diproton emission. The energy
for the relative 43Cr-pp motion is taken to be 0.95E3r based
on the energy distribution in the p-p channel (see Fig. 10, for
example). In Fig. 11(a), we show the effective equivalent chan-
nel radii for diproton emission obtained by fulfilling condition
�dp ≡ �c for OFSI model calculations with different radii ρ0

of the three-body potential Eq. (25). It is easy to see that for
realistic values of these radii (ρ0 ∼ 6 fm for 45Fe), the equiv-
alent diproton model radii should be very small (∼1.5 fm).
This happens presumably because the diproton is too large
to be considered as emitted from the nuclear surface of
such a small ρ0 radius. Technically it can be seen as the
nonlinearity of the rch(dp)-ρ0 dependence, with the linear
region achieved at ρ0 ∼ 15–20 fm. A+ such unrealistically
large ρ0 values the nuclear surface radius becomes comparable
with the “size” of the diproton. Only in these conditions
the nuclear surface can be reasonably interpreted as the surface
of the diproton emission. It is interesting to note that in the
nonlinearity region for Fig. 11(a) there exists practically exact
linear correspondence between the Y coordinate of the WF
peak in the internal region and the channel radius for diproton
emission [Fig. 11(b)]. This fact is reasonable to interpret in
such a way that the diproton is actually emitted not from the
nuclear surface (as presumed by the existing systematics of
diproton calculations) but from the interior region, where the
WF is mostly concentrated.

C. Two final state interactions

As we have already mentioned, the situation of one final
state interaction is convenient for studies but rarely realized
in practice. An exception is the case of the E1 transitions
to continuum in the three-body systems, considered in our

014008-10



TWO-PROTON RADIOACTIVITY . . . . III. INTEGRAL . . . PHYSICAL REVIEW C 76, 014008 (2007)

0 20 40 60 80 100
0

1

2 17Ne, "Y"-system, core-p interactions 
in s- and d-waves

  HH + FR  Kmax  →  24
  Corrected

10
14

 Γ
   

(M
eV

)

Kmax

FIG. 12. Convergence of the 17Ne width for experimental po-
sitions E2r = 0.535 MeV of the 0+ two-body resonance in the
X subsystem and E2r = 0.96 MeV of the 2+ two-body resonance
in the Y subsystem (TFSI model).

previous work [24]. For narrow states in a typical nuclear
system of the interest, there are at least two comparable
final state interactions (in the core-p channel). For systems
with heavy core, this situation can be treated reasonably
well, because the Y coordinate (in the Y Jacobi system) for
such systems practically coincides with the core-p coordinate.
Below we treat in this way 17Ne (for which this approximation
could be not very consistent) and 45Fe (for which this
approximation should be good). In the case of 17Ne, we are
thus interested in the scale of the effect, rather than in the
precise width value.

For calculations with two FSI for 17Ne, we used the
Gaussian d-wave potential (see Table I), in addition to the
s-wave potential used in Sec. IV A. This potential provides a
d-wave state at 0.96 MeV (� = 13.5 keV), which corresponds
to the experimental position of the first d-wave state in 16F.
The convergence of the 17Ne decay width is shown in Fig. 12.
Comparing it with Fig. 3, one can see that the absolute value
of the width has changed significantly (two to three times)
but not extremely, and the convergence is practically the
same. An interesting new feature is a kind of convergence
curve “staggering” for odd and even values of K/2. Also,
the convergence of the corrected calculations requires now a
considerable Kmax ∼ 12–14.

The improved experimental data for the 2p decay of 45Fe
was published recently in Ref. [12]: E3r = 1.154(16) MeV,
�2p = (1.62 ± 0.38) × 10−19 MeV [T1/2 = 1.6+0.5

−0.3 ms with
two-proton branching ratio Br(2p) = 0.57]. In this paper we
use the resonance energy from this work.

The convergence of the 45Fe width is shown in Fig. 13. The
character of this convergence is very similar to that in the 17Ne
case, except the staggering feature is more expressed.

The dependence of the 45Fe width on the two-body
resonance energy E2r is shown in Fig. 14. Potential parameters
for these 45Fe calculations are given in Table II. The result
calculated for E3r = 1.154 MeV and E2r = 1.48 MeV in paper
[4] for pure [p2] configuration is � = 2.85 × 10−19 MeV. The
value Kmax = 20 was used in these calculations. If we take
the HH width value from Fig. 13 at Kmax = 20, it provides
� = 2.62 × 10−19 MeV, which is in good agreement with a full
HH three-body model of Ref. [4]. However, from Fig. 13, we
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FIG. 13. Convergence of the 45Fe width for position of the 1−

two-body resonances in X and Y subsystems E2r = 1.48 MeV.

can conclude that the calculations of Ref. [4] underestimated
the width by about 47%. Thus the value of about � =
5.6 × 10−19 MeV should be expected in these calculations.
On the other hand, much larger uncertainty could be inferred
from Fig. 14 because of the uncertain energy of the 44Mn
ground state. If we assume a variation E2r = 1.1–1.6 MeV,
the inferred from Fig. 14 uncertainty of the width would
be � = (4–16) × 10−19 MeV. On top of that, we expect
a strong p2/f 2 configuration mixing which could easily
reduce the width within an order of magnitude. Thus we can
conclude that better knowledge of the spectrum of 44Mn and
reliable structure information about 45Fe are still required to
make sufficiently precise calculations of the 45Fe width. A
more detailed account of these issues is provided below.

V. THREE-BODY CALCULATIONS

Having in mind the experience of the convergence studies,
we next perform large-basis calculations for 45Fe and 17Ne.
They are made with dynamical Kmax = 16–18 (including

1 2 3

10-19

10-18

45
26Fe

E2r  from Refs. [4,8]

E2r = E3r

Three-body
    regime

T
ra

ns
it

io
n 

re
gi

on

   Corrected
   Kmax = 24

   Kmax = 24 + FR

Γ 
 (
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eV
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E2r  (MeV)

FIG. 14. 45Fe g.s. width as a function of E2r . Dashed, dotted, and
solid lines show, respectively, a pure HH calculation with Kmax = 24,
the same but with Feshbach reduction from Kmax = 100, and the
corrected width �c. Gray area shows the transition region from three-
body to two-body decay regime. Gray curve shows simple analytical
dependence of Eq. (34).
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TABLE III. Low-lying states of 16F obtained in the GMZ and high-s core-p potentials. The potentials
are diagonal in the representation with definite total spin of core and proton S, which is given in the third
column.

Case GMZ High-s Exp.

J π l S E2r (MeV) � (keV) E2r (MeV) � (keV) � (keV)

0− 0 0 0.535 18.8 0.535 18.8 25(5) [35]
1− 0 1 0.728 73.4 0.728 73.4 70(5) [35]
2− 2 0 0.96 3.5 0.96 3.5 6(3) [35]
3− 2 1 1.2 9.9 1.2 10.5 <15 [36]
2− 2 1 3.2 430 7.6 ∼3000
1− 2 1 4.6 1350 ∼15 ∼6000

Fechbach reduction from Kmax = 30 − 40) for 17Ne and
Kmax = 20 (FR from Kmax = 40) for 45Fe. The calculated
width values are extrapolated using the convergence curves
obtained in the TFSI model (Fig. 15 for 17Ne and Fig. 13 for
45Fe). We have no proof that the width convergence in the
realistic three-body case is absolutely the same as in the TFSI
case. However, the TFSI model takes into account the main
dynamic features of the system causing a slow convergence,
and we are expecting that the convergence should be nearly
the same in both cases.

A. Widths and correlations in 17Ne

The potentials used in the realistic calculations are the same
as those used for 17Ne studies in Refs. [7,38]. The realistic
nucleon-nucleon potential [39] is used in the p-p channel.
The core-p potentials are referred to in Ref. [38] as “GMZ”
(potential introduced in Ref. [7]) and “high s” (with centroid of
d-wave states shifted upward which provides a higher content
of s2 components in the 17Ne g.s. WF). Both potentials provide
correct low-lying spectrum of 16F and differ only for the
d-wave continuum above 3 MeV (see Table III). The core-p
nuclear potentials, including central, ss, and ls terms, are

10 100

0.1

1

S1
HH + FR

HH

   TFSI
   Three-body realistic

Γ  
/  Γ

c 
(K

m
ax

)

Kmax

17Ne 

GMZ

FIG. 15. Interpolation of 17Ne decay width obtained in full
three-body calculations by means of TFSI convergence curves (see
Fig. 8). Upper curves correspond to the TFSI case with Gaussian
potential in the s-wave and compatible S1 case for the full three-body
model. Lower curves correspond to the TFSI case with repulsive
core potential in the s-wave and compatible GMZ case for the full
three-body model.

taken as

V (r) = V l
c + (s1 · s2)V l

ss

1 + exp
[(

r − rl
0

)
/a

] − (l · s)
2.0153V l

ls

ar

× exp
[(

r − rl
0

)
/a

](
1 + exp

[
(r − rl

0

)
/a

])−2
, (37)

where s = s1 + s2. The parameters are a = 0.65 fm, r0
0 =

3.014 fm, rl>0
0 = 2.94 fm, V 0

c = −26.381 MeV, V 1
c =

−9 MeV, V 2
c = −57.6(−51.48) MeV, V 3

c = −9 MeV, V 0
ss =

0.885 MeV, V 2
ss = 4.5(12.66) MeV, Vls = 4.4(13.5) MeV

(the values in brackets are for the “high s” case). There are also
repulsive cores for s and p waves described by a = 0.4 fm,
r0

0 = 0.89 fm, and Vcore = 200 MeV. These potentials are used
together with the Coulomb potential obtained for Gaussian
charge distribution reproducing the charge radius of 15O.

To have extra confidence in the results, the width of the
17Ne 3/2− state is calculated in several models of growing
complexity (Tables IV–VI). One can see from these tables that
improvements introduced on each step provide quite a smooth
transition from the very simple to the most sophisticated
model.

In Table IV, we demonstrate how the calculations in the
simplified model of Sec. IV compare with calculations of
the full three-body model with an appropriately truncated
Hamiltonian. We can switch off corresponding interactions
in the full model to make it consistent with the approximations
of the simplified model. Remember, the differences between
the full and simplified models are the following: (i) antisym-
metrization between protons is missing, (ii) the Y coordinate
is only approximately equal to the coordinate between the core
and second proton, and (iii) the Coulomb interaction between
protons (in the Y system) can be treated only effectively in the
simplified model. Despite these approximations, the models
demonstrate quite close results: the worst disagreement is a
factor of 3, and in simplistic cases much better agreement is
obtained.

In Table V we compare approximations of a different kind:
those connected with the choice of the Jacobi coordinate
system in the simplified model. First we compare the pure
Coulomb case: all pairwise nuclear interactions are off and
the existence of the resonance is provided solely by the
three-body potential (25). This model provides some hint
of what should be the width of the system without nuclear
pairwise interactions. Then the models are compared with the
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TABLE IV. Comparison of widths for 17Ne (in 10−14 MeV units) obtained in simplified
model in Y Jacobi system and in full three-body model with correspondingly truncated
Hamiltonian. Structure information is provided for the three-body model. In the simplified
model, the weight of the [sd] configuration is 100% by construction. The “no p-p” column
shows the case where Coulomb interaction in the p-p channel is switched off [see Eq. (21) for
simplified model]. “Eff.” column corresponds to the effective treatment [see Eq. (22)] of the
Coulomb interaction in the p-p channel in the simplified model, but to the exact treatment in
the full three-body model.

Pure Coulomb OFSI TFSI

No p-p Eff. No p-p Eff. No p-p Eff.

Simpl. 0.017 0.0032 3.02 0.545 4.70 1.37
3-body 0.024a 0.0041a 3.22 0.555 3.91 0.445
[sd] 99.8 99.3 99.6 99.5 92.0 72.6
[p2] 0.2 0.6 0.3 0.4 0.1 0.2
[d2] 0 0 0 0 7.8 27.1

aSmall repulsion (∼0.5 MeV) was added in that case in the p-wave core-p channel to split the
states with sd and p2 structure which appear practically degenerated and strongly mixed in this
model.

nuclear FSIs added. The addition of nuclear FSIs drastically
increases width in all cases. It is the most efficient (in the
sense of width increase) in the case of the TFSI model in the Y
system. Choice of this model provides the largest widths and
can be used for the upper limit estimates.

In Table VI the full three-body models are compared. The
simplistic S1 and S2 interactions correspond to calculations
with simplified spectra of the 16F subsystem. For the S1 case,
it includes one s-wave state at 0.535 MeV (� = 18.8 keV) and
one d-wave state at 0.96 MeV (� = 3.5 keV). These are two
lower s- and d-wave states known experimentally. In the S2
case, we use instead the experimental positions of the higher
component of the s- and d-wave doublets: s wave at 0.72 MeV
(� = 73.4 keV) and d wave at 1.2 MeV (� = 10 keV).
Parameters of the core-p potentials can be found in Table I. The
simple Gaussian p-p potential [Eq. (35)] is used. The variation
of the results between these models is moderate (∼30%). The
calculations with the GMZ potential provide the width for the
17Ne 3/2− state which comfortably rests in between the results
obtained in the simplified S1 and S2 models. The structure

TABLE V. Comparison of widths calculated for 17Ne (10−14 MeV
units) and 45Fe (10−19 MeV units) with pure Coulomb FSIs and for
nuclear plus Coulomb FSIs. Simplified OFSI model in T, TFSI in
Y Jacobi systems (“effective” Coulomb is used in both cases) and
full three-body calculations (denoted “3-body”).

Pure Coulomb Nuclear + Coulomb

T Y 3-body T Y 3-body

17Ne 0.0011 0.0032 0.0041 0.0077 1.37 0.76a

[sd] 100 100 99.3 100 100 73.1
[p2] 0 0 0.6 0 0 1.8
[d2] 0 0 0 0 0 24.2
45Fe 0.0053 0.0167 0.26 0.034 4.94 6.3b

aCalculation with S1 Hamiltonian.
bCalculation providing pure p2 structure.

of the WF is also obtained quite close to these calculations.
The structure in the high-s case is obtained with a strong
domination of the sd component. The width obtained in the
high-s case is somewhat larger (∼11%) than obtained in GMZ
case, but this increase is consistent with the increase of the
sd WF component (∼15%), which is expected to be more
preferable for decay than d2 component.

It is important for us that the results obtained in the three-
body models with considerably varying spectra of the two-
body subsystems and different convergence systematics appear
to be quite close: � ∼ (5–8) × 10−15 MeV. Thus we have not
found a factor which could lead to a considerable variation of
the three-body width, given the ingredients of the model are
reasonably realistic.

The decomposition of the 17Ne WF obtained with GMZ
potential is provided in Table VII in terms of partial internal
normalizations N

(i)
Kγ (in the T and Y Jacobi systems, i =

{T , Y }) and partial widths. The correspondence between the
components with large weights and large partial widths is
typically good. However, there are several components giving
large contributions to the width in spite of their negligible
presence in the interior.

Complete correlation information for three-body decay of a
resonant state (with omission of spin degrees of freedom) can
be described by two variables. We use the energy distribution

TABLE VI. Width (in 10−14 MeV units) and structure of 17Ne
3/2− state calculated in a full three-body model with different three-
body Hamiltonians.

S1 S2 GMZ High-s

Kmax = 18 0.35 0.27 0.14 0.16
Extrapolated 0.76 0.56 0.69 0.76
[sd] 73.1 71.7 80.2 95.1
[p2] 1.8 1.8 2.0 1.3
[d2] 24.2 25.7 16.8 3.1
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TABLE VII. Partial widths �Kγ of different components of 17Ne
3/2− WF calculated in T Jacobi system. Partial weights are given in
Y, N

(Y )
Kγ , and in T, N

(T )
Kγ , Jacobi systems. Sx is the total spin of two

protons. All listed components have total spin of core and protons
S = 1/2.

K L lx ly Sx N
(Y )
Kγ N

(T )
Kγ �Kγ

2 2 0 2 0 23.88 33.87 44.93
2 2 2 0 0 24.97 16.52 13.29
2 2 1 1 1 0.28 7.39 3.59
2 2 1 1 0 1.54
2 2 0 2 1 3.68
2 2 2 0 1 3.68
4 2 0 2 0 8.97 20.04 3.19
4 2 2 0 0 8.68 13.57 5.57
4 2 2 2 0 15.49 0.32 18.80
4 2 1 3 1 0.03 2.18 0.95
4 2 3 1 1 0 1.89 0.63
4 1 2 2 1 1.02
4 2 0 2 1 1.99
4 2 2 0 1 2.07
6 2 2 4 0 0.14 0.77 3.57
6 2 4 2 0 0.14 0.77 0.78
6 2 0 2 0 0.50 0.09 0.69
8 2 4 4 0 0.02 0.003 1.58

parameter ε = Ex/E3r and the angle cos(θk) = (kxky)/(kxky)
between the Jacobi momenta (see Ref. [4] for details). The
complete correlation information is provided in Fig. 16 for
realistic 17Ne 3/2− decay calculations. We can see that the
profile of the energy distribution is characterized by formation
of the double-hump structure, expected so far for the p2

configurations (see, e.g., Ref. [4]). This structure can be seen
in both the T system (in energy distribution) and the Y system
(in angular distribution). In the calculations of ground states
of the sd shell nuclei, we were getting such distributions to
be quite smooth. It can be found that for the excited state the
profile of this distribution is defined by the sd/d2 components
ratio. For example, in the calculations with high-s potential,
the total domination of the sd configuration leads to washing
out of the double-hump profile.

The correlations in the 17Ne (shown in Fig. 16) are strongly
influenced by the nuclear FSIs. Calculations for only Coulomb
pairwise FSIs left in the Hamiltonian are shown in Fig. 17.
The strong peak at small p-p energy is largely dissolved,
and the most prominent feature of the correlation density in
that case is a rise of the distribution for cos(θk) → 1 in the
Y Jacobi system. This kinematical region corresponds to the
motion of protons in the opposite direction relative to the core
and is a qualitatively understandable feature of the three-body
Coulomb interaction (the p-p Coulomb interaction is minimal
along such a trajectory).

The distributions calculated in the simplified (OFSI) model
are shown in Fig. 18 on the same {ε, cos(θk)} plane as in
Figs. 16 and 17. Note that in Fig. 18 the calculations in the
T and Y Jacobi systems represent different calculations (with
p-p FSI only and with core-p FSI only). In contrast, in Figs. 16
and 17 two panels show different representations of the same

FIG. 16. Correlations for 17Ne decay in T and Y Jacobi systems.
Three-body calculations with realistic (GMZ) potential.

result. Providing reasonable (within factor 2–4) approximation
to the full three-body model in the sense of the decay width, the
simplified model is very deficient in the sense of correlations.
The only feature of the realistic correlations which is even
qualitatively correctly described in the simplified model is the
energy distribution in the Y system. The diproton model (OFSI
model with p-p interaction) fails especially strongly, which is
certainly relevant to the very small width provided by this
model (see discussion in the Sec. IV B).

B. Width of 45Fe

The calculation strategy is the same as in Ref. [4]. We start
with interactions in the core-p channel which give a resonance
in the p-wave at fixed energy E2r . Such a calculation provides
45Fe with a practically pure p2 structure. Then we gradually
increase the interaction in the f wave until it replaces the
p-wave resonance at fixed E2r and then we gradually move
the p-wave resonance to high energy. Thus we generate a set
of WFs with different p2/f 2 mixing ratios.

The results of the improved calculations with the same
settings as in Ref. [4] (the 44Mn g.s. is fixed to have E2r =
1.48 MeV) are shown in Fig. 19 (see also Table V) together
with available experimental data [9,10,12]. The basis size used
in Ref. [4] was sufficient to provide stable correlation pictures
(as we have found in this work), and they are not updated.

The sensitivity of the obtained results to the experimentally
unknown energy of 44Mn can be easily studied by means of
Eq. (34). The results are shown in Fig. 20 in terms of the regions

FIG. 17. Correlations for 17Ne decay in T and Y Jacobi systems.
Three-body calculations with Coulomb FSIs only (all nuclear
pairwise potentials are turned off).
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FIG. 18. Correlations for 17Ne decay calculated in simplified
OFSI model in T (only p-p FSI) and Y Jacobi systems (only s-wave
core-p FSI).

FIG. 19. Lifetime of 45Fe as a function of the 2p decay energy
E3r . The plot is the analog of Fig. 6(a) from Ref. [4] with experimental
data [9] (gray circle), [10] (gray rectangle), [12] (black rectangle),
and improved theoretical results. Solid curves show the cases of
practically pure p2 and f 2 configurations, dashed curves stand for
different mixed p2/f 2 cases. The numerical labels on the curves show
the weights of the s2 and p2 configurations in percents.
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FIG. 20. Compatibility of the measured width of the 45Fe with
different assumptions about position E2r of the ground state in the
44Mn subsystem and structure of 45Fe [weights of the p2 configuration
W (p2) are shown on the vertical axis]. Central gray area corresponds
to experimental width uncertainty � = (1.62 ± 0.38) × 10−19 MeV
[12]. The light gray area also takes into account the energy uncertainty
E3r = 1.154(16) MeV [12]. The vertical dashed line corresponds to
the E2r used in Fig. 19.

consistent with experimental data on the {E2r ,W (p2)} plane
[W (p2) is the weight of the p2 configuration in 45Fe WF]. It is
evident from this plot that our current experimental knowledge
is not sufficient to draw definite conclusions. However, it is also
clear that with increased precision of the lifetime and energy
measurements for 45Fe and the appearance of more detailed
information on the 44Mn subsystem, the restrictions on the
theoretical models should become strong enough to provide
the important structure information.

VI. DISCUSSION

General trends of the model calculations can be well
understood from Tables IV–VI. For the pure Coulomb case,
the simplified model calculations (in the Y and T systems)
and three-body calculations provide reasonably consistent
results. The simplified calculations in the Y system always
give larger widths than those in the T system. From a decay
dynamics point of view, this leads to an understanding of the
contradictory fact that the sequential decay path is preferable
also in the case where no even virtual sequential decay is
possible (as the nuclear interactions are totally absent in this
case).

The calculations with attractive nuclear FSIs rather expect-
edly provide larger widths than the corresponding calculations
with Coulomb interaction only. The core-proton FSI is much
more efficient for width enhancement than p-p FSI. This fact
is correlated with the observation of the previous point and
is a very simple and strong indication that the widespread
perception of the two-proton decay as a diproton decay is
misleading. As already mentioned, the p-p FSI influences the
penetration strongly in the very special case when the decay
occurs from high-l orbitals (e.g., f 2 in the case of 45Fe). Thus
we should consider as not fully consistent the attempts to
explain two-proton decay results only by the FSI in the p-p
channel (e.g., Ref. [19]) as a much stronger decay mechanism
is neglected in these studies.

From a technical point of view, the states considered in this
work belong to the most complicated cases. The complication
is due to the ratio between the decay energy and the strength of
the Coulomb interaction (it defines the subbarrier penetration
range to be considered dynamically). Thus the convergence
effects demonstrated in this work for 17Ne have the strongest
character among the systems studied in our previous works
[4,6–8]. Because of the relatively small Kmax = 12 used in
the previous works, we have found an order of the magnitude
underestimation of the 17Ne(3/2−) width. For systems like
48Ni-66Kr, the underestimation of widths in our previous
calculations is expected to be about a factor of 2. A much
smaller effect is expected for lighter systems.

It was demonstrated in Refs. [23,24] that the astrophysical
radiative capture rate for the 15O(2p, γ )17Ne reaction depends
strongly on the two-proton width of the first excited 3/2−
state in 17Ne. This width was calculated in Ref. [7] as 4.1 ×
10−16 MeV (some confusion can be connected with a misprint
in Table III of Ref. [7], see Erratum [7]). However, in Ref. [21],
providing very similar to Ref. [7] properties of the 17Ne WFs
for the ground and the lowest excited states, the width of
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the 3/2− state was found to be 3.6 × 10−12 MeV. It was
supposed in Ref. [21] that such a strong disagreement is
connected with poor subbarrier convergence of the HH method
in Ref. [7] compared to the adiabatic Faddeev HH method
of Ref. [21]. This point was further reiterated in Ref. [40].
We can see now that this statement has certain grounds.
However, the convergence problems of the HH method are
far insufficient to explain the huge disagreement: the width
increase found in this work is only one order of magnitude.
The most conservative upper limit � ∼ 5 × 10−14 MeV (see
Table IV) was obtained in a TFSI calculation neglecting the
p-p Coulomb interaction. The other models systematically
produce smaller values, with realistic calculations confined to
the narrow range � ∼ (5–8) × 10−15 MeV (Table VI). Thus
the value � ∼ 4 × 10−12 MeV obtained in Ref. [21] is very
likely to be erroneous. That result is possibly connected to
the simplistic quasiclassical procedure for width calculations
employed in this work.

VII. CONCLUSION

In this work we derive the integral formula for the widths
of the resonances decaying into the three-body channel for
simplified Hamiltonians and discuss various aspects of its
practical application. The basic idea of the derivation is
not new, but for our specific purpose (precision solution of
the multichannel problem) several important features of the
scheme have not been discussed.

We can draw the following conclusions from our studies.

(i) We presume that HH convergence in realistic calcu-
lations should be largely the same as in the simplified
calculations as they imitate the most important dynamic
aspects of the realistic situation. The width values were
somewhat underestimated in our previous calculations.
The typical underestimation ranges from few percent
to tens of percent for “simple” potential and from tens
of percent to an order of magnitude in “complicated”
cases (potentials with a repulsive core).

(ii) Convergence of the width calculations in the three-body
HH model can be drastically improved by a simple
adiabatic version of the Feshbach reduction procedure.
For a sufficiently large dynamic sector of the basis, the
calculation with effective FR potential converges from
below and practically up to the exact value of the width.
For a small dynamic basis, the FR calculation converges
toward a width value smaller than the exact value, but
still considerably improves the result.

(iii) The energy distributions obtained in the HH calcula-
tions are quite close to the exact ones. Convergence
with respect to basis size is achieved at relatively small
Kmax values. The disagreement with exact distributions
is not very significant and is likely to be connected not
with basis size convergence but with the radial extent
of the calculations [4].

(iv) The contributions of different decay mechanisms were
evaluated in the simplified models. We found that
the diproton decay path is much less efficient than
the sequential decay path. This is true even in the
model calculations without nuclear FSIs (no specific
dynamics), which means that the sequential decay path
is somehow kinematically preferable.

(v) The value of the width for 17Ne 3/2− state was
underestimated in our previous work by around an
order of magnitude. A very conservative upper limit
is obtained in this work as � ∼ 5 × 10−14 MeV, while
typical values for realistic calculations are within the
(5–8) × 10−15 MeV range. Thus the value � ∼ 4 ×
10−12 MeV obtained in Refs. [21,40] is likely to be
erroneous.

From this paper it is clear that the convergence issue is
sufficiently serious, and in some cases it was underestimated
in our previous works. However, from a practical point
of view, the convergence issue is not a principle problem.
For example, the uncertain structure issues and subsystem
properties impose typically much larger uncertainties for width
values. For heavy two-proton emitters (e.g., 45Fe) the positions
of resonances in the subsystems are experimentally quite
uncertain. For a moment this is the issue most limiting the
precision of theoretical predictions. We have demonstrated that
with increased precision, the experimental data impose strong
restrictions on theoretical calculations, thereby allowing one
to extract important structure information.
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