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Relativistic calculation of deuteron threshold electrodisintegration at backward angles
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The threshold electrodisintegration of the deuteron at backward angles is studied in instant form Hamiltonian
dynamics, including a relativistic one-pion-exchange potential (OPEP) with off-shell terms as predicted by
pseudovector coupling of pions to nucleons. The bound and scattering states are obtained in the center-of-mass
frame, and then boosted from it to the Breit frame, where the evaluation of the relevant matrix elements of the
electromagnetic current operator is carried out. The latter includes, in addition to one-body, also two-body terms
due to pion exchange, as obtained, consistently with the OPEP, in pseudovector pion-nucleon coupling theory.
In order to estimate the magnitude of the relativistic effects we perform, for comparison, the calculation with
a nonrelativistic phase-equivalent Hamiltonian and consistent one-body and two-body pion-exchange currents.
Our results for the electrodisintegration cross section show that, in the calculations using one-body currents,
relativistic corrections become significant (i.e., larger than 10%) only at high momentum transfer Q (Q2 �
40 fm−2 and beyond). However, the inclusion of two-body currents makes the relativistic predictions considerably
smaller than the corresponding nonrelativistic results in the Q2 region (18–40) fm−2. The calculations based on
the relativistic model also confirm the inadequacy, already established in a nonrelativistic context, of the present
electromagnetic current model to reproduce accurately the experimental data at intermediate values of momentum
transfers.
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I. INTRODUCTION

The problem of how to treat the relativistic dynamics of
interacting, composite objects, such as nucleons, is highly
nontrivial, and a variety of different approaches have been
developed. These fall essentially into two classes: either
field-theory inspired methods, such as, for example, the
spectator [1] and Blankenbecler-Sugar [2] covariant reductions
of the Bethe-Salpeter equation, or methods based on relativistic
Hamiltonian dynamics (for a review, see Ref. [3]). The former
include explicitly antiparticle degrees of freedom and are
manifestly covariant, while the latter subsume these degrees of
freedom into effective potentials and only retain particle (i.e.,
positive energy) propagation in the intermediate states—these
and additional issues are discussed in considerable detail in a
review by Gilman and Gross [4].

Both these methods—field-theory inspired and relativistic
Hamiltonian dynamics—have been used in calculations of
few-nucleon properties, including binding energies, momen-
tum distributions, and electromagnetic form factors. Among
the many references (a large, but nonexhaustive, listing of
them is in Ref. [4]), we only mention here the calculations of
deuteron form factors [5] and triton binding energy [6] in the
spectator-equation formalism; deuteron form factors within the
framework of relativistic Hamiltonian dynamics, in the front-
form [7], point-form [8], and instant-form [9] implementations
of it; binding energies and momentum distributions of A = 3
and 4 nuclei in instant-form Hamiltonian dynamics [10,11].

In the present work we study the deuteron threshold electro-
disintegration at backward angles in instant form Hamiltonian

dynamics, including a relativistic one-pion-exchange potential
with off-energy-shell terms as predicted by pseudovector
coupling of pions to nucleons. The electromagnetic current
is taken to consist of one- and two-body terms, the latter
too derived from pseudovector pion-nucleon interactions.
The calculation of their matrix elements between the initial
deuteron and final np continuum states is carried out in the
Breit frame.

The deuteron threshold electrodisintegration proceeds pre-
dominantly via a magnetic-dipole transition between the
bound deuteron and 1S0 scattering state. Since the early
seventies, it has been known [12] that the associated (isovector)
transition form factor is dominated, at momentum transfers
of �(8–16) fm−2, by the contributions of two-body currents
of pion range. To the best of our knowledge, all calculations
of the cross section for this process have been carried out so
far within essentially a non-relativistic framework (see, for
example, Refs. [13,14]). One exception we are aware of is the
front-form Hamiltonian dynamics study of Ref. [15], which,
however, only included single-nucleon currents.

One of the goals of the present work is to assess
quantitatively the importance of relativistic effects in the
deuteron threshold electrodisintegration. To this end, we also
perform a (Galilean invariant) calculation of the cross section
with a nonrelativistic Hamiltonian, phase-equivalent to the
relativistic Hamiltonian described above, and consistent one-
body and two-body pion-exchange current operators [13,14].

This paper is organized into five sections. In Sec. II we
discuss the relativistic Hamiltonian from which the bound and
scattering states are obtained, and the method used to boost
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these states from the center-of-mass to an arbitrary frame.
In Sec. III we list the relativistic expressions adopted for
the one-body and two-body pion-exchange currents, while in
Sec. IV we illustrate the momentum-space evaluation of the
relevant matrix elements entering the cross section of the
deuteron threshold electrodisintegration. Finally, in Sec. V
we present the results along with a discussion and concluding
remarks. Details of the calculation are relegated in the
Appendixes.

II. THE np BOUND AND SCATTERING WAVE FUNCTIONS

The relativistic Hamiltonian used to generate the bound
and scattering wave functions in the np rest frame is taken to
be [10,11,16]

Hµ = 2
√

p2 + m2 + vµ, (2.1)

where vµ consists of a short-range part vR parametrized as in
the Argonne v18 potential [17], and of a relativistic one-pion-
exchange potential (OPEP) given by

vµ
π (p′, p)

= −f 2
πNN

m2
π

m

E′
f 2

π (k)

m2
π + k2

m

E

[
σ 1 · k σ 2 · k + µ(E′ − E)

×
(

σ 1 · p′σ 2 · p′

E′ + m
− σ 1 · pσ 2 · p

E + m

)]
τ 1 · τ 2. (2.2)

Here m denotes the nucleon mass, fπNN is the pion-nucleon
coupling constant (f 2

πNN/4π = 0.075), p and p′ are the
initial and final relative momenta in the center-of-mass frame,
E =

√
p2 + m2 and E′ =

√
p′2 + m2 are the corresponding

energies, and k = p − p′ is the momentum transfer. The
monopole form factor fπ (k) = (�2

π − m2
π )/(�2

π + k2) with
�π = 1.2 GeV/c is considered in the present work.

The µ-dependent term characterizes possible off-energy-
shell extensions of OPEP and, in particular, the value
µ = 1(µ = −1) is predicted by pseudovector (pseudoscalar)
coupling of pions to nucleons, while µ = 0 corresponds to
the so-called “minimal nonlocality” choice [18]. As shown by
Friar almost three decades ago [18], these various off-shell
extensions of OPEP are related to each other by a unitary
transformation, that is

Hµ = e−iµUHµ=0eiµU � Hµ=0 + iµ[Hµ=0, U ], (2.3)

if terms of 2π -range (and shorter-range) are neglected. The
Hermitian operator U is given explicitly in Ref. [16]. This
unitary equivalence implies that predictions for electromag-
netic observables, such as the deuteron electrodisintegration
cross section under consideration here, are independent of
the particular off-shell extension adopted for OPEP, provided
that the electromagnetic current operator, specifically its two-
body components associated with pion exchange, is derived
consistently with this off-shell extension. As discussed later
in Sec. III, the pion-exchange two-body currents used in this
work have been obtained assuming pseudovector coupling,
and therefore the µ = 1 prescription is taken for OPEP.
From now on, the µ = 1 superscript is dropped from Hµ in
Eq. (2.1) for simplicity. The resulting relativistic Hamiltonian

has been constructed to be phase-equivalent to the nonrela-
tivistic H , based on the Argonne v18 potential, by adjusting
the cutoff �π in vµ=1

π and the parameters entering vR , and by
using the methods and computer codes developed in Ref. [11].

The momentum-space wave functions of the deuteron and
np scattering states are denoted respectively as ψM (p; 0) and
ψ

(−)
k;SMS,T (p; 0), where p is the relative momentum and the

zero in the argument indicates the rest frame in which the
deuteron and np pair have velocity V = 0. The bound-state
wave function with spin projection M is written as in Ref. [9],
whereas the wave function corresponding to a scattering
state with the np pair having relative momentum k, and
spin, spin projection, and isospin S,MS , and T (MT = 0
for np), respectively, is obtained from solving the Lippmann-
Schwinger equation in momentum space:

ψ
(−)
k;SMS,T (p; 0)

= φk;SMS,T (p; 0) +
∑
M ′

S

∫
dk′

(2π )3

1

2

1

Ek − Ek′ − iε

× [
T ST

MS,M ′
S
(k, k′)

]∗
φk′;SM ′

S ,T (p; 0), (2.4)

where the φ’s are antisymmetric two-nucleon free states—
hence the factor 1/2 in the integral over intermediate states
k′—with

φk;SMS,T (p; 0)

= (2π )3

√
2

[
δ(k − p) − (−)S+T δ(k + p)

]
χ

S,T
MS,0, (2.5)

and Ek = 2
√

k2 + m2 and similarly for Ek′ . In Eq. (2.4)
note that the ψ

(−)
k;SMS,T ’s satisfy incoming-wave boundary

conditions, since these are the wave functions relevant for
the process under consideration here, and that they have been
expressed in terms of the T -matrix, defined as

T ST
MS,M ′

S
(k, k′) = 〈

ψ
(−)
k;SMS,T (0)

∣∣v|φk′;SM ′
S ,T (0)〉. (2.6)

In Eq. (2.5), χ
S,T
MS,0 denotes the np spin-isospin state

SMS, T MT = 0.
Bound or scattering wave functions in a frame moving with

velocity V with respect to the rest frame are obtained from
[9,18]

ψ(p; V) ≡ B(p, V)ψ(p‖/γ, p⊥; 0)

= 1√
γ

[
1 − i

4m
V · (σ 1 − σ 2) × p

]

×ψ(p‖/γ, p⊥; 0), (2.7)

where γ = 1/
√

1 − V 2, and p‖ and p⊥ denote the compo-
nents of the momentum p parallel and perpendicular to V,
respectively. Only kinematical boost corrections are retained,
in particular the spin-dependent ones associated with Thomas
precession are only included to order V 2. The interaction-
dependent corrections are ignored. However, it is interesting
to note that Eqs. (2.4) and (2.7) suggest that, in order to boost
the (fully interacting) scattering state, one only needs to know
how to boost the free states.
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III. NUCLEAR ELECTROMAGNETIC CURRENT

The electromagnetic current is taken as a sum of one- and
two-body terms

j =
∑
i=1,2

ji(p′
i , pi) + j12(p′

1, p′
2, p1, p2). (3.1)

The one-body term corresponds to the space part of the single-
nucleon current jα

i = (j 0
i , ji), with

jα
i (p′

i , pi) = ū(p′
i)

[
F1,i(Q

2)γ α + i

2m
F2,i(Q

2) σαβqβ

]

× u(pi), (3.2)

where u(pi) and u(p′
i) (u ≡ u†γ 0) are the initial and final

spinors of nucleon i, σ αβ = (i/2)
[
γ α, γ β

]
, and F1,i(Q2) and

F2,i(Q2) denote, respectively, the nucleon’s Dirac and Pauli
form factors,

Fa,i(Q
2) ≡ [

FS
a (Q2) + FV

a (Q2)τi,z

]/
2, a = 1, 2. (3.3)

These form factors are normalized as FS
1 (0) = FV

1 (0) = 1 and
FS

2 (0) = −0.12 n.m. and FV
2 (0) = 3.706 n.m. (in units of

nuclear magnetons). The Höhler parametrization [19] of F1

and F2 is used in this work. The spinor u, or rather its adjoint,
is given by

u†(p) =
(

E + m

2E

)1/2 (
χ †

στ , χ †
στ

σ · p
E + m

)
, (3.4)

where p and E =
√

p2 + m2 are the nucleon’s momentum
and energy, and χστ is its (two-component) spin-isospin state.
Note that u†u = 1. Finally, the four-momentum transfer qµ,
with Q2 = −qµqµ, is taken in the Breit frame, in which the
initial deuteron has momentum −q/2 and the final np pair
has momentum +q/2, and is given by qµ = (ω, q ẑ) with ω =
Ef − Ei , where Ei =

√
m2

d + q2/4 (md is the deuteron rest

mass) and Ef =
√

E2
k + q2/4 (Ek is the center-of-mass energy

of the np pair, i.e., Ek = 2
√

k2 + m2).
Assuming pseudovector π -N coupling, the two-body cur-

rent associated with pion exchange is written as

j12(p′
1, p′

2, p1, p2)

= j (a)
12 (p′

1, p′
2, p1, p2) + j (b)

12 (p′
1, p′

2, p1, p2), (3.5)

where j(a)
12 is the current corresponding to the two seagull

diagrams, and j(b)
12 is the current associated with the pion in

flight diagram. They are given by

j(a)
12

(
p′

1, p′
2, p1, p2

)

= iGV
E (Q2) (τ 1 × τ 2)z

f 2
πNN

m2
π

f 2
π (k2)

k2
2 − k0 2

2 + m2
π

× ū(p′
1)γ γ5u(p1)

[
kν

2 ū(p′
2)γνγ5u(p2)

] + 1 ⇀↽ 2, (3.6)

j(b)
12 (p′

1, p′
2, p1, p2)

= iGV
E (Q2)(τ 1 × τ 2)z

f 2
πNN

m2
π

f 2
π (k1)

k2
1 − k0 2

1 + m2
π

× f 2
π (k2)

k2
2 − k0 2

2 + m2
π

(k1 − k2)
[
kν

1 ū(p′
1)γνγ5u(p1)

]

× [
k

ρ

2 ū(p′
2)γργ5u(p2)

]
, (3.7)

where the four-momentum k
µ

i ≡ (k0
i , ki), i = 1, 2, has k0

i =
E′

i − Ei and ki = p′
i − pi , and fπNN and fπ (ki) are, respec-

tively, the pion-nucleon coupling constant and monopole form
factor introduced previously. The fractional momenta k1 and
k2 delivered to nucleons 1 and 2 add up to q, that is k1 +
k2 = q. The nucleon isovector Sachs form factor GV

E (Q2),
related to FV

1 (Q2) and FV
2 (Q2) by GV

E(Q2) = FV
1 (Q2) −

(Q2/4m2)FV
2 (Q2), is used in the two-body currents. This

choice is motivated by the following considerations. In the
non-relativistic limit, it is easy to show that the two-body
pion-exchange current satisfies current conservation with the
(nonrelativistic) OPEP, obtained from Eq. (2.2) by setting E =
E′ = m, if the same electromagnetic form factor is used in the
charge operator and longitudinal component of the current. As
shown in Appendix A, GV

E (Q2) is used in the nonrelativistic
expression of the charge operator. Of course, the continuity
equation places no restrictions on the electromagnetic form
factors that may be used in the transverse components of the
current. Ignoring this ambiguity, the choice GV

E(Q2) satisfies
the “minimal” requirement for current conservation. In the
relativistic case, we choose to keep this same electromagnetic
form factor in the two-body currents.

The full Lorentz structure of the one- and two-body currents
is retained in the calculations reported here. The latter are
listed, along with their respective nonrelativistic limits, in
Appendix A for completeness.

Finally, in earlier published work on the form factors and
threshold electrodisintegration cross section of the deuteron
[14,17] and form factors of the A = 3–6 nuclei, most recently
[20,21], the contributions associated with the boosts of the
initial and final wave functions were neglected, and only
terms up to order (v/c)2 were included in the non-relativistic
expansion of jα

i , namely, the well-known Darwin-Foldy and
spin-orbit corrections to the charge operator j 0

i . Moreover, the
two-body charge and current operators were taken to leading
order.

IV. CALCULATION

In the one-photon-exchange approximation, the differential
cross section for deuteron electrodisintegration in the labora-
tory frame can be expressed as [22]

d2σ

dε′d�′ = σM [W2(Q2, qµP µ) + W1(Q2, qµP µ) tan2(θ/2)],

(4.1)

where ε′ and �′ are the final electron energy and solid angle,
σM is the Mott cross section, and the invariant response
functions W1 and W2 depend on the square of the four-
momentum transfer, denoted as before by Q2, and the Lorentz
scalar qµP µ, with P µ being the four-momentum of the
deuteron in the initial state. At backward angles, the cross
section above is dominated by W1, i.e., transverse scattering.
[Measurements of the deuteron threshold electrodisintegration
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have been performed at angles typically �155◦, see Sec. V,
for which tan2(θ/2) is � 20.] Hence, in the following, we will
consider only the response W1. In the Breit frame, defined in
Sec. III, it can be written as

W1(q, ω) =
√

1 + q2/(2 md )2
∑

S,T =0,1

RST (q, ω), (4.2)

where the contribution from the individual spin-isospin states
of the final np pair is given by

RST (q, ω) = 1

3

∑
M,MS

∫
dk

(2π )3

1

2
|A(q ẑ, k; S,MS, T ,M)|2

× δ(Ei + ω − Ef ). (4.3)

In the equation above, as in Sec. II, M is the spin projection
of the deuteron, and S,MS , and T specify the spin, spin
projection, and isospin of the np scattering state, while in the
energy-conserving δ-function Ei and Ef are, respectively, the
initial deuteron and final np-pair Breit-frame energies, Ei =√

q2/4 + m2
d and Ef =

√
q2/4 + E2

k , with Ek = 2
√

k2 + m2.
Finally, the three-momentum transfer q is taken along the ẑ
direction.

The amplitude A denotes the matrix elements of the
transverse components (i.e., orthogonal to q) of the current
operator, namely,

A(q ẑ, k; S,MS, T ,M) = 〈
ψ

(−)
k;SMS,T (Vf )

∣∣j⊥(q ẑ)|ψM (Vi)〉.
(4.4)

Here, ψM (Vi) and ψ
(−)
k;SMS,T (Vf ) are the deuteron and np

scattering states boosted from the center-of-mass frame, where
they are calculated in momentum space with the methods
discussed in Sec. II, to the Breit frame, in which they
have velocities given by, respectively, Vi = −(q/2)ẑ/Ei and
Vf = +(q/2)ẑ/Ef .

By inserting Eq. (2.4) into Eq. (4.4), the amplitude A can
be conveniently decomposed into the sum of two terms:

A = APW + AFSI, (4.5)

where

APW(q ẑ, k; S,MS, T ,M) = 〈φk;SMS,T (Vf )|j⊥(q ẑ)|ψM (Vi)〉,
(4.6)

and

AFSI(q ẑ, k; S,MS, T ,M)

=
∑
M ′

S

∫
dk′

2 (2π )3

T ST
MS,M ′

S
(k, k′)

Ek − Ek′ + iε
APW(q ẑ, k′; S,M ′

S, T ,M).

(4.7)

Thus, the amplitude APW corresponds to describing the final
np states by plane waves (PW), while the amplitude AFSI takes
into account interaction effects in these states.

The electromagnetic current operator includes the one- and
two-body terms discussed in the previous section. Details of
the calculation of the amplitudes are reported in Appendix B.

0 1 2 3 4 5
r(fm)

0.0

0.1

0.2

0.3

0.4

0.5

(f
m

-3
/2

)

NR
R

u(r)/r

w(r)/r

FIG. 1. The deuteron S- and D-state radial wave functions
obtained with the R and NR Hamiltonian models.

V. RESULTS AND CONCLUSIONS

In this section we report the results obtained in the
laboratory frame for the cross section of the deuteron threshold
electrodisintegration at backward angles. The calculations
were carried out with the relativistic (R) Hamiltonian of Sec. II,
including the OPEP with off-energy-shell extension predicted
by pseudovector coupling of pions to nucleons, i.e., with
µ = +1 in Eq. (2.2). This Hamiltonian was constructed to
be phase-equivalent to the non-relativistic (NR) Hamiltonian,
based on the Argonne v18 potential [17], using the methods
developed in Ref. [11].

In Figs. 1 and 2 we show the deuteron and np 1S0 wave
functions, respectively, derived from the R and NR Hamilto-
nian models (the continuum wave function is calculated at a
center-of-mass energy of 1.5 MeV). The deuteron R D-wave
is larger than the NR at inter-nucleon separations less than
1.5 fm, the corresponding D-state probabilities are 6.26% (R)
and 5.76% (NR)—the difference has its origin in the local

0 1 2 3 4 5

r(fm)

0

1

2

3

4

NR
R

u(r;E)/r

FIG. 2. The np 1S0-state radial wave functions obtained with the
R and NR Hamiltonian models at a center-of-mass energy of 1.5 MeV.
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]
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Q

2
(fm

-2
)

0.5

1.0

1.5

2.0

R
at

io

R/NR
RNB/NR

IA results

FIG. 3. The cross sections for deuteron threshold electrodisin-
tegration at backward angles, obtained with the relativistic and
nonrelativistic Hamiltonian models and corresponding one-body
currents [curves labeled IA (R) and IA (NR)] and by ignoring boost
corrections in the relativistic calculation [curve labeled IA (RNB)],
are compared with the experimental data from Refs. [25–28]. The
inset displays the ratio of the IA (R) and IA (RNB) to the NR
predictions.

and nonlocal characters of the NR and R (µ ± 1) OPEP
(for a discussion of this point, see Ref. [16]). However, the
D- to S-state ratio and quadrupole moment, which are more
sensitive to the wave functions in the asymptotic region, are,
respectively, 0.0260 and 0.272 fm2 in the R model, and 0.0250
and 0.270 fm2 in the NR [16]. In contrast, the R and NR 1S0

continuum wave functions hardly differ from each other, due
to the vanishing of the tensor force in this channel.

In Fig. 3 we report the results for the electrodisintegration
cross section obtained in the laboratory frame with the
R (solid line) and NR (dashed line) Hamiltonian models
and corresponding one-body currents, given respectively in
Eqs. (A2) and (A4). The cross section obtained by ignoring
the boost corrections for both the initial and final states in the R
calculation—this is equivalent to setting V = 0 in Eq. (2.7)—is
displayed by the dotted line, labeled RNB. All calculated
cross sections include the contributions of np final states with
total angular momentum up to J = 3. These contributions are
responsible for filling in the well-known nodal structure at
Q2 � 12 fm−2 in the cross section obtained with one-body
currents by retaining only the 1S0 channel in the final state
[12–15] (see Fig. 6 below). Finally, the inset of Fig. 3 shows
the ratios of the R and RNB to the NR predictions.

The experimental data, labeled Bates, Saclay-81 and
Saclay-85, are, respectively, from Refs. [25–27], and have been
averaged over the interval 0–3 MeV of the recoiling np pair
center-of-mass energy; those labeled SLAC are from Ref. [28],
and have been averaged over the interval 0–10 MeV. However,
all theoretical curves in this figure, and following ones, have
been calculated at a fixed center-of-mass energy of 1.5 MeV
and at an electron scattering angle θ = 155◦. The effect of the
width of the energy interval above threshold of the final state,
over which the cross section values are averaged, was studied in
Ref. [14], and found to be very small. The electron scattering

angles in the Saclay, Bates, and SLAC measurements were
respectively 155◦, 160◦, and 180◦, but in fact the calculated
cross section is weakly dependent on the specific value of the
backward angle, since σM tan2(θ/2) → α2/(4ε2) as θ → 180◦
(here, α is fine structure constant and ε the initial electron
energy).

The inset of Fig. 3 shows that the IA (R) and IA (NR)
predictions differ significantly (i.e., more than 10%) only
for Q2 > 45 fm−2. At lower momentum transfers, the IA
(R) cross section values are within 10% of the IA (NR).
Comparison of the IA (R) and IA (RNB) results shows the
effect of the boosts corrections in the initial deuteron and final
np states. We have verified explicitly, by switching off the
Thomas precession term in the boost operator of Eq. (2.7), that
the dominant correction arises from the Lorentz contraction
term (the resulting curve is essentially indistinguishable from
that labeled IA (R); it is not shown to reduce clutter).
Indeed, the IA (RNB) results can be approximately overlaid
over the IA (R) results by multiplying the former by the
factor [1 + Q2/(16 m2)], corresponding to the square of the
Lorentz factor γ � γi � γf = 1/

√
1 − V 2, where V = |V| =

(q/2)/
√

4m2 + q2/4, and the deuteron binding energy and np

center-of-mass energy have been neglected. A similar effect
was discussed in Ref. [9] in the context of a calculation of the
deuteron electromagnetic form factors: it conforms with the
naive expectation that the overlap between the initial and final
states in configuration space is “squeezed” in the direction
of motion (namely, along q) by γ or, equivalently, that its
momentum space overlap is “pushed out” by γ .

In Fig. 4 we report the cross section results obtained by
including, in addition to the single-nucleon current, the two-
body current associated with pion exchange (curves labeled IA
+π with NR, R, and RNB), while in the inset we display the
ratios of R and RNB to NR predictions. For reference, we also
show the IA (R) cross sections presented in Fig. 3. The cross
section values in the R calculation are significantly smaller
than those in the NR in the momentum transfer range Q2 =
18–40 fm−2. In fact, a close inspection of Figs. 3 and 4 shows
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FIG. 4. Same as in Fig. 3, but with one-body and pion-exchange
two-body currents. The cross sections obtained in the IA (R)
calculation are also shown.

014007-5



A. ARRIAGA AND R. SCHIAVILLA PHYSICAL REVIEW C 76, 014007 (2007)

0 10 20 30 40 50 60 70 80

Q
2
(fm

-2
)

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

d2 σ/
(d

ε’
dΩ

)[
fm

2 /(
M

eV
 s

r)
] Bates

Saclay-81
Saclay-85
SLAC
IA+π (NR)
IA+π (R)
IA+π (RK0)
IA+π (NRW)
IA+π (NRC)

FIG. 5. (Color online) The IA+π (R) and IA+π (NR) predictions
of Fig. 4 are compared with the results corresponding to different
approximations, labeled, respectively, IA+π (RK0), IA+π (NRW),
and IA+π (NRC). See text for discussion. The experimental data are
from Refs. [25–28].

that the pion exchange contribution in the R calculation is
larger than in the NR. In both of these calculations, this contri-
bution is found to have the same sign, for Q2 up to ≈12 fm−2,
as the one-body contribution. At larger Q2 values, however, the
latter changes sign, and the resulting destructive interference
between it and the two-body contribution is responsible for
the suppression of the R cross section relative to the NR in this
Q2 region.

To investigate the mechanisms responsible for the suppres-
sion of the R relative to NR predictions for Q2 in the range
18–40 fm−2, we have carried out two different calculations,
the results of which are displayed in Fig. 5. In the first, labeled
IA+π (NRW), we have replaced the NR expressions for the
one- and two-body currents with the corresponding R ones, in
order to isolate relativistic effects in the currents. Comparison
between the IA+π (NRW) and IA+π (NR) curves shows that
these effects reduce the cross section, for Q2 > 18 fm−2.

In the second calculation, labeled IA+π (NRC), we have
used NR one- and two-body currents but R deuteron and np

scattering wave functions without boost corrections—so this
is the same as IA+π (NR) calculation but for the replacement
of the NR wave functions by the corresponding R ones—with
the objective of isolating relativistic effects generated by the
Hamiltonian. As in the previous case, we find that these reduce
the cross section.

In Fig. 5 we also show the results of an R calculation in
which the time components (k0

i ) of the exchanged pion four-
momenta in both the vertex operators and propagators of the
two-body currents in Eqs. (A7) and (A8) are set to zero, curve
labeled IA+π (RK0). The latter essentially overlaps the IA+π

(R) curve. We have also verified by direct calculation that
ignoring the retardation effects only in the pion propagators
again hardly changes the IA+π (R) predictions. Thus, the
explicit energy dependence of the vertex operators implied by
pseudovector coupling of pions to nucleons has a negligible
effect.
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FIG. 6. (Color online) The cross sections for deuteron threshold
electrodisintegration at backward angles, obtained in the IA (R) and
IA+π (R) calculations, are compared with the results of calculations
based on the NR and R Hamiltonian models and corresponding one-
and two-body currents, but including only the 1S0 channel in the np

final state. The experimental data are from Refs. [25–28].

Figure 6 shows the results of R and NR calculations
including only the 1S0 channel in the np final state compared
both to data and the R results with the “complete” np state
(all channels up to J = 3), i.e., the curves labeled IA (R)
and IA+π (R) in Fig. 4. The nodes at Q2 ≈ 12 fm−2 (IA)
and 18 and 16 fm−2 (IA+π ) in the R and NR predictions
including only the 1S0 channel are filled in by the contributions
of higher partial waves in the complete calculations. The
1S0 IA (R) and IA (NR) cross sections are very close to
each other, and thus confirm the conclusions of Ref. [15],
in which the electrodisintegration cross section was cal-
culated within a relativistic approach based on light-
front-form Hamiltonian dynamics, including only one-body
currents.

To conclude, we find that relativistic effects in the cal-
culations with only one-body currents become important
(larger than 10%) at momentum transfers Q2 exceeding
40 fm−2, and are due, for the most part, to boost corrections.
However, when the pion-exchange current contributions are
also taken into account, significant differences at lower Q2 are
obtained between the cross sections predicted within the R and
NR models for the Hamiltonian and currents. The interplay
between relativistic effects in the interactions and currents
conspire to significantly reduce the cross section obtained in
the R calculation in the Q2 range �18–40 fm−2.

The cross section predictions based on both the R and
NR models do not reproduce the experimental data at Q2 >

10 fm−2, thus demonstrating the inadequacy of the present
model for the electromagnetic current operator. This con-
clusion corroborates that of an earlier (NR) study [14], and
suggests the need for including additional (short-range) two-
body currents.

Finally, in the present work we have not addressed the issue
of current conservation within the R framework. Its discussion
would require constructing the two-body charge operator
associated with pion exchange, and studying the relation
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between the pion-exchange charge and current operators and
the off-energy shell behavior of OPEP. This is beyond the
scope of the present work.
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APPENDIX A: CURRENT OPERATOR EXPRESSIONS

In this appendix we list the expressions for the one-body and
two-body pion-exchange current operators. The time (charge)
and space (current) components of the one-body four-current
read, respectively,

ρi(p ′
i , pi)

= N ′
iNi

[
F1,i + F1,i

p′
i · pi + iσ i · p′

i × pi

(E′
i + m)(Ei + m)

+ F2,i

2m

(
q · pi − iσ i · pi × q

Ei + m
− q · p′

i + iσ i · p′
i × q

E′
i + m

)]
,

(A1)

ji(p ′
i , pi)

= N ′
iNi

{
F1,i

(
pi − iσ i × pi

Ei + m
+ p′

i + iσ i × p′
i

E′
i + m

)

+ F2,i

2m
ω

(
pi − iσ i × pi

Ei + m
− p′

i + iσ i × p′
i

E′
i + m

)

− i
F2,i

2m
q × σ i

[
1 + p′

i · pi

(E′
i + m)(Ei + m)

]

+ i
F2,i

2m

σ i · p′
iq × pi + σ i · piq × p′

i

(E′
i + m)(Ei + m)

+ F2,i

2m

q · pip′
i − q · p′

ipi

(E′
i + m)(Ei + m)

}
, (A2)

where the spinor-normalization factor Ni = √
(Ei + m)/(2Ei)

and similarly for N ′
i , σ i is the Pauli spin operator of

nucleon i, and the initial and final nucleon spin-isospin states
χσ ′

i τ
′
i

and χσiτi
are not explicitly shown. The initial and final

momenta are denoted respectively as pi and p ′
i , while the

energy and three-momentum transfers ω and q are taken
in the Breit frame, defined in Sec. III after Eq. (3.4). The
nonrelativistic limits to order (p/m)2 included are written as

ρNR
i (p ′

i , pi) = GE,i√
1 + Q2/(4m)2

+ i
2GM,i − GE,i

4m2

× σ i · p′
i × pi , (A3)

jNR
i (p ′

i , pi) = GE,i

2m
(pi + p′

i) + i
GM,i

2m
σ i × q, (A4)

where Q2 = −qµqµ and the Sachs nucleon form factors,
defined as

GE,i = F1,i − Q2

4m2
F2,i , (A5)

GM,i = F1,i + F2,i , (A6)

have been introduced in Eqs. (A3) and (A4). The two-body
pion-exchange currents are given by

j(a)
12

(
p′

1, p′
2, p1, p2

)

= iN ′
1N

′
2N1N2G

V
E(Q2)

f 2
πNN

m2
π

f 2
π (k2)

k2
2 − k0 2

2 + m2
π

(τ 1 × τ 2)z

×
[
σ 1 + (σ 1 · p′

1)σ 1 (σ 1 · p1)

(E′
1 + m)(E1 + m)

]

×
{
k0

2

(
σ 2 · p′

2

E′
2 + m

+ σ 2 · p2

E2 + m

)

−
[
σ 2 · k2 + (σ 2 · p′

2)σ 2 · k2 (σ 2 · p2)

(E′
2 + m)(E2 + m)

]}

+ 1 ⇀↽ 2, (A7)

j(b)
12

(
p′

1, p′
2, p1, p2

)

= i N ′
1N

′
2N1N2G

V
E (Q2)

f 2
πNN

m2
π

f 2
π (k1)

k2
1 − k0 2

1 + m2
π

× f 2
π (k2)

k2
2 − k0 2

2 + m2
π

(τ 1 × τ 2)z (k1 − k2)

×
{
k0

1

(
σ 1 · p′

1

E′
1 + m

+ σ 1 · p1

E1 + m

)

−
[
σ 1 · k1+ (σ 1 · p′

1)σ 1 · k1 (σ 1 · p1)

(E′
1 + m)(E1 + m)

]}

×
{
k0

2

(
σ 2 · p′

2

E′
2 + m

+ σ 2 · p2

E2 + m

)

−
[
σ 2 · k2 + (σ 2 · p′

2)σ 2 · k2 (σ 2 · p2)

(E′
2 + m)(E2 + m)

]}
, (A8)

where k0
i = E′

i − Ei and ki = p′
i − pi , and the product of three

Pauli matrices can be further reduced via the identity

(σ i · p′
i) σ i (σ i · pi) = p′

i(σ i · pi) + pi(σ i · p′
i) − σ i(p′

i · pi)

+ i(p′
i × pi). (A9)

To leading order in (p/m)2, the nonrelativistic limits in
Eqs. (A7) and (A8) sum up to

j12(k1, k2)

= −iGV
E (Q2)

f 2
πNN

m2
π

(τ 1 × τ 2)z

×
{[

σ 1(σ 2 · k2)
f 2

π (k2)

k2
2 + m2

π

− 1 ⇀↽ 2

]
− (k1 − k2)

× (σ 1 · k1)(σ 2 · k2)
f 2

π (k1)

k2
1 + m2

π

f 2
π (k2)

k2
2 + m2

π

}
. (A10)
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APPENDIX B: CALCULATION OF AMPLITUDES

In this appendix we outline the method used to compute
the matrix elements of the one-body and two-body current
operators in Eqs. (4.6) and (4.7). The calculation is carried
out in the Breit frame, in which the initial deuteron and final
np pair (with center-of-mass energy Ek = 2

√
k2 + m2 ) have

velocities given respectively by

Vi = − q

2
√

m2
d + q2/4

, Vf = + q

2
√

E2
k + q2/4

. (B1)

Here the momentum transfer q is taken along the ẑ-axis. We

also define γi = 1/

√
1 − V 2

i and similarly for γf .
The computer codes implementing the formalism discussed

below have been successfully tested by comparing, in a model
calculation which ignored boost corrections and kept only the
leading terms in the nonrelativistic expansions of the one- and
two-body currents, the present results with those obtained [14]
with an earlier, configuration-space version of the code.

A. One-body amplitude

Following Eq. (4.5), we decompose the one-body amplitude
into PW and FSI amplitudes. The PW amplitude is written as

APW
1−body(q; k, S,MS, T ,M)

= 2
∫

dp
(2π )3

φ
†
k;SMS,T (p + q/2; Vf ) j⊥,1(p′

1, p1)

×ψM (p; Vi), (B2)

where p is the relative momentum, p ′
1 = 3 q/4 + p and p1 =

−q/4 + p, the factor of 2 in front of the integral takes into
account the identical contribution coming from the current
of nucleon 2, j⊥,2, and finally ψM (p; Vi) and φk;SMS,T (p +
q/2; Vf ) are the momentum-space deuteron and free np wave
functions, boosted to the Breit frame. Making the change of
integration variables [(p‖ + q/2)/γf , p⊥] → (p‖, p⊥), where
p‖ and p⊥ refer respectively to the components of p parallel
and perpendicular to q, leads to the following expression for
APW

1−body:

APW
1−body(q; k, S,MS, T ,M)

= 2 γf

∫
dp

(2π )3
φ
†
k;SMS,T (p; 0)B†(p, Vf ) j⊥,1(p′

1, p1)

×B(p, Vi)ψM [(γf p‖ − q/2)/γi, p⊥], (B3)

where p′
1 = γf p‖ + q/4 + p⊥ and p1 = γf p‖ − 3 q/4 + p⊥,

and the boost operators B(p, Vi) and B(p, Vf ) can be read off
from Eq. (2.7) (note that under the change of variables above,
the Thomas precession term remains unchanged, since both
Vi and Vf are along q).

It is convenient to expand the free np wave function in
partial waves [23]:

φk;SMS,T (p; 0) =
√

2(2π )3 δ(k − p)

kp

∑
LJMJ

εLST

[
Z

JMJ

LSMS
(k̂)

]∗

×YMJ

LSJ (p̂)χT
0 , (B4)

where εLST = [1 − (−)L+S+T ]/2,

Z
JMJ

LSMS
(k̂) =

∑
ML

〈LML, SMS |JMJ 〉YLML
(k̂), (B5)

and YMJ

LSJ are standard spin-angle functions. Inserting this
expansion in Eq. (B3) gives

APW
1−body(q; k, S,MS, T ,M)

=
∑

LJMJ

εLST Z
JMJ

LSMS
(k̂)J ST

LJMJ ;M (q, k), (B6)

where

J ST
LJMJ ;M (q, k)

= 2
√

2γf

∫
d�pχ

T †
0 YMJ †

LSJ (p̂)B†(p, Vf )j⊥,1(p′
1, p1)

×B(p, Vi)ψM [(γf p‖ − q/2)/γi, p⊥] (B7)

and the magnitude of the relative momentum is fixed by
the δ-function in Eq. (B4) to be |p| = k (note that p enters
in the arguments of the boost and current operators and
deuteron wave function). For an assigned set of quantum
numbers LJMJ ; M and ST , the function J (q, k) is calculated
efficiently by standard Gaussian integrations over the p̂-
directions.

In order to evaluate the FSI amplitude, we first introduce
in Eq. (4.7) the partial wave expansions for APW

1−body, Eq. (B6),
and for the T -matrix [23],

T ST
MS,M ′

S
(k, k′)

= 2(4π )2
∑

JMJ LL′
iL

′−LεLST εL′ST Z
JMJ

LSMS
(k̂)

[
Z

JMJ

L′SM ′
S
(k̂′)

]∗

× T ST J
LL′ (k, k′), (B8)

and then carry out the integrations over the k̂ ′ solid angle to
obtain

AFSI
1−body(q; k, S,MS, T ,M)

=
∑

LJMJ

εLST Z
JMJ

LSMS
(k̂)J ST

LJMJ ;M (q, k; FSI), (B9)

where we have defined

J ST
LJMJ ;M (q, k; FSI)

=
∑
L′

iL
′−LεL′ST

[
2

π

∫ ∞

0
dk′k′2 T ST J

LL′ (k, k′)
Ek − Ek′ + iε

× J ST
L′JMJ ;M (q, k′)

]
. (B10)

In deriving the equations above, use has been made of the
following relation:

∑
MS

∫
d�k

[
Z

JMJ

LSMS
(k̂)

]∗
Z

J ′M ′
J

L′SMS
(k̂) = δJJ ′δMJ M ′

J
δLL′ , (B11)

while a standard subtraction technique [24] is employed to
perform the principal value integration implicit in Eq. (B10).

In the partial wave expansions of the amplitudes, fully
converged results for APW

1−body and AFSI
1−body are obtained, at

the low center-of-mass energy of the final np pair of interest

014007-8



RELATIVISTIC CALCULATION OF DEUTERON . . . PHYSICAL REVIEW C 76, 014007 (2007)

here (1.5 MeV), when all contributions with total angular
momentum J ≤ 3 are retained in the sum over channels.

B. Two-body amplitude

In this case, after rescaling the p′ relative momentum as
(p′

‖/γf , p′
⊥) → (p′

‖, p′
⊥) in the integral, the PW amplitude

reads

APW
2−body(q; k, S,MS, T ,M)

= γf

∫
dp′

(2π )3

dp
(2π )3

φ
†
k;SMS,T (p′; 0)B†(p′, Vf )

× j⊥,12(p′
1, p′

2, p1, p2)B(p, Vi)ψM (p‖/γi, p⊥), (B12)

where p′
1 = q/4 + γf p′

‖ + p′
⊥, p′

2 = q/4 − γf p′
‖ − p′

⊥ and
p1 = −q/4 + p, p2 = −q/4 − p. Rather than expanding the
free np state in partial waves, we carry out the p′ integration
by inserting into the equation above the plane waves of

Eq. (2.5), and obtain

APW
2−body(q; k, S,MS, T ,M)

=
√

2 γf

∫
dp

(2π )3
χ

S,T †
MS,0B

†(k, Vf )

× j⊥,12(p′
1, p′

2, p1, p2)B(p, Vi)ψM (p‖/γi, p⊥), (B13)

where in the momenta p′
1 and p′

2 the parallel and perpendicular
components of the relative momentum p′ are replaced by those
corresponding to k. The three-dimensional integrations in
Eq. (B13) are done by Gaussian quadratures.

The amplitudes AFSI
2−body are calculated from Eq. (4.7) by

direct integration over k′. To this end, we first reconstruct,
from the channel solutions T ST J

LL′ (k, k ′), the full T -matrix in
Eq. (B8), by including contributions with total angular mo-
mentum up to J = 3, and then use cubic-spline techniques to
interpolate the APW

2−body, previously tabulated on a sufficiently
coarse grid, at the k′ values relevant for integration.
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[24] W. Glöckle, The Quantum Mechanical Few-Body Problem

(Springer-Verlag, Berlin, 1983).
[25] W. M. Schmitt et al., Phys. Rev. C 56, 1687 (1997).
[26] M. Bernheim et al., Phys. Rev. Lett. 46, 402 (1981).
[27] S. Auffret et al., Phys. Rev. Lett. 55, 1362 (1985).
[28] M. Frodyma et al., Phys. Rev. C 47, 1599 (1993).

014007-9


