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Two-pion exchange three-nucleon potential: O(q4) chiral expansion
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We present the expansion of the two-pion exchange three-nucleon potential (TPE-3NP) to chiral order q4,
which corresponds to a subset of all possibilities at this order and is based on the πN amplitude at O(q3). Results
encompass both numerical corrections to strength coefficients of previous O(q3) terms and new structures in the
profile functions. The former are typically smaller than 10% whereas the latter arise from either loop functions
or nonlocal gradients acting on the wave function. The influence of the new TPE-3NP over static and scattering
three-body observables has been assessed and found to be small, as expected from perturbative corrections.
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I. INTRODUCTION

The research program for nuclear forces, outlined more
than fifty years ago by Taketani, Nakamura, and Sasaki [1],
treats pions and nucleons as basic degrees of freedom. This
insight proved to be very fruitful. On the one hand, it implies
the interconnection of all nuclear processes, both among
themselves and with a class of free reactions. On the other,
it determines a close relationship between the number Nπ

of pions involved in a given interaction and its range r ,
which can be roughly summarized by the factor YNπ , where
Y = e−µr/r is the Yukawa function and µ is the pion mass.
As a consequence, the outer components of nuclear forces
are dominated by just a few basic subamplitudes, describing
either single (N → πN ) or multipion (ππ → ππ, πN →
πN, πN → ππN , . . .) interactions.

It took a long time before a theoretical tool became
available that allows the precise treatment of these amplitudes.
Nowadays, owing to the development of chiral perturbation
theory (ChPT) in association with effective Lagrangians [2,3],
the roles of pions and nucleons in nuclear forces can be
described consistently. The rationale for this approach is that
the quarks u and d, which have small masses, dominate
low-energy interactions. One then works with a two-flavor
version of QCD and treats their masses as perturbations in
a chiral symmetric Lagrangian. The systematic inclusion of
quark mass contributions is performed by means of chiral
perturbation theory, which incorporates low-energy features
of QCD into the nuclear force problem. In performing
perturbative expansions, one uses a typical scale q, set by
either pion four-momenta or nucleon three-momenta, such that
q � 1 GeV.

Range and chiral expansions are not mutually exclusive
and, in fact, the joint application of both approaches to
nuclear systems has promoted a considerable refinement in
the description of their interactions in the past decade. The
one-pion exchange potential (OPEP) corresponds to Nπ = 1,
begins [4] at O(q0), and fortunately is the leading term in both
approaches. This component provides a good description of
NN interactions at large distances and became well established
in the 1960s. The next class of two-body contributions is
associated with exchanges of two uncorrelated pions, with

Nπ = 2. As far as chiral symmetry is concerned, the two-pion
exchange potential (TPEP) begins at O(q2) and, at present,
there are two independent expansions up to O(q4) in the
literature, based on either heavy-baryon [5] or covariant [6,7]
ChPT. The TPEP is closely related with the off-shell πN

amplitude and, at this order, two-loop diagrams involving
intermediate ππ scattering already begin to contribute. At
present, the OPEP and the TPEP are the only components
of the two-body force understood in some depth. Exploratory
works for processes involving the exchange of three pions
exist [8], but much more research is needed before a reliable
picture can be produced. In the absence of a comprehensive
theoretical description, phenomenological form factors taken
from phase shifts and the deuteron binding energy are still
required [9] in the region r < 1 fm.

In proper three-nucleon (3N ) interactions, the leading
term corresponds to the two-pion exchange three-nucleon
potential TPE-3NP, in which the pion emitted by a nucleon
is scattered before being absorbed by another one. It has
Nπ = 2 in the range expansion and the earliest version was
produced exactly fifty years by Fujita and Miyazawa [10].
In the chiral expansion, this contribution begins at O(q3),
and formulations at this order, which involve only tree-level
interactions, have been available for a long time [11–13]. In
this work we consider the extension of the three-nucleon force
to O(q4), so as to achieve consistency with the available NN
picture. However, the implementation of this program is not
straightforward, since it requires the evaluation of a rather
large number of diagrams, encompassing ranges with Nπ = 2
and Nπ = 3. With the purpose of exploring the magnitude of
O(q4) effects, in this work we concentrate on the particular
subset of processes pertaining to the former case, which still
belong to the TPE-3NP class.

Our presentation is divided as follows. In Sec. II we display
the general relationship between the TPE-3NP and the πN

amplitude to discuss how it affects chiral power counting in
the former. The πN amplitude relevant for the O(q4) potential
is derived in Sec. III and used to construct the three-body
interaction in Sec. IV. We concentrate on numerical changes
induced into both potential parameters and observables in
Secs. V and VI, and conclusions are presented in Sec. VII.
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There are also four appendices, dealing with kinematics, πN

subthreshold coefficients, loop integrals, and nonlocal terms.

II. GENERAL FORMULATION

Potentials to be used into nonrelativistic equations can be
derived from field theory by means of the T matrix. In the case
of three-nucleon potentials, one starts from the nonrelativistic
transition matrix describing the process N (p1)N (p2)N (p3) →
N (p′

1)N (p′
2)N (p′

3), which includes both kernels and their
iterations. The former correspond to proper interactions,
represented by diagrams that cannot be split into two pieces
by cutting positive-energy nucleon lines only, whereas the
latter are automatically generated by the dynamical equation.
Therefore, just the kernels, denoted collectively by t̄3, are
included in the potential.

The transformation of a T matrix into a potential depends
on both the dynamical equation adopted and conventions
associated with off-shell effects. The latter were discussed
in a comprehensive paper by Friar [14]. Here we use the
kinematical variables defined in Appendix A and relate t̄3 to
the momentum-space potential operator Ŵ by writing [15]

〈 p′
1, p′

2, p′
3|Ŵ | p1, p2, p3〉

= −(2π )3δ3(P ′ − P)t̄3( p′
1, p′

2, p′
3, p1, p2, p3). (1)

In configuration space, internal dynamics is described by the
function

W (r ′, ρ ′; r, ρ)

= −[
2/

√
3
]6

∫
d Qr

(2π )3

d Qρ

(2π )3

dqr

(2π )3

dqρ

(2π )3

× ei[ Qr ·(r ′−r)+ Qρ ·(ρ ′−ρ)+qr ·(r ′+r)/2+qρ ·(ρ ′+ρ)/2]

× t̄3( Qr , Qρ, qr , qρ), (2)

which is to be used in a nonlocal version of the Schrödinger
equation:[

− 1

m
∇2

r ′ − 1

m
∇2

ρ ′ − ε

]
ψ(r ′, ρ ′)

= − [√
3/2

]3
∫

d r dρ W (r ′, ρ ′; r, ρ)ψ(r, ρ). (3)

Nonlocal effects are associated with the variables Qr and Qρ .
When these effects are not too strong, they can be represented
by gradients acting on the wave function and the potential W

is rewritten as

W (r ′, ρ ′; r, ρ) = δ3(r ′ − r)δ3(ρ ′ − ρ)[2/
√

3]3V (r, ρ). (4)

The two-pion exchange three-nucleon potential is rep-
resented in Fig. 1(a). It is closely related with the πN

scattering amplitude, which isO(q) for free pions and becomes
O(q2) within the three-nucleon system. As a consequence, the
TPE-3NP begins at O(q3) and, at this order, it also receives
contributions from interactions (c) and (d), which have shorter
range. The extension of the chiral series to O(q4) requires
both the inclusion of single-loop effects into processes that
already contribute at O(q3) and the evaluation of many new
amplitudes, especially those associated with diagram (b).

(a) (b) (c) (d)

FIG. 1. (Color online) Classes of three-nucleon forces, where full
and dashed lines represent nucleons and pions, respectively; diagram
(a) corresponds to the TPE-3NP.

In this paper we concentrate on the particular set of
processes that belong to the TPE-3NP class, represented by
the T matrix Tππ and evaluated by using the kinematical
conditions given in Fig. 2. The coupling of a pion to nucleon
i = (1, 2) is derived from the usual lowest order pseudo-vector
Lagrangian L(1) and the Dirac equation yields the equivalent
forms for the vertex

(gA/2fπ )[τ ū(p′ − p)γ5u](i) = (mgA/fπ )[τ ūγ5u](i), (5)

where gA, fπ , and m represent, respectively, the axial nucleon
decay, the pion decay, and the nucleon mass.

The amplitude for the intermediate process πa(k)N (p) →
πb(k′)N (p′) has the isospin structure

Tba = δabT
+ + iεbacτcT

− (6)

and Fig. 2 yields

Tππ = −
[

mgA

fπ

]2

[ūγ5u](1)[ūγ5u](2) 1

k2 − µ2

1

k
′2 − µ2

[τ (1) · τ (2)T + − iτ (1) × τ (2) · τ (3)T −](3). (7)

The results in Appendix A show that [ūγ5u](i) → O(q),
whereas pion propagators are O(q−2). As a consequence, in
the O(q4) expansion of the potential one needs Tππ to O(q)
and T ± to O(q3). For on-shell nucleons, the subamplitudes
T ± can be written as

T ± = ū( p′)
[
D± − i

2m
σµν(p′ − p)µKνB±

]
u( p), (8)

with K = (k′ + k)/2. The dynamical content of the πN

interaction is carried by the functions D± and B± and their
main properties were reviewed by Höhler [16]. The chiral
structure of these subamplitudes was discussed by Becher
and Leutwyler [17,18] a few years ago, in the framework
of covariant perturbation theory, and here we employ their
results. As far as power counting is concerned, in Appendix A

P´

P´P

P

1

k´, b

   k , a

3

2 P´

3

2

P1

FIG. 2. (Color online) Two-pion exchange three-nucleon potential.

014006-2



TWO-PION EXCHANGE THREE-NUCLEON POTENTIAL: . . . PHYSICAL REVIEW C 76, 014006 (2007)

one finds [ū( p′) u( p)](3) → O(q0) and [ i
2m

ū( p′)σµν(p′ −
p)µKνu( p)](3) → O(q2), indicating that one needs the ex-
pansions of D± and B± up to O(q3) and O(q), respectively.

At low and intermediate energies, the πN amplitude is given
by a nucleon pole superimposed on a smooth background. One
then distinguishes the pseudovector (PV) Born term from a
remainder (R) and writes

T ± = T ±
pv + T ±

R . (9)

The former contribution depends on just two observables,
namely the nucleon mass m and the πN coupling constant g,
as prescribed by the Ward-Takahashi identity [19]. The
calculation of these quantities in ChPT may involve loops
and other coupling constants but, at the end, results must be
organized so as to reproduce the physical values of both m

and g in T ±
pv [20]. For this reason, one uses the constant g,

instead of (gA/fπ ), since the former is indeed the observable
determined by the residue of the nucleon pole [16,18,21]. The
pv Born subamplitudes are given by

D+
pv = g2

2m

(
k′ · k

s − m2
+ k′ · k

u − m2

)
, (10)

B+
pv = −g2

(
1

s − m2
− 1

u − m2

)
, (11)

D−
pv = g2

2m

(
k · k′

s − m2
− k · k′

u − m2
− ν

m

)
, (12)

B−
pv = −g2

(
1

s − m2
+ 1

u − m2
+ 1

2m2

)
, (13)

where s and u are the usual πN Mandelstam variables.
In the case of free pions, their chiral orders are, respec-
tively, [D+

pv, B
+
pv,D

−
pv, B

−
pv] → O[q2, q−1, q, q0], but impor-

tant changes do occur when the pions become off-shell.
The amplitudes T ±

R receive contributions from both tree
interactions and loops. The former can be read directly from
the basic Lagrangians and correspond to polynomials in t =
(k′ − k)2 and ν = (p′ + p) · (k′ + k)/4m, with coefficients
given by renormalized low energy constants (LECs) [18]. The
latter are more complex and depend on Feynman integrals.
In the description of πN amplitudes below threshold, one
approximates both types of contributions by polynomials and
writes [16,22]

XR =
∑

xmnν
2mtn, (14)

where XR stands for D+
R , B+

R /ν,D−
R /ν, or B−

R . The subthresh-
old coefficients xmn have the status of observables, since they
can be obtained by means of dispersion relations applied to
scattering data. As such, they constitute an important source of
information about the values of the LECs to be used in effective
Lagrangians. The dynamical role of a given subthreshold
coefficient depends on whether the pions involved in the πN

amplitude are free or virtual. In the former case, one has
ν → O(q), whereas in the TPE-3NP, ν → O(q2), as shown
in Appendix A.

The isospin-odd subthreshold coefficients include leading
order terms, which implement the predictions made by
Weinberg [23] and Tomozawa [24] for πN scattering lengths,

given by

D−
WT = ν

2f 2
π

, B−
WT = 1

2f 2
π

. (15)

For free pions, one has [D−
WT , B−

WT ] → O[q, q0] and these
orders of magnitude also change when pions become virtual.

Quite generally, the ranges of nuclear interactions are
determined by t-channel exchanges. At O(q3), the TPE-
3NP involves only single-pion exchanges among different
nucleons and has the longest possible range. Another t-channel
structure, associated with the pion cloud of the nucleon,
becomes apparent at O(q4) and gives rise to both scalar and
vector form factors [21]. These effects extend well beyond
1 fm [25,26] and a limitation of the power series given by
Eq. (14) is that they cannot accommodate these ranges, since
Fourier transforms of polynomials yield only δ functions and
their derivatives. In the description of the πN amplitude
produced by Becher and Leutwyler [18], one learns that the
only sources of medium-range (mr) effects are their diagrams
k and l, which contain two pions propagating in the t channel.
In our derivation of the TPE-3NP, the loop content of these
diagrams is not approximated by power series and, for free
pions, the nonpole subamplitudes are written as

D+
R = D+

mr (t) + [d̄+
00 + d+

10ν
2 + d̄+

01t](2)

+ [d+
20ν

4 + d+
11ν

2t + d̄+
02t

2](3), (16)

B+
R = B+

mr (t) + [b+
00ν](1), (17)

D−
R = D−

mr (t) + [ν/(2f 2
π )](1) + [d̄−

00ν + d−
10ν

3 + d̄−
01νt](3),

(18)

B−
R = B−

mr (t) + [1/(2f 2
π ) + b̄−

00](0) + [b−
10ν

2 + b̄−
01t](1),

(19)

where the labels (n) outside the brackets indicate the presence
of O(qn) leading terms and mr denotes terms associated with
the nucleon pion cloud. The bar symbol over some coefficients
indicates that they do not include both Weinberg-Tomozawa
and medium-range contributions, which are accounted for
explicitly. The functions D±

R and B±
R depend on the parameters

fπ, gA, µ, and m and on the LECs ci and d̄i , which appear
into higher order terms of the effective Lagrangian. The
subthreshold coefficients are the door through which LECs
enter our calculation and their explicit forms are given in
Appendix B.

The dynamical content of the O(q3) πN amplitude is
shown in Fig. 3. The first two diagrams correspond to
PV Born amplitudes, whereas the third one represents the
Weinberg-Tomozawa contact interaction, all of them with
physical masses and coupling constants. The fourth graph
summarizes the terms within square brackets in Eqs. (16)–(19)
and depends on the LECs. Finally, the last two diagrams
describe medium-range effects owing to the nucleon pion
cloud, associated with scalar and vector form factors. This
decomposition of the πN amplitude has also been used in our
derivation of the two-pion exchange components of the NN
interaction [6,7] and hence the present calculation is consistent
with those results.
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FIG. 3. (Color online) Representation of the
πN amplitude used in the construction of the
TPE-3NP.

III. INTERMEDIATE π N AMPLITUDE

The combination of Figs. 2 and 3 gives rise to the TPE-
3NP, associated with the six diagrams shown in Fig. 4. In
the sequence, we discuss their individual contributions to the
subamplitudes D± and B±. We are interested only in the
longest possible component of the potential, and numerators
of expressions are systematically simplified by using k2 → µ2

and k
′2 → µ2. In configuration space, this corresponds to

keeping only those terms that contain two Yukawa functions
and neglecting interactions associated with Figs. 1(c) and 1(d).

A. Diagrams (a) and (b)

The crosses in the nucleon propagators of Figs. 4(a) and
4(b) indicate that they do not include forward-propagating
components, so as to avoid double counting when the potential
is used in the dynamical equation. The covariant evaluation of
these contributions is based on Eqs. (10)–(13). Denoting by
p̄ the momenta of the propagating nucleons, one decomposes
the factors 1/(s − m2) and 1/(u − m2) as

1

(p̄0)2 − Ē2
= 1

2Ē(p̄0 − Ē)
− 1

2Ē(p̄0 + Ē)
, (20)

with Ē =
√

m2 + p̄2. The first term represents forward-
propagating nucleons, associated with the iteration of the
OPEP, whereas the second one gives rise to connected
contributions. Discarding the former and using the results of
Appendix A, one has

1
/({su} − m2

) → −1
/[

4m2 + (
3q2

r + q2
ρ

/
3 + 16 Q2

ρ

/
3

± 10qr · Qρ

/√
3 ∓ 2qρ · Qr

/√
3
)]

. (21)

After appropriate truncation, one obtains

D+
ab = − g2

8m3
(2µ2 − t) → O(q2), (22)

B+
ab → O(q2), (23)

D−
ab = − g2

2m2
ν → O(q2), (24)

B−
ab → O(q2), (25)

where we have used the fact that, in the case of virtual pions,
ν → O(q2).

B. Diagrams (c) and (d)

These contributions are purely polynomial, can be read
directly from Eqs. (16)–(19), and are given by

D+
cd = −4c1

f 2
π

µ2 +
[

c3

f 2
π

+ g4
Aµ

16πf 4
π

]
(2µ2 − t) → O(q2),

(26)

B+
cd → O(q2), (27)

D−
cd = 1

2f 2
π

ν → O(q2), (28)

B−
cd = 1

2f 2
π

+ 2c4m

f 2
π

− g4
Amµ

8πf 4
π

→ O(q0). (29)

C. Diagrams (e) and (f)

The medium-range components of the intermediate πN

amplitude are

D+
e = g2

Aµ

64π2f 4
π

(2t − µ2)
[
(1 − t/2µ2)
t − 2π

] → O(q3),

(30)

FIG. 4. (Color online) Structure of theO(q4)
two-pion exchange three-nucleon potential.
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D+
ef → O(q4), (31)

B−
e = g2

Amµ

16π2f 4
π

[
(1 − t/4µ2)
t − π

] → O(q), (32)

where 
t is the dimensionless Feynman integral


t =
∫ 1

0
da

µ2F (a)

t − M2
← M = 2µ/a,

(33)

F (a) = 8

a2
tan−1

[
ma

√
1 − a2

µ(1 − a2/2)

]
.

The amplitude D−
ef , proportional to ν, is O(q3) for free pions

and here becomes O(q4). Thus, in fact, diagram (f) does not
contribute to the TPE-3NP at O(q4).

D. Full results

The Golberger-Treiman relation g/m = gA/fπ is valid up
to O(q2) and can be used in diagrams (a) and (b). One then
has

D+ = σ (2µ2)

f 2
π

+ (2µ2 − t)

f 2
π

[
− g2

A

8m
+ c3 + g2

A

(
1 + g2

A

)
µ

16πf 2
π

− g2
Aµ

128π2f 2
π

(1 − 2t/µ2)
t

]
, (34)

where

σ (t = 2µ2) = −4c1µ
2 − 3g2

Aµ3

32πf 2
π

(35)

is the value of the scalar form factor at the Cheng-Dashen
point [17]. The remaining amplitudes read

B+ → O(q2), (36)

D− = 1 − g2
A

2f 2
π

ν, (37)

B− = 1 + 4c4m

2f 2
π

− g2
A

(
1 + 2g2

A

)
mµ

16πf 4
π

+ g2
Amµ

16π2f 4
π

(1 − t/4µ2)
t. (38)

The subamplitudes D± and B± begin at O(q2) and one needs
just the leading terms in the spinor matrix elements of Eq. (8),
which is rewritten as

T + = 2mD+, (39)

T − = 2mD− + iσ (3) · k′ × kB−, (40)

with D+ → O(q2) + O(q3),D− → O(q2), and B− →
O(q0) + O(q).

E. O(q3) reduction

To compare our amplitudes with previous O(q3) re-
sults, one notes that, in case corrections are dropped, one

would have

D+ = σ (0)

f 2
π

+ (2µ2 − t)

f 2
π

{
−

[
g2

A

8m

]
+ c3

}
, (41)

B− =
[

1

2f 2
π

]
+ 2c4m

f 2
π

. (42)

These expressions agree with those derived directly from a
chiral Lagrangian [27], except for the terms within square
brackets in both D+ and B−. The former corresponds to a
Born contribution whereas the latter is due to diagram (c) in
Fig. 4, associated with the Weinberg-Tomozawa term.

IV. TWO-PION EXCHANGE POTENTIAL

The expansion of the TPE-3NP up to O(q4) requires
only leading terms in vertices and propagators. To derive
the nonrelativistic potential in momentum space, one divides
Eq. (7) by the relativistic normalization factor

√
2E 	 √

2m

for each external nucleon leg and writes1

t̄3 = g2
A

4f 2
π

1

k2 + µ2

1

k
′2 + µ2

σ (1) · kσ (2) · k′

×
[
τ (1) · τ (2)D+ − iτ (1) × τ (2) · τ (3)

×
(

D− + i

2m
σ (3) · k′ × kB−

)]
. (43)

The configuration space potential has the form

V3(r, ρ) = τ (1) · τ (2)V +
3 (r, ρ) + τ (1) × τ (2) · τ (3)V −

3 (r, ρ)

+ cyclic permutations, (44)

with

V +
3 (r, ρ)

= C+
1 σ (1) · x̂31σ

(2) · x̂23U1(x31)U1(x23)

+C+
2 {(1/9)σ (1) · σ (2)[U (x31) − U2(x31)]

× [U (x23) − U2(x23)] + (1/3)σ (1) · x̂23σ
(2) · x̂23

× [U (x31) − U2(x31)]U2(x23) + (1/3)σ (1) · x̂31

× σ (2) · x̂31U2(x31)[U (x23) − U2(x23)]

+ σ (1) · x̂31σ
(2) · x̂23 x̂31 · x̂23U2(x31)U2(x23)}

+C+
3 σ (1) · ∇I

31σ
(2) · ∇I

23∇I
31 · ∇I

23[I 0 − 2I 1], (45)

V −
3 (r, ρ)

= C−
1 {(1/9)σ (1) × σ (2) · σ (3)[U (x31) − U2(x31)]

× [U (x23) − U2(x23)] + (1/3)σ (3) × σ (1) · x̂23σ
(2) · x̂23

× [U (x31) − U2(x31)]U (x23) + (1/3)σ (1) · x̂31σ
(2)

× σ (3) · x̂31U2(x31)[U (x23) − U2(x23)] + σ (1) · x̂31σ
(2)

· x̂23σ
(3) · x̂31 x̂23U2(x31)U2(x23)}

+C−
2

{
σ (1) · (

i∇wf

31 − i∇wf

23

)
σ (2) · x̂23[U (x31)

−U2(x31)]U1(x23) + σ (1) · x̂31σ
(2) · (

i∇wf

31 − i∇wf

23

)
1One notes that this expression is identical with Eq. (33) of Ref. [13]

divided by 8m3.
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×U1(x31)[U (x23) − U2(x23)] + 3σ (1) · x̂31σ
(2) · x̂23

× (
i∇wf

31 − i∇wf

23

) · [x̂31U2(x31)U1(x23)

+ x̂23U1(x31)U2(x23)]
} + C−

3 σ (1) · ∇I
31σ

(2) · ∇I
23σ

(3)

·∇I
31 × ∇I

23[I 0 − I 1/4]. (46)

The profile functions are written in terms of the dimensionless
variables xij = µxij and read

U (x) = e−x

x
, (47)

U1(x) = −
(

1 + 1

x

)
e−x

x
, (48)

U2(x) =
(

1 + 3

x
+ 3

x2

)
e−x

x
, (49)

I n = −16π

µ2

∫
dk

(2π )3

dk′

(2π )3
ei(k·r31+k′ ·r23)

[
t

µ2

]n

× 1

k2 + µ2

1

k′2 + µ2

t (t). (50)

The last function involves the loop integral given in Eq. (33)
and is discussed further in Appendix C. The gradients ∇I

ij act

on the functions I n, whereas the ∇wf

ij act only on the wave
function and give rise to nonlocal interactions, as discussed in
Appendix D.

The strength coefficients are the following combinations of
the basic coupling constants:

C+
1 = g2

Aµ4

64π2f 4
π

σ (2µ2), (51)

C+
2 = g2

Aµ6

32π2f 4
π m

(
−g2

A

8
+ mc3 + g2

A

(
1 + g2

A

)
mµ

16πf 2
π

)
, (52)

C+
3 = g4

Aµ7

4096π3f 6
π

, (53)

C−
1 = g2

Aµ6

256π2f 4
π m

(
1 + 4mc4 − g2

A

(
1 + 2g2

A

)
mµ

8πf 2
π

)
, (54)

C−
2 = g2

A

(
g2

A − 1
)
µ6

768π2f 4
π m

, (55)

C−
3 = − g4

Aµ7

2048π3f 6
π

. (56)

V. STRENGTH COEFFICIENTS

The strength constants of the potential involve a blend of
four well-determined parameters, namely m = 938.28 MeV,
µ = 139.57 MeV, gA = 1.267, and fπ = 92.4 MeV, with the
scalar form factor at the Cheng-Dashen point and the LECs c3

and c4, which are less precise. As far as σ (2µ2) is concerned,
we rely on the results [28]σ (2µ2) − σ (0) = 15.2 ± 0.4 MeV
and σ (0) = 45 ± 8 MeV and adopt the central value σ (2µ2) =
60 MeV. The values quoted for the LECs in the literature vary
considerably, depending on the empirical input employed and
the chiral order one is working at. A sample of values is given
in Table I.

Our work is based on the O(q3) expansion of the inter-
mediate πN amplitude and, for the sake of consistency, one
must use LECs extracted at the same order. The kinematical
conditions of the three-body interaction are such that the
variable ν is O(q2), an order of magnitude smaller than the
threshold value, ν = µ. This makes information encompassed
in the subthreshold coefficients better suited to this problem
and we use results from Appendix B to write

mc3 = −mf 2
π d+

01 − g4
Amµ

16πf 2
π

− 77g2
Amµ

768πf 2
π

, (57)

mc4 = f 2
π b−

00

2
− 1

4
+ g2

A

(
1 + g2

A

)
mµ

16πf 2
π

. (58)

Adopting the values for the subthreshold coefficients given
by Höhler [16], namely d+

01 = 1.14 ± 0.02 µ−3 and b−
00 =

10.36 ± 0.10 µ−2, one finds the figures shown in the last row
of Table I. These, in turn, produce the strength coefficients
displayed in Table II. For the sake of comparison, we also
quote values employed in our earlier calculation [13] and in
two TM′ versions [31] of the Tucson-Melbourne potential [11].

Changes in these parameters represent theoretical progress
achieved over more than two decades and it is worth investigat-
ing their origins in some detail. With this purpose in mind, we
compare our present results with those of our previous O(q3)
calculation [13]. At the chiral order at which one is working
here, new qualitative effects begin to show up, associated with
both loops and nonlocal interactions. They are represented
by terms proportional to the coefficients C+

3 , C−
2 , and C−

3 in
Eqs. (45) and (46).

The πN coupling is now described by g2
Aµ2/f 2

π = 3.66
whereas, previously, the factor g2µ2/m2 = 3.97 was used.
From a conceptual point of view, the latter should be preferred,
since g is indeed the proper coupling observable. In chiral

TABLE I. Some values of the LECs c3 and c4; m is the nucleon mass.

Reference Chiral order πN input m c3 m c4

[29] 3 amplitude at ν = 0, t = 0 −5.00 ± 1.43 3.62 ± 0.04
[29] 3 amplitude at ν = 0, t = 2µ2/3 −5.01 ± 1.01 3.62 ± 0.04
[30] 3 scattering amplitude −5.69 ± 0.04 3.03 ± 0.16
[18] 4 subthreshold coefficients −3.4 2.0
[18] 4 scattering lengths −4.2 2.3

Tree 2 subthreshold coefficients −3.6 2.0
This work 3 subthreshold coefficients −4.9 3.3
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TABLE II. Strength coefficients in MeV.

Reference C+
1 C+

2 C+
3 C−

1 C−
2 C−

3

This work 0.794 −2.118 0.034 0.691 0.014 −0.067
Brazil [13] 0.92 −1.99 – 0.67 – –
TM′(93) [31] 0.60 −2.05 – 0.58 – –
TM′(99) [31] 0.91 −2.26 – 0.61 – –

perturbation theory, the difference between both forms is
ascribed to the parameter �GT = −2d18µ

2/g, which describes
the Goldberger-Treiman discrepancy [18]. As this is a O(q2)
effect, both forms of the coupling become equivalent in the
present calculation. However, the empirical value of g is
subject to larger uncertainties and the form based on gA is
more precise. Our present choice accounts for a decrease of
8% in all parameters.

The relations C+
1 ↔ Cs, C

+
2 ↔ Cp, and C−

1 ↔ −C ′
p allow

one to compare Eqs. (45) and (46) with Eq. (67) of Ref. [13].
One notes that the latter contains an unfortunate misprint in
the sign of the term proportional to C ′

p, as pointed out in
Ref. [32]. In the earlier calculation, the coefficient Cs was
based on a parameter [33] ασ = 1.05µ−1, which corresponds
to σ (2µ2) = 64 MeV. The results of Table II show that the
values of C+

2 and C−
1 are rather close to those of Cp and −C ′

p.
This can be understood by rewriting Eqs. (52) and (54) in terms
of the subthreshold coefficient d+

01 and b−
00 as follows:

C+
2 = − g2

Aµ6

32π2f 4
π m

(
mf 2

π d+
01 + g2

A

8
+

[
29g2

Amµ

768πf 2
π

])
, (59)

C−
1 = g2

Aµ6

128π2f 4
π m

(
f 2

π b−
00 +

[
g2

Amµ

16πf 2
π

])
. (60)

Numerically, this amounts to C+
2 = −(1.845 + 0.110 +

[0.163]) MeV and C−
1 = (0.624 + [0.067]) MeV. The second

term in the former equation was overlooked in Ref. [13]
and should have been considered there. The square brackets2

correspond to next-to-leading order contributions and yield
corrections of about 8% and 11% to the leading terms in C+

2
and C−

1 , respectively.3 As the model used in Ref. [13] was
explicitly designed to reproduce the subthreshold coefficients
quoted by Höhler [16], it produces the very same contributions
as the first terms in Eqs. (59) and (60).

VI. NUMERICAL RESULTS FOR
THREE-NUCLEON SYSTEMS

To test the effects of the TPE-3NP at O(q4), in this section,
we present some numerical results of Faddeev calculations for
three-nucleon bound and scattering states. The calculations are

2These factors can be traced back to loop diagrams in Fig. 3 and are
dynamically related to the term proportional to C±

3 , as we discuss in
Appendix C.

3When comparing the new coefficients with those in the second row
of Table II, one should also take into account the 8% effect from the
Goldberger-Treiman discrepancy.

based on a configuration space approach, in which we solve
the Faddeev integral equations [34–36],

3 = �12,3 + 1

E + iε − H0 − V12

× [V12(1 + 2) + W3(1 + 2 + 3)]

(and cyclic permutations), (61)

where �12,3, which does not appear in the bound-state
problem, is an initial state wave function for the scattering
problem, H0 is a three-body kinetic operator in the center-of-
mass frame, V12 is a nucleon-nucleon (2NP) potential between
nucleons 1 and 2, and W3 is the 3NP displayed in Fig. 2.
Partial wave states of a 3N system, in which both NN and
3N forces act, are restricted to those with total NN angular
momenta j � 6 for bound-state calculations, and j � 3 for
scattering-state calculations. The total 3N angular momentum
(J ) is truncated at J = 19/2, while 3NP is switched off for
3N states with J > 9/2 for scattering calculations. These
truncation procedures are confirmed to give converged results
for the purposes of the present work.

When just local terms are retained, t̄3 in Eq. (43) can be
cast in the conventional form [11–13]

t̄3 = − g2
A

4f 2
π

F (k2)

k2 + µ2

F (k′2)

k′2 + µ2
(σ (1) · k)(σ (2) · k′)

× [(τ (1) · τ (2)){a + b(k · k′)} − (iτ (1) × τ (2) · τ (3))

× (iσ (3) · k′ × k)d], (62)

where the coefficients a, b, and d are related to our potential
strength coefficients by

[C+
1 , C+

2 , C−
1 ] = 1

(4π )2

(
gA

2fπ

)2

[−aµ4, bµ6,−dµ6]. (63)

The values of the coefficients a, b, and d for the TPE-3NP at
O(q4) are shown in Table III, as BR-O(q4). In this table, the
values for the older version of the Brazil TPE-3NP, BR(83)
[13], and the potential up to O(q3) given by Eqs. (41)–(42),
BR-O(q3), are shown as well.

In Eq. (62), the function F (k2) represents a πNN

form factor. We apply a dipole form factor with cutoff

mass �,
(

�2−µ2

�2+k2

)2
, which modifies the profile functions

U (x), U1(x), and U2(x) in Eqs. (47)–(49) as

U (x) = e−x

x
− e−�̄x

x

(
1 + �̄2 − 1

2�̄
x

)
, (64)

TABLE III. Coefficients a, b, and d of the
TPE-3NP.

3NP a µ b µ3 d µ3

BR-O(q4) −0.981 −2.617 −0.854
BR-O(q3) −0.736 −3.483 −1.204
BR(83) −1.05 −2.29 −0.768
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U1(x) = −
(

1 + 1

x

)
e−x

x
+ �̄2

(
1 + 1

�̄x

)
e−�̄x

�̄x

+
(

�̄2 − 1

2

)
e−�̄x, (65)

U2(r) =
(

1 + 3

x
+ 3

x2

)
e−x

x
− �̄3

(
1 + 3

�̄x
+ 3

(�̄x)2

)

× e−�̄x

�̄x
− �̄(�̄2 − 1)

2

(
1 + 1

�̄x

)
e−�̄x, (66)

with �̄ = �/µ.
We choose the Argonne V18 model (AV18) [9] for a realistic

NN potential, by which the triton binding energy (B3) becomes
7.626 MeV, underbinding it by about 0.9 MeV compared
to the empirical value, 8.482 MeV. As is well known, the
introduction of the TPE-3NP remedies this deficiency. The
amount of attractive contribution depends on the cutoff mass
�, as shown in Fig. 5. The solid curve shows the dependence
of B3 on � for the calculation with the BR-O(q4) 3NP in
addition to the AV18 2NP [AV18 + BR-O(q4)]. In the figure,
the empirical value and the AV18 result are displayed by the
dashed and dotted horizontal lines, respectively. Owing to the
strong attractive character of the 3NP, B3 is reproduced by
choosing a rather small value of �, namely 660 MeV. In the
same figure, the � dependence of B3 for AV18 + BR-O(q3) is
displayed by a dashed curve and that for the AV18 + BR(83)
by a dotted curve. From these curves we see that AV18 +
BR-O(q3) reproduces B3 for � = 620 MeV and AV18 +
BR(83) for � = 680 MeV. In other words, the BR-O(q4) 3NP
is slightly more attractive than the BR(83) 3NP and a large
attractive effect occurs when one moves from the TPE O(q4)
3NP to the O(q3) 3NP. This tendency is strongly correlated
with the magnitude of the coefficient b, as shown in Table III.
This can be understood as a dominant contribution to B3 from
the component of the TPE-3NP associated with the coefficients
b. This dominance is shown in Table IV, where we tabulate
calculated B3 for the AV18 plus the BR-O(q4) 3NP and plus

550 600 650 700 750 800

7.5

8.0

8.5

9.0

9.5

B
3 (

M
eV

)

Λ (MeV)

FIG. 5. (Color online) The triton binding energy B3 as functions
of the cutoff mass � of the πNN dipole form factor. The solid
curve denotes the result for AV18 + BR-O(q4), the dashed curve for
AV18 + BR-O(q3), and the dotted curve for AV18 + BR(83). The
horizontal lines denote the AV18 result (dotted line) and the empirical
value (dashed line).

TABLE IV. Triton binding energy for the AV18 2NP
plus the BR-O(q4) 3NP for each term of the BR-O(q4)
3NP with � = 660 MeV. �B3 means the difference of the
calculated binding energy from that of the AV18 calculation.

B3 (MeV) �B3 (MeV)

AV18 + BR-O(q4) 8.492 0.866
AV18 + BR-O(q4)-a 7.673 0.047
AV18 + BR-O(q4)-b 8.241 0.615
AV18 + BR-O(q4)-d 7.787 0.161

each term of the BR-O(q4) coming from the coefficients a, b,
and d.

In Fig. 6, we compare six calculated observables for proton-
deuteron elastic scattering, namely differential cross sections
σ (θ ), vector analyzing powers of the proton Ay(θ ) and of the
deuteron iT11(θ ), and tensor analyzing powers of the deuteron
T20(θ ), T21(θ ), and T22(θ ), at incident proton energy Elab

N =
3.0 MeV (or incident deuteron energy Elab

d = 6.0 MeV)
with experimental data of Refs. [37,38]. In the figure, the
solid curves designate the AV18 calculations and the dashed
curves the AV18 + BR-O(q4) calculations, which are almost
indistinguishable from the AV18 + BR-O(q3) and AV18 +
BR(83) calculations, once the cutoff masses are chosen so that
B3 is reproduced.

Recall that the TPE-3NF has a minor effect on the vector
analyzing powers. This happens because the exchange of pions
gives essentially scalar and tensor components of nuclear
interaction in spin space, which are not so effective to the vector
analyzing powers. However, as is noticed in Refs. [39,40], at
Elab

N = 3.0 MeV, the TPE-3NP gives an incorrect contribution
to the tensor analyzing power T21(θ ) around θ = 90◦.

In Fig. 7, we compare calculations of observables in
neutron-deuteron elastic scattering at Elab

N = 28.0 MeV with
experimental data of proton-deuteron scattering of Ref. [41].
At this energy, discrepancies between the calculations and the
experimental data in the vector analyzing power iT11(θ ) appear
at θ ∼ 100◦, where iT11(θ ) has a minimum, and at θ ∼ 140◦,
where iT11(θ ) has a maximum, which are not compensated by
the introduction of the TPE-3NP. However, whereas the AV18
calculation almost reproduces the experimental data of T21(θ )
at θ ∼ 90◦, the introduction of the TPE-3NP gives an incorrect
effect, as in the Elab

N = 3 MeV case.
These results set the stage for the introduction of terms

associated with the coefficients C+
3 , C−

2 , and C−
3 , Eqs. (44)–

(45), which are new features of the O(q4) expansion of the
TPE-3NP. Terms proportional to C±

3 , which include the rather
complicated function I (r31, r23) given in Appendix C, arise
from a loop integral, Eq. (33). The term with C−

2 corresponds
to a nonlocal potential and includes the gradient operator
∇wf

ij , which acts on the wave function and arises from the
kinematical variable ν. Both kinds of contributions are not
expressed in the conventional local form shown in Eq. (62),
which involves only the coefficients C+

1 , C+
2 , and C−

1 , and
the full evaluation of their effects would require an extensive
rebuilding of large numerical codes. However, the coefficients
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FIG. 6. (Color online) Proton-
deuteron elastic scattering observables
at Elab

N = 3.0 MeV. Solid curves are
calculations for the AV18 potential
and dashed curves for the AV18 +
BR-O(q4). Experimental data are taken
from Refs. [37,38].

of the new terms are small, and in this exploratory paper we
estimate their influence over observables as follows.

The function I (r31, r23) is approximated by Eq. (C11),
which amounts to replacing 
t (t) by a factor −π . Further,
the kinematical factors in front of 
t (t) in Eqs. (34) and
(38), namely 1 − 2t/µ2 and 1 − t/4µ2, are approximately
evaluated by putting t ≈ 2µ2, which yields −3 and 1/2,
respectively. By this procedure, the coefficients C+

3 and C−
3

are absorbed into C+
2 and C−

1 , or in b and d, respectively, and
one has

�C+
2 = −3C+

3 , �C−
1 = C−

3 /2. (67)

Numerically, this corresponds to �C+
2 = −0.102 MeV ∼

1
20C+

2 and �C−
1 = −0.034 MeV ∼ − 1

20C−
1 , or �b =

−0.125(µ−3) and �d = 0.042(µ−3). The net change produced
in the triton binding energy is +0.026 MeV (+0.037 MeV from
�C+

2 and −0.011 MeV from �C−
1 ), just about 1/30 of the

total increase in B3 owing to the local terms of the BR-O(q4)
TPE-3NP.

The nonlocal term proportional to C−
2 is more involved

and we restrict ourselves to a rough assessment of its role.
We replace the variable ν by a constant 〈ν〉 and assume, for
example, that 〈ν〉 = µ2

4m
. This changes the C−

2 term in Eq. (46)

FIG. 7. (Color online) Nucleon-
deuteron elastic scattering observables
at Elab

N = 28.0 MeV. Curves are calcu-
lations for neutron-deuteron scattering.
Solid curves denote calculations for the
AV18 potential and dashed curves for the
AV18 + BR-O(q4). Experimental data
are those for proton-deuteron scattering
taken from Ref. [41].
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into the very simple form

V −
3 (r, ρ) = C−

1 (· · ·) + iC̃−
2 σ (1) · x̂31σ

(2) · x̂23U1(x31)U1(x23)

+C−
3 (· · ·) , (68)

with

C̃−
2 = − g2

A

4f 2
π

1 − g2
A

2f 2
π

〈ν〉 µ4

(4π )2

= −g2
A

(
1 − g2

A

)
µ6

512π2f 4
π m

= 0.021 MeV. (69)

Except for the isospin factor, this term is similar to that with
C+

1 (or a), which adds about 0.05 MeV to the triton binding
energy. Since the potential strength C̃−

2 is about 3% of C+
1 , its

contribution to the binding energy may be estimated to be a
tiny 0.001 MeV.

VII. CONCLUSIONS

In the framework of chiral perturbation theory, three-
nucleon forces begin at O(q3), with a simple long-range
component from the exchanges of two pions. At O(q4), in
contrast, a large number of different processes intervene and a
full description becomes rather complex. For this reason, here
we concentrate on a subset of O(q4) interactions, namely that
which still involves the exchanges of just two pions. This part
of the 3NP is closely related to the πN amplitude, and the
expansion of the former up to O(q4) depends on the latter at
O(q3).

Our expressions for the potential are given in Eqs. (44)–
(56) and the new chiral layer of the TPE-3NP considered
in this work gives rise to both numerical corrections to
strength coefficients of already existing terms (C+

1 , C+
2 , C−

1 )
and new structures in the profile functions. Changes in
numerical coefficients lay in the neighborhood of 10% and
can be read in Tables II and III. New structures, however,
arise either from loop functions representing form factors or
the nonlocal terms associated with gradients acting on the
wave function. They correspond to the terms proportional to
the parameters C+

3 , C−
2 , and C−

3 , which are small and compat-
ible with perturbative effects.

To insert our results into a broader picture, in Table V we
show the orders at which the various effects begin to appear,
including the drift potential derived recently [42].

The influence of the new TPE-3NP over three-body
observables has been assessed in both static and scattering
environments, by adopting the Argonne V18 potential for
the two-body interaction. To reproduce the empirical triton
binding energy, the O(q4) potential requires a cutoff mass of

660 MeV. Comparing this with the value of 680 MeV for the
1983 Brazil TPE-3NP, one learns that the later version is more
attractive.

In the study of proton-deuteron elastic scattering, we have
calculated cross sections σ (θ ), vector analyzing powers Ay(θ )
of the proton and iT11(θ ) of the deuteron, and tensor analyzing
powers T20(θ ), T21(θ ), and T22(θ ) of the deuteron, at energies
of 3 and 28 MeV. The results are displayed in Figs. 6 and 7,
where it is possible to see that there is little sensitivity to the
changes induced in the strength parameters when one goes
from O(q3) to O(q4). Old problems, such as the Ay(θ ) puzzle,
remain unsolved.

The present version of the TPE-3NP contains new struc-
tures, associated with loop integrals and nonlocal operators.
Their influence over observables has been estimated and found
to be at least one order of magnitude smaller than other
three-body effects. A more detailed study of this part of the
force is being carried out.

APPENDIX A: KINEMATICS

The coordinate describing the position of nucleon i is r i

and one uses the combinations

R = (r1 + r2 + r3)/3, r = r2 − r1,
(A1)

ρ = (2r3 − r1 − r2)/
√

3,

which yield

r1 = R − r
2

− ρ

2
√

3
, r2 = R + r

2
− ρ

2
√

3
,

(A2)
r3 = R + ρ√

3
.

The momentum of nucleon i is pi and one defines

P = p1 + p2 + p3, pr = ( p2 − p1)/2,
(A3)

pρ = (2 p3 − p1 − p2)/2
√

3.

Initial momenta p and final momenta p′ are used in the
combinations

Q = (P ′ + P)/2, q = (P ′ − P), (A4)

Qr = ( p′
r + pr )/2, qr = ( p′

r − pr ), (A5)

Qρ = ( p′
ρ + pρ)/2, qρ = ( p′

ρ − pρ). (A6)

In the center of mass, one has P = 0 and the three-momenta
are given by

p1 = −( Qr − qr/2) − ( Qρ − qρ/2)/
√

3,
(A7)

p′
1 = −( Qr + qr/2) − ( Qρ + qρ/2)/

√
3,

TABLE V. Chiral picture for two- and three-body forces.

Beginning Two-body Two-body Three-body

O(q0) OPEP: V −
T , V −

SS

O(q2) OPEP: V −
D TPEP: V −

C ; V +
T , V +

SS

O(q3) TPEP: V −
LS, V

−
T , V −

SS ; V +
C , V +

LS TPEP: C−
1 ; C+

1 , C+
2

O(q4) TPEP: V −
D ; V +

Q , V +
D TPEP: C−

2 ; C−
3 , C+

3
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p2 = ( Qr − qr/2) − ( Qρ − qρ/2)/
√

3,
(A8)

p′
2 = ( Qr + qr/2) − ( Qρ + qρ/2)/

√
3,

p3 = 2( Qρ − qρ/2)/
√

3,
(A9)

p′
3 = 2( Qρ + qρ/2)/

√
3.

Energy conservation for on-shell particles yield the nonrela-
tivistic constraint

Qr · qr + Qρ · qρ = 0. (A10)

The momenta of the exchanged pions are written as

k = p1 − p′
1, k′ = p′

2 − p2, (A11)

k0 = −(qr + qρ/
√

3) · ( Qr + Qρ/
√

3)/m,
(A12)

k = qr + qρ/
√

3,

k
′0 = (qr − qρ/

√
3) · ( Qr − Qρ/

√
3)/m,

(A13)
k′ = qr − qρ/

√
3,

and the Mandelstam variables for nucleon 3 read

s = (p3 + k)2 = m2 − (qr + qρ/
√

3)

· (qr + 2 Qr − qρ/
√

3 + 2
√

3 Qρ) + O(q4), (A14)

u = (p3 − k′)2 = m2 − (qr − qρ/
√

3)

· (qr + 2 Qr + qρ/
√

3 − 2
√

3 Qρ) + O(q4), (A15)

ν = (s − u)/4m = −2qr · Qρ/
√

3 + O(q4). (A16)

In the evaluation of the intermediate πN amplitude, one needs

[ū( p′)u( p)](3) 	 2m + O(q2), (A17)[
i

2m
ū( p′)σµν(p′ − p)µKνu( p)

](3)

	 2iσ (3) · qρ × qr/
√

3 + O(q4). (A18)

The πN vertex for nucleon 1 is associated with

[ū( p′)γ5u( p)](1) 	 σ (1) · (qr + qρ/
√

3) + O(q3), (A19)

and results for nucleon 2 are obtained by making qr → −qr .

APPENDIX B: SUBTHRESHOLD COEFFICIENTS

The polynomial parts of the amplitudes T ±
R , Eqs. (16)–(19),

are determined by the subthreshold coefficients of Ref. [18].
The terms relevant to the O(q3) expansion are written as [6]

d+
00 = −2(2c1 − c3)µ2

f 2
π

+ 8g4
Aµ3

64πf 4
π

+
[

3g2
Aµ3

64πf 4
π

]
mr

, (B1)

d+
01 = − c3

f 2
π

− 48g4
Aµ

768πf 4
π

−
[

77g2
Aµ

768πf 4
π

]
mr

, (B2)

d+
02 =

[
193g2

A

15360πf 4
π µ

]
mr

, (B3)

d−
00 =

[
1

2f 2
π

]
WT

+ O(q2), (B4)

b−
00 =

[
1

2f 2
π

]
WT

+ 2c4m

f 2
π

− g4
Amµ

8πf 4
π

−
[
g2

Amµ

8πf 4
π

]
mr

, (B5)

b−
01 =

[
g2

Am

96πf 4
π µ

]
mr

, (B6)

where the parameters ci are the usual coupling constants
of the chiral Lagrangians of order 2 [43]. Terms within
square brackets labeled (mr) in these results are due to
the medium-range diagrams shown in Fig. 3 and have been
included explicitly into the functions D±

mr and B±
mr . Terms

bearing the (WT ) label were also explicitly considered in
Eqs. (15)–(19). The subthreshold coefficients are determined
from πN scatterig data and a set of experimental values is
given in Ref. [16].

APPENDIX C: FUNCTIONS I n

The functions I n, describing loop contributions, are given
by

I n(r31, r23) = −16π

µ2

∫
dk

(2π )3

dk′

(2π )3
ei(k·r31+k′·r23)

[
t

µ2

]n

× 1

k2 + µ2

1

k′2 + µ2

t (t). (C1)

Using the definition Eq. (33) and the Jacobi variables Eq. (A1),
one writes

I n(r31, r23) =
[

4∇2
ρ

3µ2

]n

I (r31, r23), (C2)

I (r31, r23) = 128π

∫ 1

0
da tan−1

[
ma

√
1 − a2

µ(1 − a2/2)

]
L(a; r, ρ),

(C3)

L(a; r, ρ) =
∫

dq
(2π )3

d Q
(2π )3

ei( Q·r−√
3q·ρ/2)

a2q2 + 4µ2

× 1

[( Q − q)2 + µ2]

1

[( Q + q)2 + µ2]
. (C4)

The numerical evaluation of the function L can be simplified
by using alternative representations.

Form 1: One uses the Feynman procedure for manipulating
denominators, which yields

L(a; r, ρ) =
∫ 1

0
db

∫
dq

(2π )3

d Q
(2π )3

ei( Q·r−√
3q·ρ/2)

a2q2 + 4µ2

× 1

[( Q2 + q2/4 + µ2) − (1 − 2b)q · Q]2

= 1

8π

∫ 1

0
db

∫
dq

(2π )3

ei[(1−2b)r−√
3ρ]·q/2

a2q2 + 4µ2

e−�r

�
,

� =
√

µ2 + b(1 − b)q2. (C5)
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Performing the angular integration over q, one has

L(a; r, ρ) = 1

16π3

∫ 1

0
db

∫
dqq

e−�r

�(a2q2 + 4µ2)

× sin q[(1 − 2b)r − √
3ρ]/2

[(1 − 2b)r − √
3ρ]/2

. (C6)

Form 2: The Fourier transform

1

k2 + µ2
=

∫
dx e−ik·x e−µx

4πx
(C7)

allows one to write

L(a; r, ρ) = 1

64π3

1

a2

∫
d z

e−µ|r31+z|

|r31 + z|
e−µ|r23−z|

|r23 − z|
e−2µz/a

z
.

(C8)

These results may be further simplified by means of approxi-
mations.

Heavy-baryon approximation: In the limit m → ∞, corre-
sponding to the heavy-baryon case, one uses F (a) → 4π/a2

in Eq. (33) and Eqs. (C5) and (C7) yield, respectively,

I (r31, r23) 	 2

π

∫ 1

0
db

∫ ∞

0
dq

[
tan−1 q

2µ

]
e−�r

µ�

× sin q[(1 − 2b)r − √
3ρ]/2

[(1 − 2b)r − √
3ρ]/2

, (C9)

I (r31, r23) 	 1

π

∫
d z

e−µ|r31+z|

|r31 + z|
e−µ|r23−z|

|r23 − z|
e−2µz

2µz2
. (C10)

Multipole approximation: The integrand in Eq. (C10) is
peaked around z = 0 and a multipole expansion of the Yukawa
functions produces

I (r31, r23) 	 U (x31)U (x23) + · · · . (C11)

The same result can also be obtained by using the expansion

t (t) ∼ −π [1 + t/12µ2 + t2/80µ4 + · · ·], valid for low t ,
directly into Eq. (C1).

APPENDIX D: NONLOCAL TERM

In configuration space, the variable Qρ corresponds to a
nonlocal operator, represented by a gradient acting on the wave
function. To make the dependence of t̄3 on Qρ explicit, one
writes

t̄3 = [Qρ]iXi(qr , qρ), (D1)

where X is a generic three-vector, and evaluates the matrix
element

〈ψ |W |ψ〉 = −
[

1

(2π )

]12 ∫
d r ′ dρ ′ d r dρ ψ∗(r ′, ρ ′)ψ(r, ρ)

×
∫

d Qr d Qρ dqr dqρ

× ei[ Qr ·(r ′−r)+ Qρ ·(ρ ′−ρ)+qr ·(r ′+r)/2+qρ ·(ρ ′+ρ)/2]

× t̄3( Qr , Qρ, qr , qρ)

= −
[

1

(2π )

]6 ∫
d r dρ

{[
i

2
∇ρψ

∗(r, ρ)

]
i

×ψ(r, ρ) + ψ∗(r, ρ)

[
− i

2
∇ρψ(r, ρ)

]
i

}

×
∫

dqr dqρ ei[qr ·r+qρ ·ρ]Xi(qr , qρ). (D2)

This yields the potential

V3(r, ρ) = − [2/
√

3]3

(2π )6

[
− i

2

↔∇ρ

]
i

∫
dqr dqρ ei[qr ·r+qρ ·ρ]

×Xi(qr , qρ), (D3)

where the operator
↔∇ = →∇ − ←∇ acts only on the wave function.

An alternative form can be obtained by integrating Eq. (D2)
by parts, and one finds

V3(r, ρ) = − [2/
√

3]3

(2π )6

{[∫
dqr dqρ ei[qr ·r+qρ ·ρ]X(qr , qρ)

]

· [ − i∇wf
ρ

] −
[

i

2
∇ρ ·

∫
dqr dqρ ei[qr ·r+qρ ·ρ]

× X(qr , qρ)

]}
. (D4)

In the case of the three-body force, the only nonlocal
contribution is associated with the subamplitude D−, Eq. (37),
which yields

Xi = −iτ (1) × τ (2) · τ (3) 1

k2 + µ2

1

k
′2 + µ2

σ (1) · kσ (2)

· k′
[

g2
A(g2

A − 1)√
38f 4

π m

]
(k′ + k)i . (D5)

The action of ∇ρ on the second term of Eq. (D4) gives rise
to an integrand proportional to (k

′2 − k2), which has short
range and does not contribute to the TPE-3NP. Therefore it is
neglected.

[1] M. Taketani, S. Nakamura, and T. Sasaki, Prog. Theor. Phys. 6,
581 (1951).

[2] S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3
(1991).

[3] S. Weinberg, Phys. Lett. B295, 114 (1992).
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