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Baryon deceleration by strong chromofields in ultrarelativistic nuclear collisions
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It is assumed that strong chromofields are generated at early stages of ultrarelativistic heavy-ion collisions which
give rise to a collective deceleration of baryons from colliding nuclei. We have solved classical equations of motion
for baryonic slabs under the action of a time-dependent longitudinal chromoelectric field. It is demonstrated that
the slab final rapidities are rather sensitive to the strength and decay time of the chromofield as well as to the
back reaction of the produced partonic plasma. The net-baryon rapidity loss 〈δy〉 = 2.0, found for most central
Au-Au collisions at RHIC, can be explained by the action of chromofields with the initial energy density of about
50 GeV/fm3. Predictions of the baryon stopping for the LHC energy are made.
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It is expected that strong chromofields can develop at early
stages of ultrarelativistic heavy-ion collisions. There exist
different suggestions concerning the space-time structure of
these fields, ranging from string-like configurations as in the
color flux tube model (FTM) [1] to stochastic configurations
associated with the color glass condensate (CGC) [2]. This
picture is most conveniently presented in the c.m. frame
where two Lorentz contracted nuclei look as thin sheets.
After their intersection these sheets acquire stochastic color
charges as a result of multiple soft gluon exchange. Then strong
chromofields are generated in the space between the receding
sheets. At later times these fields decay into quarks and gluons
which after equilibration form a quark-gluon plasma. This
process has been studied by several authors under different
assumptions about the field decay mechanism (see, e.g.,
Refs. [3–5]).

Most previous calculations assume that after interaction
the nuclear debris follow the light-cone trajectories, thus
disregarding their energy losses to produce the chromofield.
This assumption can possibly be justified only at asymptot-
ically high energies. Furthermore, this assumption becomes
irrelevant when studying the baryon stopping. Obviously, the
energy of produced fields and particles is taken entirely from
the kinetic energy of the colliding nuclei.

As measured by the BRAHMS collaboration [6], in central
Au+Au collisions at highest RHIC energy

√
sNN = 200 GeV

per NN -pair the baryon energy losses are very significant,
about 70% of the initial energy. The measured net-baryon
rapidity distributions show significant population of the central
rapidity region.

The problem of baryon stopping at RHIC has been
addressed recently by several authors. In particular, net-baryon
rapidity distributions were calculated within the microscopic
string-based models like URQMD [7] and QGSM [8]. Although
these models implement energy and momentum conservation,
and thus predict a certain baryon stopping, they are formulated
in momentum space and do not give a space-time picture of
this process. Also, they are dealing with hadronic secondaries
and therefore preclude the quark-gluon plasma formation.
Recently, the calculations have been done within a parton

cascade model [9]. The distribution of valence quarks at
central rapidities was also studied in Ref. [10] within a QCD
motivated approach which however can not be extended to the
fragmentation regions.

In Ref. [11] a simple space-time model was proposed where
the baryon stopping was directly linked to the formation of
strong chromofields. There nuclear trajectories were calculated
under assumption that the field is neutralized at a sharp
proper time 1 fm/c (see also Refs. [12,13]). In this Rapid
Communication we further develop this model and apply it for
a more realistic decay pattern of the chromofield. Our main
goal is to calculate the net-baryon rapidity distribution and
compare it with the BRAHMS data.

Following Ref. [14] we decompose the collision of two
ultrarelativistic nuclei into a set of pairwise collisions of
elementary slabs. At given impact parameter b the positions of
the colliding target and projectile slabs in the transverse plane
are determined by vectors s and b − s, respectively. The cross
section area of individual slabs, σ0, is a model parameter which
determines the coarse-graining scale in the transverse plane. It
should be larger than the cross section of individual flux tubes
(about 0.2 fm2), and smaller than the total transverse area of
the overlap zone. In numerical calculations we choose it equal
to the nucleon-nucleon inelastic cross section, σ0 = σNN ≈
4 fm2. This corresponds to the picture when many string-like
field configurations are stretched between the receding slabs.
Final results are not very sensitive to this parameter.

The energy and momentum of the projectile (a = p) and
target(a = t) slabs are parameterized as Ea = Ma cosh Ya and
Pa = Ma sinh Ya , where Ma = m⊥Na is the average transverse
mass and Na is the average baryon number of slab a. The
average baryon transverse mass m⊥ differs from the free
nucleon mass mN due to internal excitation of slabs. It is

expressed as m⊥ =
√

m2
N + 〈p⊥〉2, where the mean transverse

momentum 〈p⊥〉 is in general a function of time. The
calculations below are made in light-cone coordinates, proper
time τ = √

t2 − z2 and space-time rapidity η = 1
2 ln ( t+z

t−z
).

In the Glauber model (see, e.g., Refs. [15,16]) the average
number of participating nucleons from nucleus a in a slab of
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transverse area σ located at a radius-vector s is given by the
expression

Na(b, s) = σNNAaTa(b − s)(1 − [1 − σNNTa(s)]Aa ), (1)

where a = t for a = p and vice versa, Aa is the mass number
of nucleus a. The normalized functions Ta (a = p, t) describe
the transverse profiles of the baryon number distribution in
colliding nuclei. They are obtained by the integration of the
corresponding baryon densities along the beam direction,
AaTa = ∫

ρa(r)dz. The average number of nucleon-nucleon
collisions in an inelastic interaction of two slabs at a radius-
vector s is expressed as

Ncoll(b, s) = σ 2
NNApTp(b − s)AtTt (s) ≈ Np(b, s)Nt (b, s).

(2)

We assume that the initial energy density stored in the
chromofield after collision of two baryonic slabs can be
parametrized as

εf (τ0; b, s) = ε0

(
s

s0

)α

[Ncoll(b, s)]β, (3)

where ε0 is the model parameter, which can be determined
by comparison with experimental data. The second factor
describes the collision energy dependence with α ≈ 0.3, as
motivated by small x behavior of the gluon structure function
[17]. The last factor describes effects of the collision geometry,
where exponent β is related to the spatial distribution of the
chromofield. For nonoverlapping strings β ≈ 1.0, but in the
case of string clustering β is expected to be closer to 0.5 [18].
In this paper we consider only the case β = 1.

We assume that the space between the receding slabs is
occupied by the chromofield and a partonic plasma, produced
by the partial field decay. They exert certain forces on the
slab from inside, in particular, the Lorentz force acting on the
color charges generated on the slab. But from the other side
the slab has nothing but the physical vacuum. This results in
a net force leading to the slab deceleration. The equations of
motion for for individual slabs can be obtained by applying the
energy-momentum conservation laws across the slab. The final
system of differential equations governing the slab rapidities
Ya(τ ) has the following form (detailed calculations see in
Ref. [19]):

dP̃a

dτ
= ∓B(τ ) − P̃a

τ
, (4)

dM2
a

dτ
= ∓2A(τ )P̃a, (5)

dηa

dτ
= ∓ P̃a

τ Ẽa

, (6)

where P̃a = Ma sinh (Ya − ηa), Ẽa =
√

M2
a + P̃ 2

a , B(τ ) =
σNN (εvac + εf − p), and A(τ ) = σNN (εp + p). The plus and
minus signs in the right hand side of these equations cor-
respond to the projectile (a = p) and target (a = t) slabs,
respectively. We adopt the initial conditions for the slab
trajectories ηa(τ0) = Ya(τ0) = ±y0 at τ0 ≈ 0, where ±y0 are
the initial c.m. rapidities of colliding nuclei. In expressions
above εp and p = c2

s εp are, respectively, the energy density

and pressure of the partonic plasma, and cs is the corresponding
sound velocity. The vacuum energy density εvac (bag constant)
is introduced to account for the fact that the chromofield and
partonic plasma can exist only in the perturbative vacuum. In
numerical calculations εvac is fixed to the value 0.4 GeV/fm3.
It is assumed that the chromofield energy density εf (τ ) and
the plasma energy density εp(τ ) are functions of the proper
time τ only, defined in the interval ηt (τ ) � η � ηp(τ ). Then the
partonic plasma has a Bjorken-like velocity field, v = tanh η

[20]. The plasma energy density, εp(τ ) is found from the
hydrodynamical equation with a source term due to the field
decay:

dεp

dτ
+ (

1 + c2
s

)εp

τ
= −dεf

dτ
. (7)

We integrate Eqs. (4)–(6) until the time when the total
pressure in the region between the slabs vanishes, i.e., B(τ ) =
0. After this time the slabs move with constant velocity.
Obviously, the solution of Eq. (4) is

P̃a = P̃a(τ0)
τ0

τ
∓ 1

τ

∫ τ

τ0

B(τ )τdτ, (8)

and the slab rapidity Ya(τ ) can be easily found from the
definition P̃a = Ma sinh (Ya − ηa). Then, the slab trajectory,
za(τ ), is obtained from the relation za = τ sinh ηa .

Below we present results for Au+Au and d+Au collisions
at maximum RHIC energy

√
sNN = 200 GeV per NN pair

(y0 = 5.4). The nucleon-nucleon inelastic cross section was
taken to be σNN = 42 mb [16]. The baryon mean trans-
verse momentum 〈p⊥〉 is constrained by the value around
1.0 GeV/c, as measured by the BRAHMS collaboration [6].

We have considered several functional forms for the time
dependence of the chromofield, resulting in different plasma
production rates and baryon deceleration patterns. Here we
present results for the power law, εf (τ ) = εf (τ0)[1 + τ−τ0

τd
]−4

characterized by the decay time τd = 0.6 fm/c, as expected
for the Schwinger-like decay mechanism [3]. This function
is shown in Fig. 1 together with the time dependence of the
plasma energy density as predicted by the hydrodynamical
equation (7) with c2

s = 1/3. According to our picture, the
quark-gluon plasma (QGP) is produced by the continuous
transformation of the field energy into the quark-antiquark
and gluon pairs. Because of the delayed production, the plasma
energy density is always smaller than the initial energy density
of the chromofield. In accordance with previous calculations
[3], we find that it reaches only about 22% of the latter for the
Schwinger-like decay law.

Figure 2 shows how the time evolution of the slab
rapidities Yp,t (τ ) depends on the initial energy density of the
chromofield, as well as on the baryon numbers of colliding
slabs. We present results for several values of the parameter
ε0 [see Eq. (3)] between 1.0 and 3.0 GeV/fm3. Upper panels
show results for the collision of two equal slabs with baryon
numbers Np = Nt = 5.7, representing an average pair of slabs
in a central Au+Au collision. The initial energy densities of
the chromofield, εf (τ0), range in this case from 33 (lower
curves) to 100 (upper curves) GeV/fm3. According to the
BRAHMS data [6] the mean baryon rapidity loss for the
most central Au-Au collisions is 〈δy〉 ≈ 2.0. From the figures
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FIG. 1. Evolution of the chromofield energy density (thick solid
line) and QGP energy density (thin solid line) in units of the
initial chromofield energy density εf (τ0). Results are shown for the
Schwinger-like (power-law) decay mechanism with τd = 0.6 fm/c.

one can see that slab rapidities Yp,t (τ ) drop rapidly at very
early stages of the deceleration process, when the field is still
strong. At later times, not only the decreasing chromofield
(see Fig. 1) but also the plasma counter-pressure (left panels)
cause an early termination of the deceleration process. As the
result, the asymptotic slab rapidities have a low sensitivity
to the initial chromofield energy density. Nevertheless, the
observed rapidity loss can be achieved with the initial field
energy density εf (τ0) = 60–80 GeV/fm3. On the other hand,
due to the edge effects, the plasma pressure in the vicinity
of the slabs should be smaller than in the central region.
Then the deceleration process will be less affected by the
plasma, and resulting slabs’ rapidities will be smaller. This
is illustrated in the right panels showing calculations of the
slab rapidities ignoring the plasma pressure. In this case the
required rapidity loss can be achieved with a much weaker
chromofield, εf (τ0) ≈ 20–40 GeV/fm3. It is clear that the
realistic situation will be in between of these two extremes.

Low panels show results for an asymmetric collision of
Np = 2 and Nt = 8.8 slabs, which can be interpreted as
a deuteron colliding with a center of a gold nucleus. The
parameter ε0 is the same as before but now it corresponds
to εf (τ0) between 8.9 and 35.5 GeV/fm3. One can see that the
rapidity shifts are now different for the light and heavy slabs.
Moreover, the rapidity lost by the smaller slab is significantly
larger as compared with the bigger one. This is of course a
direct consequence of the fact that equal forces generate a
larger deceleration for a smaller body.

According to the CGC picture [2,4], the color charge
fluctuates the Gaussian weights with mean value equal to
zero and variance given by the model parameter µ2. In a
flux-tube configuration the chromoelectric field is proportional
to the areal charge density at the slab spot to which the
tube is attached. The corresponding field energy density
is proportional to the square of the areal charge density.
Therefore, in terms of the field energy density the weights are
exponential, i.e., P (εf ) ∝ exp [− εf

〈εf 〉 ], where 〈εf 〉 ≡ εf (τ0)
is the mean energy density of the field parametrized in
Eq. (3). When many string-like configurations are stretched
between the slabs, the resulting force is the sum of many
fluctuating contributions. It is easy to show [19] that it obeys
a so-called gamma-distribution. This distribution looks like
an asymmetric Gaussian with a long tail at large arguments.
Figure 3 shows the calculated and measured net-baryon
rapidity distributions for most central Au+Au collisions
at maximum RHIC energy. The introduction of the field
fluctuations leads to an interesting effect: since stronger
fields lead to larger decelerations of the slabs, the resulting
net-baryon rapidity distribution acquires a long tail toward
central rapidities. This is exactly what is observed by the
BRAHMS collaboration [6]. Our analysis shows that this shape
of the distribution cannot be reproduced with any fixed value
of the field.

The rapidity spectra shown in Fig. 3 contain effect of
thermal smearing corresponding to ±0.5 units of rapidity. No
back reaction of the partonic plasma on the slab deceleration

FIG. 2. Projectile (upper curves) and target
(lower curves) slab rapidities as functions of
proper time calculated for the power-law chro-
mofield decay with τd = 0.6 fm/c. Different pairs
of curves correspond to different values of the
parameter ε0 introduced in Eq. (3). Results are
shown for two cases: (a),(b) equal slabs with
Np = Nt = 5.7 representing a central Au+Au
collision, and (c),(d) two different slabs with
Np = 2, Nt = 8.8 representing a central d+Au
collision. Left and right panels show the calcu-
lations with and without the back reaction of the
produced plasma, respectively.
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FIG. 3. Net-baryon rapidity distribution in central Au+Au colli-
sions (Npart = 380) at

√
sNN = 200 GeV calculated for fluctuating

chromofields with mean values characterized by parameter ε0 as
explained in the text. Back reaction of the partonic plasma is not
included in the calculation of the slab rapidities. Dots are experimental
data of BRAHMS collaboration [6].

was included. As one can see, in this case we can get a
reasonable fit of the data with ε0 ≈ 1–2 GeV/fm3, which
correspond to the mean values of the initial chromofield energy
density in the range 40–80 GeV/fm3. Then, according to Fig. 1,
the mean energy density of the partonic plasma at τ = 1 fm/c
is predicted in the range of 4–8 GeV/fm3. These values agree
well with estimates based on a hydrodynamic description of the
hadronic rapidity spectra at midrapidity (see, e.g., Ref. [21]).

On the basis of our model we can make predictions of the
net-baryon rapidity shifts for the future LHC experiments. We
use Eq. (3) to extrapolate the initial field energy densities from
the RHIC (

√
s0 = 200 GeV) to the LHC (

√
s = 5500 GeV)

energy domain. Then we get the mean net-baryon rapidity loss
between 2.7 and 5.5 units for the calculation with and without
the back reaction of partonic plasma, respectively.

In conclusion, the collective deceleration of valence (net)
baryons was studied assuming that strong longitudinal chro-
mofields are formed at early stages of an ultrarelativistic
heavy-ion collision. We have solved classical equations of
motion for baryonic slabs under the action of a time-dependent
chromoelectric field. It has been demonstrated that the net-
baryon rapidity loss 〈δy〉 ≈ 2 can be achieved with the mean
energy density of the chromofield in the range of 40 to
80 GeV/fm3. The calculated net baryon rapidity distributions
for central Au+Au collisions at RHIC energies are in good
agreement with BRAHMS data. The mean net-baryon rapidity
loss for central Pb+Pb collisions at LHC energies is predicted
between 2.7 and 5.5 units.

More detailed results, including the rapidity densities of
net baryons and partonic plasma, calculated for different field
decay patterns and centrality classes, will be presented in the
forthcoming publication [19].
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