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Distinguishing a first order from a second order nuclear shape phase transition
in the interacting boson model
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We study the characteristics of some quantities in the interacting boson model (IBM) that are sensitive to
the nuclear shape phase transitions. By analyzing the variational features of the quantities with respect to the
increasing of total boson number in the U(5)-SU(3) and U(5)-O(6) transitions, we find that the B(E2) ratios,
such as B(E2; 41 → 21)/B(E2; 21 → 01) and B(E2; 02 → 21)/B(E2; 21 → 01), can serve as the effective order
parameters to distinguish a first order from a second order nuclear shape phase transition.
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Quantum phase transitions are of great interest in many
areas of physics, and their manifestations vary significantly
in different systems. For nuclear systems, the interacting
boson model (IBM) reveals rich features of their shape phase
transitions [1–10]. As an algebraic model [11], the IBM is
closely related to the shell model as well as the geometry model
[1,12,13]. Three dynamical symmetries in the IBM have been
shown to correspond to three typical shape phases of nuclei,
known as the spherical [vibrational with U(5) symmetry],
axially deformed [rotational with SU(3) symmetry], and γ -soft
deformed [rotational with O(6) symmetry] shapes. It has also
been known that phase transitions coincide with transitions
between dynamical symmetries, with a first order phase
transition taking place in the U(5)-SU(3) transition, and a
second order phase transition happening in the U(5)-O(6)
transition [1]. In addition, two new symmetries, X(5) [14]
and E(5) [15,16], have been introduced to describe the nuclei
at the critical points corresponding to the first and second order
transitions, respectively. And certain quantities sensitive to the
phase transitions have been suggested as order parameters to
characterize the phase transitions [5,17]. However, as shown in
Ref. [17], some of the quantities that have been used as order
parameters seem to fail in differentiating the two transitions
when the boson number becomes large. It is therefore of
interests to find physical quantities that can not only signify the
occurrence of phase transitions but also distinguish the order
of such transitions. The present paper reports our attempt along
this line.

Our study starts with the well-known Hamiltonian [9]

Ĥ = ε

[
(1 − ξ )n̂d − ξ

4N
Q̂

χ · Q̂χ
]

, (1)

where n̂d =
∑

m
d
†
mdm is the d-boson number operator,

Q̂
χ = (d†s̃ + s†d̃)(2) + χ (d†d̃)(2) with −√

7/2 � χ � 0 is the
quadrupole operator, and ξ ∈ [0, 1]. In this paper, we focus
on the U(5)-SU(3) and U(5)-O(6) transitions, corresponding
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to χ = −√
7/2 with 0 � ξ � 1 and χ = 0 with 0 � ξ � 1,

respectively.
To identify shape phase transitions and determine their or-

ders, quantities sensitive to the phase transitions are definitely
needed. Looking for such quantities and their characteristics,
we first calculate the overlap of ground state wave functions
of the Hamiltonian in Eq. (1) as a function of the control
parameter ξ with those of the limit cases, |〈0g; ξ |0g; ξ0〉| with
ξ0 = 0, 1, along the line of thought of Refs. [5,17]. The results
of the overlap |〈0g; ξ |0g; ξ0〉| are shown in Figs. 1 and 2,
respectively, for the U(5)-SU(3) and the U(5)-O(6) transitions
with total boson number N = 10, 20, 50.

It is seen from Fig. 1 that |〈0g; ξ |0g; ξ0 = 0〉| decreases and
|〈0g; ξ |0g; ξ0 = 1〉| increases as ξ rises from 0 to 1. There is
a crossover point with a nonzero amplitude around ξ ∼ 0.55
for the overlaps |〈0g; ξ |0g; ξ0 = 0〉| and |〈0g; ξ |0g; ξ0 = 1〉|,
and the amplitude of the crossover point descends gradually
as N increases. There is a drastic change in the overlap
|〈0g; ξ |0g; ξ0 = 0〉| around ξ ∼ 0.5, which indicates a
critical point [6,7] of the phase transition. Such a characteristic
becomes more significant with a larger N . At the same time, a
similar feature is evident in Fig. 2 for the U(5)-O(6) transition.
Such features are consistent with the results of Refs. [5,17].
These results show that the overlap of ground state wave
functions is helpful in identifying phase transitions. However,
the variational feature of the overlap behaves largely the
same in the two different transitions when N becomes larger.
Therefore, the overlap is seemingly unable to distinguish the
first order phase transition of U(5) to SU(3) symmetries from
the second order one of U(5) to O(6), although it does signal
the transition and the critical point. There are other quantities,
such as the fractional occupation probability of d bosons in
the ground state, the reduced E2 transition rate B(E2; 21 →
01), and so on [5,17], all sharing the similar behavior and
role.

To overcome such a limitation, people have looked into
the difference between the expectation value of the d-boson
number operator n̂d of the first excited 0+ state (02) and that
of the ground state (01) ν2 = α0(〈02|n̂d |02〉 − 〈01|n̂d |01〉)
and that between the 21 state and the ground state ν ′

2 =
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FIG. 1. Calculated variational behavior of the overlap of ground
state wave functions in the U(5)-SU(3) transition with that in the limit
cases. Solid curve for the overlap |〈0g; ξ |0g; ξ0 = 0〉|, and dashed
curve for the overlap |〈0g; ξ |0g; ξ0 = 1〉|.

β0(〈21|n̂d |21〉−〈01|n̂d |01〉), which relate to the isomer shifts, as
the order parameters to distinguish a first order from a second
order phase transition in the IBM [5]. Reference [5] has shown
that ν2 displays a wiggling, sign-change behavior in the critical
region due to the switching of the two coexisting phases, which
is the characteristic of a first order phase transition, whereas ν2

has a smoother variation in the second order phase transition.
Furthermore ν ′

2 has characteristics similar to those of ν2.
However, Ref. [17] has shown that the above characteristics of
these two quantities do not persist as the number of total bosons
becomes large. Here we calculate with greater care the two
quantities for the U(5)-SU(3) and the U(5)-O(6) transitions,
as being done to the overlap of wave functions. The obtained
results are shown in Fig. 3. From Fig. 3, we can see that both
ν2 and ν ′

2 involve a peak in the U(5)-SU(3) transition region,
and both display a hump in the U(5)-O(6) transition region as
the total boson number N gets large, which has been reported
partially in Ref. [17]. Taking advantage of the fact that all
the states in the U(5)-O(6) transition region are the common
eigenstates of the Casimir operator of the group O(5) [because
both the U(5) and the O(6) have a common maximal subgroup
O(5)], one can easily calculate the energy spectra and wave
functions of nuclei with very large boson numbers N in the
U(5)-O(6) transition region [18,19]. Our calculations show
that as the total boson number N gets very large (for instance,
N = 1000), the humps of ν2 and ν ′

2 in the U(5)-O(6) transition
region develop into very narrow and high peaks. From the
obtained variational features of ν2 and ν ′

2, one can notice that
the peaks will also become very sharp in the transition of
U(5)-SU(3). It seems that the wiggling behavior of ν2 and ν ′

2
is not a mere result of the coexistence of two phases. These
results indicate that, although ν2 and ν ′

2 behave in different
ways in the U(5)-SU(3) and the U(5)-O(6) transitions for small
N , they involve quite similar characteristics as N becomes
large.

FIG. 2. Same as Fig. 1, but for the U(5)-O(6) transition.

FIG. 3. Calculated variational behaviors of quantities ν2 and ν ′
2

vs the control parameter ξ for systems with several values of N in
the two transition regions (where the parameters α0 and β0 in ν2 and
ν ′

2 are both set to be unity).

As known, the order of a quantum phase transition should
be well defined in the thermodynamic limit (N → ∞),
and an effective order parameter is better to exhibit different
characteristics in transitions of different orders. The above
analysis shows that ν2 and ν ′

2 can be used to distinguish a
first order from a second order phase transition in the system
with a small boson number, but they cease to function so in
the classical (thermodynamic) limit. It is then still necessary
to find effective order parameters that are independent of
the total boson number N and can determine the order
of phase transitions. To that end, we explore two other
quantities, K1 = B(E2; 41 → 21)/B(E2; 21 → 01) and K2 =
B(E2; 02 → 21)/B(E2; 21 → 01), which can be measured
experimentally. In the calculation, the E2 transition operator
is taken as T̂ (E2) = q2[(d†s̃ + s†d̃)(2) + χ (d†d̃)2], where q2

is the effective charge. The calculated variational behaviors
of K1 and K2 with respect to the parameter ξ are shown in
Fig. 4.

Figure 4 shows that (a) for small N , both K1 and K2 have a
peak in the critical region of the U(5)-SU(3) transition, while
K1 and K2 display bend slopes in the critical region of the
U(5)-O(6) transition, (b) the prominence of both K1 and K2

develops into an obvious peak in the U(5)-SU(3) transition as
N increases to quite a large value (such a feature has been
pointed out in Ref. [7]), and (c) instead of developing into
peaks, the bend slopes of K1 and K2 in the U(5)-O(6) transition
become steeper with increasing N ; however, the maxima of
K1 and K2 locate always at the point with ξ = 0 for any N . In
short, both K1 and K2 display a completely different behavior
in the critical region of the U(5)-SU(3) transition from that in
the U(5)-O(6) transition, and this kind of difference becomes
more apparent with increasing N .

The above analysis indicates that K1 and K2 are suitable
effective order parameters, which are less dependent on the
total boson number N . They can be used to distinguish
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FIG. 4. Calculated variational behaviors of K1 and K2 vs the
control parameter ξ for systems with several values of N in the two
transition regions.

the first order from the second order nuclear shape phase
transitions. To test the practicability of the proposed effective
order parameters, we applied them to some well-established
transitions. Figure 5 shows the variation of the experimentally
observed B(E2) ratio K1 of Sm isotopes with respect to the
neutron number, which has been known to be a transitional
region between the spherical and the axially deformed nuclei
[U(5)-SU(3) [27], and that of Ru isotopes which can be approx-
imatively described with the U(5)-O(6) transition [29,30]. For
comparison, we show also the theoretical variational feature of
K1 against the parameter ξ of the system with boson number
N = 20 in the inset of Fig. 5 (which is similar to the case

FIG. 5. Experimental data (from Refs. [20–27]) of the E2
transition ratio B(E2; 41 → 21)/B(E2; 21 → 01) in Sm isotopes
(filled triangles) and Ru isotopes (filled squares) vs neutron number
and one theoretical datum (star) for 106Ru taken from Ref. [28] (since
the experimental one is lacking).

in Refs. [5] and [31] where N was taken as 15 and 10,
respectively). It is worth mentioning that such a comparison is
direct (although one is in terms of the neutron number, the other
is with respect to the parameter ξ ), since investigations [5,31]
have shown that the parameter ξ is proportional to the boson
number N (i.e., half of the number of valence nucleons in the
original viewpoint of the IBM. In the present case, its variation
comes only from half of the neutron number). From the upper
panel of Fig. 5, one can recognize that the nucleus 152Sm just
locates at the critical point of the U(5)-SU(3) transition and has
the X(5) symmetry, which is consistent with the result given
in Refs. [32,33]. Meanwhile, nucleus 150Sm also lies around
the critical point, which coincides with the result that 150Sm is
very soft [34,35] and represents a common trait of the nuclei
around the critical region of the transition U(5)-SU(3) [36].
Figure 5 (lower panel) also shows that 104Ru locates apparently
at the critical point of the second order phase transition
U(5)-O(6). It indicates that 104Ru might be a candidate of the
E(5) symmetry, which is consistent with the result given in
Ref. [37]. In addition, the deviation of 108Ru from the
U(5)-O(6) transition line hints that the U(5)-O(6) transition
is only a crude approximation of the structure evolution of
the even-even Ru isotopes [26,28,36]; rather, certain SU(3)
components or more complicated interactions may be involved
[26,28,36] in the extremely neutron-rich Ru nuclei.

In summary, we have restudied the variational behaviors of
several physical quantities, such as the overlap of ground state
wave functions and the ν2 and ν ′

2 parameters introduced in
Ref. [5], that are sensitive to nuclear shape phase transitions.
We have also investigated the characteristics of two B(E2)
ratios, K1 and K2, in the U(5)-SU(3) and the U(5)-O(6)
transitions. Such quantities are found to fall into three types
depending on their variational behaviors. The first type,
typified by the overlap of ground state wave functions, varies
rapidly and behaves similarly in the U(5)-SU(3) and the U(5)-
O(6) transition regions, when the boson number N is relatively
small. As N gets larger, the variational behavior becomes more
significant but retains the global similarity between the two
transitions. This type of quantity also includes the fractional
occupation probability of the d-boson number in ground states,
the reduced E2 transition rate B(E2; 21 → 01), and others.
The second type of quantity, represented by ν2 and ν ′

2, displays
different critical behavior in the U(5)-SU(3) and the U(5)-O(6)
transitions when the boson number N is relatively small, and
the general behavior of criticality becomes more similar as
N increases, except that a U(5)-SU(3) transition experiences
faster changes than U(5)-O(6). Such quantitative difference
might be used to distinguish the first order from the second
order shape phase transitions, although a qualitatively different
characteristic would serve the purpose much better. To that end,
we are fortunate to have the third type of quantity, typified
by the B(E2) ratios K1 and K2, which manifests marked
differences in the U(5)-SU(3) and the U(5)-O(6) transitions
throughout the range of N from small to large. Such completely
different variational characteristics in the first and second order
shape phase transitions indicate that the B(E2) ratios K1 and
K2 are appropriate for serving as effective order parameters to
distinguish the two kind transitions. This type of effective
order parameter also includes other B(E2) ratios such as
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B(E2; L+ 2 → L)/B(E2; 21 → 01). Experimental data have
provided some evidence, although more is needed, to establish
such physical quantities. An effective order parameter is
imperative to help people to find evidence of quantum phase
transitions. However, a single order parameter by itself may not
be able to determine the orders of all transitions. The analysis
in this paper provides an example of how an effective order
parameter may be identified in a specific system. The method
may be extended to other systems such as molecules in the
vibron model [38].
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