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Momentum dependence of K−-nuclear potentials
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The momentum dependent K−-nucleus optical potentials are obtained based on the relativistic mean-field
theory. By considering the quarks coordinates of K− meson, we introduced a momentum-dependent “form factor”
to modify the coupling vertexes. The parameters in the form factors are determined by fitting the experimental
K−-nucleus scattering data. It is found that the real part of the optical potentials decrease with increasing
K− momenta, however the imaginary potentials increase at first with increasing momenta up to Pk = 450 ∼
550 MeV and then decrease. By comparing the calculated K− mean free paths with those from K−n/K−p

scattering data, we suggested that the real potential depth is V0 ∼ 80 MeV, and the imaginary potential parameter
is W0 ∼ 65 MeV.
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Recently kaon nuclear physics has been a hot topic of
nuclear physics, and kaon-nucleus interaction is a key point
to many studies on kaon. The information of K−-nucleus in-
teraction were obtained from K−-atomic and K−N scattering
data. Since the kaon is only sensitive to the surface structure of
nuclei in K−-atomic, predictions on K−-nucleus interactions
are very different for different models (a very strong attractive
real potential, 150 ∼ 200 MeV, from the density dependent
optical potential (DD) model [1,2]; and a much shallower one
∼50 MeV from the chiral model [3]). On the other hand,
Sibirtsev et al. predicted the kaon-nucleus interaction has
“momentum dependence” from K−N scattering data [4]. They
have obtained a momentum dependent potential in a dispersion
approach at normal nuclear density, the potential depth is about
140 ± 20 MeV at zero momentum, and decreases rapidly for
higher momenta. In our previous work [5], we also found
that the kaon nucleus optical potential has strong momentum
dependence by fitting the only experimental data on the K−-C,
K−-Ca scattering at Pk = 800 MeV/c [6]. We indicated that
the depth of real potential at the inner nuclei is (45 ± 5) MeV
at Pk = 800 MeV/c, which is much shallower than that at zero
momentum in the relativistic-mean field (RMF). We shall here
be concerned with discussing the momentum dependence of
K−-nucleus interaction within the framework of the RMF.

In the usual RMF model, one cannot obtain the correct
momentum dependence of the K−-nucleus interaction, and
would have to take the internal structure of kaon into account
to introduce a momentum-dependent “form factor” [7]. When
RMF is extended to study KN interaction at the quark level,
the same approximation as made in the quark-meson coupling
(QMC) model [8,9] should be introduced: σ - and ω-mesons
are exchanged only between the u, d quarks or their antiquarks
in the K meson, contributions from the s quark are ignored. In
the following, we shall take the kaon as a two quarks system
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to introduce an exponential “form factor”, exp(−P 2
k /4κ2),

which will modify the couplings vertexes. In fact, a similar
exponential “form factor” has been widely adopted to improve
various calculations [10–12].

In the RMF, the KN interactions are described by exchang-
ing scalar meson σ and vector meson ω [13]. At the quark level,
σ - and ω-mesons are exchanged between the u, d quarks or
their antiquarks. As in Fig. 1, the scalar and vector couplings
are

Lσ = gσKmKK̄σK, (1)

Lω = igωKK̄ωµ∂µK + H.c. (2)

Replacing the scalar meson σ and vector meson ω with their
plane wave form to get

Lσ = gσKmKK̄(aσ e−iq·r2 )K, (3)

Lω = igωKK̄(aωe−iq·r2εµ)∂µK + H.c., (4)

where r2 represents the coordinates of u/d quarks, with respect
to the center of mass coordinates R and the relative coordinates
r in the quark model. And we assume q = cPk approximately
as the transferred momentum being proportional to K−
incidence momentum. Thus,

e−iq·r2 = e−icPK ·Re
µ

m2
icPK ·r

. (5)

On the harmonic-oscillator basis, if the relative coordinates r
is rewritten in the second-quantized form, then

e−iq·r2 = e−icPK ·Re
−c2P2

K

4α2(mu/µ)2 e
µ

m2
icPK ·a†

e
µ

m2
icPK ·a

. (6)

Finally, approximately we have

Lσ � gσKmKF
(
P 2

k

)
K̄Kaσ e−icPK ·R, (7)

Lω � igωKF
(
P 2

k

)
K̄εµaωe−icPK ·R∂µK + H.c., (8)

with the form factor F (P 2
k ) ≡ exp[−P 2

k /(4κ2)], where κ2 ≡
α2(mu/cµ)2, and Pk = |PK |.

In the c.m. system of the K-meson, replace aσ e−icPK ·R
(aωεµe−icPK ·R) with σ (ωµ), Eqs. (7) and (8) can be
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FIG. 1. Feynman diagram for the KN interactions and internal
coordinate of two quark system.

rewritten as

Lσ � gσKF
(
P 2

k

)
mKK̄Kσ, (9)

Lω � igωKF
(
P 2

k

)
[K̄∂µK − K∂µK̄]ωµ. (10)

Comparing with the formulation without considering the
quarks coordinates of the K-meson, it is obvious that an
additional factor F (P 2

k ) appears in the vertexes. Thus, the usual
RMF Lagrangian for the KN interaction should be modified as

LK = ∂µK̄∂µK − m2
KK̄K − gσKmKF

(
P 2

k

)
K̄Kσ

− igωKF
(
P 2

k

)
[K̄∂µK − K∂µK̄]ωµ

+ [
gωKF

(
P 2

k

)
ωµ

]2
K̄K. (11)

After a few simple deductions [13], we can obtain the real part
of the K-nucleus optical potential,

ReU = [
gσKmKσ0 − 2gωKEKω0 − F

(
P 2

k

)
(gωKω0)2

]
·F (

P 2
k

)/
2mK, (12)

which refer to the K-meson three-momenta by the form factor
F (P 2

k ). The K−-meson energy EK can also be deduced from
the RMF model [13],

EK =
√

m2
K + gσKF

(
P 2

k

)
mKσ0 + P 2

k − gωKF
(
P 2

k

)
ω0. (13)

Here the coupling constants gσK = 2.088 and gωK = 3.02,
which are used mostly in the RMF [13].

Up to now the antikaon absorption in the nuclear medium
is ignored, since the imaginary potential cannot be obtained

directly from the RMF. Similar to our previous work [13], we
assumed a specific form of the imaginary potentials:

ImU = −f · [
F2

(
P 2

k

)]2 ·
[
EK

mk

W0
ρ

ρ0

]
, (14)

where F2(P 2
k ) = e−P 2

k /(4β2), which is also introduced to modify
the imaginary potential (i.e., decay widths) as done in the real
part. For the decay width 	 ∝ M2 ∝ g2, whereM is the decay
amplitude, and g is the coupling, the square of the “form factor”
[F2(P 2

k )]2 is adopted. Besides, the phase space available for the
decay products should be considered [14,15], which affects the
imaginary potentials (widths). Thus, a factor, f , multiplying
imaginary potentials ImU is introduced in our calculations,
as done in Ref. [13] replace ReE with EK of Eq. (13)]. The
factor f can be assumed to be a mixture of 80% mesonic decay
and 20% nonmesonic decay [14,15], thus f = 0.8f1 + 0.2f2.
The imaginary potential parameter W0, which is the depth of
the imaginary potential at zero momentum, is not determined
well. By fitting the K−-atomic data, W0 ∼ 50 MeV [1,2],
however, the predictions in Refs. [16,17] give a much deeper
value W0 ∼ 100 MeV. In this work, we shall discuss several
cases for W0 = 50, 65, 80 MeV.

Finally, a momentum-dependent K−-nuclear potential is
obtained. Naturally, we do not expect the naive quark model
to give appropriate values for the parameters κ and β. In
the calculation, the parameters κ and β are determined by
fitting the K-nucleus scattering data. The experimental data
of the differential elastic cross sections for K−-12C and
K−-40Ca at PK = 800 MeV/c [6] are used to determine the
parameters κ = 0.275 GeV and β = (0.49, 0.44, 0.42) GeV
(corresponding to W0 = 50, 65, 80 MeV, respectively). In
Fig. 2(a), 2(b), according to the optical potentials from Eqs.
(12) and (14), the experimental data are fitted very well. With
the determined parameters, we plotted the potentials as func-
tions of kaon three-momentum Pk at normal nuclear density in
Fig. 3. The real and imaginary parts are shown in Fig. 3(a) and
3(b), respectively. The solid dotted lines are our calculations

FIG. 2. On several cases of different real (c),
(d) and imaginary (a), (b) potentials, the elastic
differential cross section for K− scattering from
40Ca and 12C as functions of the c.m. angles at
pk = 800 MeV/c are shown in Figs. (a), (c) and
(b), (d), respectively. The experimental data are
from Ref. [6].
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FIG. 3. The real and imaginary antikaon optical potentials in
normal nuclear matter based on our model (solid dotted lines) and
the other models are shown in (a) and (b), respectively. The solid
pentagon’s curves are the predictions of a meson-exchange model
with the Jülich KN interaction [18]. The hollow pentagon’s curves are
the results based on the lowest-order meson-baryon chiral Lagrangian
(the antikaons and pions are dressed self-consistently) [19]. The
shadow region between the two solid curves is the results predicted
by Sibirtsev and Cassing (SC model) [4], and the crossed rectangle
indicates the results from the analysis of K− production in Ni+Ni
collisions [20,21].

of Eqs. (12) and (14), the potentials predicted by the others
[4,18,19] are also presented in the same figure.

From Fig. 3(a), we can see that our results for real potentials
decrease with increasing momenta, their varying tendencies
are in agreement with the other models [4,18,19]. The depths
predicted by us are deeper than those of the chiral and Jülich
models. Among these models, the chiral model gives much
shallower real potential depths than the other three models.
The results of the Jülich KN interaction and RMF model (with
form factors) are compatible at PK < 600 MeV, which are
almost in the possible region predicted by the SC model. On the
other hand, the real potential based on the RMF without “form
factor” is also shown in Fig. 3(a). It is obvious that F1(P 2

K )
has a great influence on the real potential, its corrections to
the varying tendency of the real potentials are important. From
Fig. 3(b), our results of the imaginary potentials increase at first
with increasing momenta up to Pk = 450 ∼ 550 MeV and then
decrease, their varying tendencies are similar to the results of
Ref. [18]. There is a flat for the imaginary potential curve in the
low energy Pk < 100 MeV region, which is referred to as the
factor f1 = 0, indicating that the total energy (MN +EK ) is less

FIG. 4. According to the different imaginary (real) potentials,
the K− mean free paths as functions of the incident momenta in
normal nuclear matter are shown in (a) [(b)]. The mean free path
from the experimental Kp and (Kp + Kn)/2 total cross sections are
also presented. Corresponding to the λK in (b), the real and imaginary
parts of K− optical potentials are also shown in (c).

than the threshold of �π , and the decay channel NK → �π

is closed.
However, the K−-nucleus elastic scattering data are not

good enough to test the validity of the physics contained in
our model. Since little experimental information came directly
from the inner nuclei for the kaon, there are many uncertainties
in both the real potentials and the imaginary parts. The K−
mean free paths (MFP) in nuclear matter can be calculated
with the determined momentum-dependent potentials, which
can also be estimated from the experimental data of the total
cross sections for K−p and K−n [22]. By comparing the
results in two different approaches, we expect to find more
constraints on the KN interactions.

The details of how to calculate a particle’s MFP are given
in our previous work [23], only the formula of λK is given
here:

λK = 1

2
√

mK · [B2 + (ImU )2]
1
2 − mK · B

, (15)

where, B � EK −mK −ReU +(EK −mK)2/2mK. On the other
hand, the MFP of K− is related to the K−p/K−n scattering
data by a simple relation λ = 1/ρσ , where σ̄ = (σKn +σKp)/2
is the average of total K−n and K−p cross sections. There
are some K−p scattering data in the range of 240 < Pk <
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1000 MeV, and a few data for K−n scattering in
600 < Pk < 1000 MeV. Thus only the MFP data from σ̄ =
(σKn +σKp)/2 in the latter region can be compared. The results
of two approaches are shown in Fig. 4.

From the figure, we find that λp (= 1/ρσKp) is a little
larger than λ (= 1/ρσ ), and we assume λp ≈ λ in the region
of Pk < 600 MeV. There is a “peak” in each of our calculated
curves of the MFP, which is referred to as the factor f1 = 0,
corresponding to the position of MN + EK = M� + Mπ .
By comparing the results of different imaginary potential
parameter W0 with the λp, and considering λ > λp and λ ≈ λp,
we think the most possible imaginary depth parameter W0

should be ∼ 65 MeV.
If one takes the coupling constant gσK to be a free

parameter, the different real potential depths can be obtained
by adjusting gσK . With W0 = 65 MeV (the corresponding
form factor parameter β = 0.44 GeV), the mean free
paths are calculated for the different real potential depths
V0 = 83, 99, 146 MeV (the corresponding coupling constant
gσK = 1.044, 2.088, 5.44), which are shown in Fig. 4(b). The
corresponding real and imaginary parts of the optical potentials
are also shown in Fig. 4(c). The form factor parameters of the
real potential (κ = 0.285, 0.255 GeV correspond to gσK =
1.044, 5.44, respectively) are determined by fitting the K−
nucleus scattering data [which are shown in Fig. 2(c), 2(d)].
From Fig. 4(b), we can see that our calculations of V0 =
83 MeV are most compatible with the λp from K−p

scattering data. And in Fig. 4(c), with V0 = 83 MeV
and W0 = 65 MeV, both the real and imaginary potentials
(the solid curves) of our calculations are very close to those of

the Jülich KN interactions [18] (the star curves) in the range of
Pk < 100 MeV. It is interesting to see that the recent experiment
also indicated that the in-medium K−N potential depth is
about ∼80 MeV at normal nuclear density [24].

As a whole, with the constraints of the MFP from the KN
scattering data, we predicted that the real potential depth is
V0 ∼ 80 MeV, and the imaginary parameter W0 ∼ 65 MeV.
One point must be emphasized, if the above results about the
potential depths are right, according to our calculations on
K−-nuclei in [13], the sum of the half-widths of the 1s and 1p

states are larger than their separations in K−-nuclei. In other
words, no discrete K− bound states in the A � 12 nuclei can
be found in experiments.

In conclusion, the momentum dependence of K− nucleus
potentials have been studied in the framework of RMF theory.
We think that the interior structure of a kaon may be one
of the origin of the momentum dependence, and introduce
a “form factor” to correct both the real and imaginary parts
of the potential. It is found that the real part of the optical
potentials decrease with increasing K− momenta, however the
imaginary potentials increase at first with increasing momenta
up to Pk = 450 ∼ 550 MeV and then decrease. The effects of
the exponential form factor on real and imaginary potentials
are important.
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024314 (1999).

[3] S. Hirenzaki, Y. Okumura, H. Toki, E. Oset, and A. Ramos,
Phys. Rev. C 61, 055205 (2000).

[4] A. Sibirtsev and W. Cassing, Nucl. Phys. A641, 476 (1998);
arXiv:nucl-th/9909024.

[5] X.-H. Zhong, Lei Li, Chong-Hai Cai, and Ping-Zhi Ning,
Commun. Theor. Phys. 41, No. 4, 573 (2004).

[6] D. Marlow et al., Phys. Rev. C 25, 2619 (1982).
[7] C. Downum et al., Phys. Lett. B638, 455 (2006).
[8] K. Tsushima, K. Saito, A. W. Thomas, and S. V. Wright, Phys.

Lett. B411, 9 (1997).
[9] K. Tsushima et al., Phys. Lett. B429, 239 (1998); Nucl. Phys.

A630, 691 (1998).
[10] Q. Zhao, Phys. Lett. B636, 197 (2006); Phys. Rev. D 72, 074001

(2005); F. E. Close and Q. Zhao, Phys. Rev. D 71, 094022
(2005).

[11] N. Isgur, D. Scora, B. Grinstein, and M. B. Wise, Phys. Rev. D
39, 799 (1989); F. E. Close and A. Wambach, Nucl. Phys. B412,
169 (1994).

[12] R. Kokoski and N. Isgur, Phys. Rev. D 35, 907 (1987).
[13] X. H. Zhong, G. X. Peng, L. Li, and P. Z. Ning, Phys. Rev. C

74, 034321 (2006).
[14] J. Mares, E. Friedman, and A. Gal, Phys. Lett. B606, 295 (2005).
[15] J. Mares, E. Friedman, and A. Gal, Nucl. Phys. A770, 84 (2006).
[16] N. V. Shevchenko, A. Gal, and J. Mareš, Phys. Rev. Lett. 98,
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