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Anomalous thermodynamics and phase transitions in neutron star matter
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The presence of the long-range Coulomb force in dense stellar matter implies that the total charge cannot be
associated with a chemical potential, even if it is a conserved quantity. As a consequence, the analytical properties
of the partition sum are modified, changing the order of the phase transitions and affecting the possible occurrence
of critical behaviors. The peculiar thermodynamic properties of this system can be understood introducing a model
Hamiltonian where each charge is independently neutralized by a uniform background of opposite charge. Some
consequences on the characteristics of mixed-phase structures in neutron star crusts and supernova cores are

discussed.
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I. INTRODUCTION

Among the major quests in investigating the properties
of compact-star matter is the underlying equation of state.
In particular, exotic phases (the so-called pasta phases) are
predicted in the outer crust of neutron stars as well as in the
inner core of exploding supernovae. In this latter physical
situation matter attains temperatures of several MeV [1-3],
and the possible existence of such dishomogeneous structures
is known to have some relevance for hydrodynamic properties
of stellar matter and neutrino transport [4,5].

The interplay between the short-range nuclear force and the
long-range nonsaturating Coulomb interaction is responsible
for the existence of such phases. First calculations of the
composition of the stellar crust were done using the liquid drop
model or in the Thomas-Fermi approximation [6—10] with an
a priori assumption on the different species constituting the
matter [6,10] or on the shape of the pasta structures [7-9]:
the preferred shape was essentially determined by the balance
between surface and Coulomb energies. In these studies, as
well as in more recent ones along the same lines [11-14],
charge neutrality is imposed only globally, whereas charge
fluctuations are allowed on any (small) scale, meaning that
the effect of the electron background is neglected. Then
the problem reduces [15] to a simple application of Gibbs
phase-coexistence conditions in multifluid systems [16]. As a
consequence, the transition from the homogeneous outer core
to the pasta phase(s) is systematically considered as first order
in all these works.

However, the conditions to define a thermodynamic limit
in systems involving nonsaturating forces are not trivial and
phase transitions may have specific properties analogous to
those discussed for finite systems [17]. In this article we
show that the suppression of one thermodynamic degree of
freedom due to the divergence of the Coulomb energy density
for any net charge at the thermodynamic limit implies the
disappearance of phase transitions or a modification of their
order. Specifically, we show that the crust-core transition is
not first order but continuous.
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Another limitation of the first seminal works on the phase
structure of stellar matter is that most calculations were done in
the mean-field approximation, which is known to be especially
poor in describing phase transitions. Recent calculations with
semiclassical models beyond the mean field [4,5] naturally
include thermal fluctuations and allow the rearrangement of
the proton distribution due to the Coulomb field under the
explicit constraint of charge neutrality. The inclusion of such
fluctuations was expected to lead to an increased matter opacity
to neutrino scattering with important consequences on the
supernova cooling dynamics [5,18]. Such a coherent neutrino-
matter scattering is not only expected at low temperature,
where the pasta-core transition was supposed to be first order,
but even more in the case of the occurrence of a critical point
in the postbounce supernova dynamics with the associated
phenomenon of critical opalescence [18,19]. Surprisingly, the
expected increase in the static form factor is not observed
in finite-temperature molecular-dynamics calculations [20],
indicating a fluctuation suppression respect to the simplistic
scenario of a first-order phase transition.

On the basis of simple scaling arguments, we show in
this article that critical behaviors can survive up to the
thermodynamic limit only if the particle-density fluctuations
associated with the mixed pasta phases do not correspond,
close to the critical point, to charge-density fluctuations. In
turn, this would imply a strong increase with temperature of
free-proton drip or, alternatively, a very strong polarization
of the electron field, leading to a complete charge screening
of the pasta structures. Because both effects are likely to
be unphysical, critical fluctuations and the associated critical
opalescence are expected to be quenched.

II. THERMODYNAMIC FEATURES OF
(PROTO-)NEUTRON STARS

A. Thermodynamics of charged systems

Let us consider the dense matter in neutron-star crusts and
supernova cores formed of electrons (e), neutrons (n), and
protons (p). The microscopic Hamiltonian reads

A~ A~

HZan+IA(e+‘A/ee+‘A/pp+‘A/ep’ (D
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where H np 18 the nuclear strong interaction including the
nucleon kinetic energy, K, is the electron kinetic term, and
Vi is the Coulomb interaction between different types of

particles (i € {e, n, p}):

il =

7o o 244 /,Oi(r)pi'(r)d;d;/’ @
148 lr—7r]

where « is the fine-structure constant and p;(7) is the local
density of the particle of type i and charge ¢; = £1.

Because the Coulomb field is a long-range interaction,
the existence of a thermodynamics, i.e., the convergence of
a thermodynamic limit and the equivalence between statistical
ensembles, is not guaranteed [17]. Let us first consider the

canonical ensemble with densities p; = N;/2, where Q2
is the volume containing a number N; of particles i =
n, p, or e. If the net charge density p. = p, — p. is

not strictly zero at the thermodynamic limit, the Coulomb
energy per unit volume (V.)/Q o p2Q?/° diverges. The
strict charge neutrality demanded by the thermodynamic limit
guarantees the additivity of thermodynamic potentials as well
as ensemble equivalence. Indeed, the monopole contribution
to the Coulomb energy between two separated neutral systems
is identically zero. The longer-range multlpole interaction is
the dipole-dipole term E o Dl D2 /R3, where D isthe dipole
moment in each subsystem. This moment is proportional to
N.R, where N, is the localized charge number and R the
maximum size of the actual dipole. To avoid the divergence
of the Coulomb-energy density, N. must scale at maximum
proportionally to R?, indicating the convergence of the dipole
part of the intersystem energy density, and the additivity of the
two subsystems at the thermodynamic limit. This reasoning
can be extended to all multipole-multipole interactions. The
Coulomb interaction between neutral systems then behaves
like short-range interactions [17], leading to ensemble equiva-
lence according to the standard demonstration of the Van Hove
theorem.

B. Thermodynamic consequences of charge neutrality

It is important to remark that the strict neutrality constraint
discussed above is very different from the trivial condition
of global charge neutrality of the stellar object, which is
universally recognized. We have just argued that neutrality is
a necessary thermodynamic condition: this means that charge
dishomogeneities can appear only at the microscopic level and
no locally charged domain can exist at a macroscopic scale,
even if this scale is small compared to the size of the star. From
a practical point of view, this means that in hydrodynamical
calculations the condition p,(F) = p,(F) has to be imposed
at every location 7 and that this neutrality constraint must
be explicitly applied at the scale of the Wigner Seitz cell in
neutron-star crusts. This can have important effects on the
phase structure of matter even if the electron background is
assumed to be uniform, as we develop in great detail in the
next sections.

The important consequence of the charge-neutrality con-
straint is that the canonical free-energy density f is defined
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only for p. = 0. Hence f(T, pn, pp, pe) = f(T, pn, p) With
p = (pp + p.)/2 and the chemical potential associated with p.
cannot be defined because the free energy is not differentiable
in the total-charge direction. We can notice that this can
also be deduced in a grand-canonical treatment. Indeed the
divergence of the Coulomb-energy density for p. # O forces
the grand-canonical partitions to fulfill the constraint p, = p,
exactly for all couples of chemical potentials jt, and . If the
chemical potentials associated with p. and p are introduced in
the form pte = () —pe)/2 and 0 = .+ p, respectively, the
grand potential per unit volume g results independent of 1¢,
so that g(T', wn, i, te) = (T, wy, ). Indeed, densities are
grand-potential derivatives: the condition on the total charge
pe. = 0 then corresponds to a flat grand-potential in the
chemical-potential direction ..

This suppression of one degree of freedom arises from
the thermodynamic limit and should not be confused with an
additional constraint as it is often done in the literature, where
the two conditions of charge neutrality (expressed as n,, = n,)
and B equilibrium (expressed as p, = [.) are treated on the
same footing [15] or confused [13]. Additional constraints,
such as constant particle fraction or chemical (8) equilibrium,
may or may not be realized in the supernova evolution; they
are restrictions of the accessible states and do not affect
the thermodynamical properties, which are state functions.
Conversely, charge neutrality has to be fulfilled for each
(macroscopic) physical state. This changes the the number
of degrees of freedom of the thermodynamic potentials,
which directly affects the thermodynamics. In particular, phase
coexistence can occur only between two neutral phases. The
practical consequences of this thermodynamic requirement are
detailed in the next sections.

C. Quenching of mean-field instabilities in stellar matter

These considerations are especially relevant when phase
transitions are concerned. Phase transitions should be analyzed
by looking at the derivative and curvature properties of f
in the three-dimensional state-variable space (T, p,, p). In
particular, a first-order phase transition at a given temperature
identifies with the linear behavior of the free-energy density f
between at least two points A = (p2, p*) and B = (p2, p%),
meaning that all intensive parameters in A and B are equal [16].
However, because the chemical potential associated with the
total charge is not a thermodynamic variable, the condition
u? = u® does not imply as it is often assumed in the
literature [2,12,15,21] that the chemical potentials u, and
w, are both identical in the two phases (2 = p? and
/L? = ,ug). The difference in the chemical potential of
charged particles is counterbalanced by the Coulomb force:
as some electrons move from one phase to the other driven by
the chemical-potential difference, the Coulomb force reacts,
forbidding a macroscopic charge to appear. To illustrate this
point, we consider a mean-field approximation, where the free
energy of the system is defined as the sum of independent
baryon f;, and electron f, free energies,

ST, pn, p) = fo(T, pu, pp = p) + fo(T, pe = p). (3)
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To spot a phase transition we can study the convexity anomalies
of f looking at the curvature matrix

o <aun/apn
O p/0pn

aﬂn/ap[’ ) (4)
Op/0pp + Ofte/0pe

where we have introduced the chemical potentials u, =
0fp/00n, by = 9fp/9pp, and ., = 9df,/9p.. The additional
term x, ' = du./dp. in the matrix modifies the stability
conditions with respect to the nuclear-matter part, i.e., to
the curvature of f,. In general, we can expect a quenching
of the instability: because the electron susceptibility x, ! is
always positive, the instability conditions corresponding to
Det C < Oortr C < 0 are more difficult to fulfill.
Moreover, due to their very small mass, electrons are almost
always a relativistic degenerate Fermi gas:

77:2 1/3
x. ' =hc (9,02> . (©)

Because yx, ! is large at subsaturation densities, the quenching
is expected to be strong. A quantitative application is shown
in Fig. 1, which displays the minimal eigenvalue of the free-
energy curvature matrix Eq. (4) as a function of the isospin
asymmetry p3/pp = (on — pp)/(Pn + pp), evaluated with the
effective Sly230a Skyrme interaction [22,23].

At the thermodynamic limit, the nuclear free-energy density
appearing in Eq. (3) is defined for each temperature and
each point (p,, p, = p) in the density plane by a Legendre
transform of the Gibbs free-energy density

fo=28+ D 1gpy- 6)
q=n.p
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FIG. 1. (Color online) Minimal free-energy curvature of homoge-
neous matter at the fixed finite temperature 7 = 10 MeV in the mean-
field approximation, obtained with the Sly230a interaction. Without
Coulomb interaction : nNM (neutral nuclear matter). Switching on
Coulomb interaction: cNM+e (charged nuclear matter neutralized
by an electron gas). (Dotted line) Nuclear matter with electrons at
T =0.
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In the mean-field approximation, this latter can be approxi-
mated using independent-particle averages only [24,25]:

RN .
g~ —Tnzg — (W) — (H)). @)

In this expression, zo is the grand-canonical partition sum
of a noninteracting Fermi gas of free protons and neutrons

with effective mass m; and chemical potentials p shifted

of the value of the mean field u; = w, — U,. (W) =
p/2m’ + 1s the average single particle energy,
D7 /2mE + Uy) s th ge single particl gy

(I:I ) = QH is the average energy with the chosen Skyrme
functional, and the local mean field and effective mass are
defined as partial derivatives of the energy density 7 with
respect to the particle densities p, and the momentum densities

Tqg = <P2>/h21
o o
~Ap,’ 2m} C o,

q ®)
All averages are thermal averages over the modified single-
particle Fermi distribution

1
L+ explB(p?/2m} — )]’

From Fig. 1 we can see that ordinary neutral nuclear matter
(nNM) shows a wide unstable (spinodal) region characterized
by a direction of negative convexity of the free energy. In
this region, any density fluctuation of homogeneous matter is
spontaneously amplified, and leads to phase separation. This
result is drastically modified considering charged nuclear mat-
ter neutralized by an electron gas (c(NM+-e) : the free energy
is everywhere convex, and this stays true at zero temperature
(dashed line). Because the extension of the spinodal region
monotonically decreases with increasing temperatures, this
latter result implies that stellar matter does not present any
thermodynamic instability in this model. This quenching is
due to the fact that matter dishomogeneities cause charge
dishomogeneities, which cannot be fully screened by the
electron gas because of its high incompressibility and are
thus forbidden at any (macroscopic) scale. As a consequence,
the different structures in the stellar crust (free nucleons and
nuclei, bubbles, or pasta) have to be considered as intrinsically
microscopic objects and cannot be treated as different phases in
coexistence, obeying standard phase equilibrium rules, as it is
often done in the literature [10,11]. We will see in Sec. IT F that
such microscopic charge fluctuations naturally appear beyond
the mean field, and they indeed dominate the density region
between the liquid core and the gazeous outer crust. Such
structures are, however, associated to an important energetic
cost, which, as we will demonstrate, leads to an expansion of
the dishomogeneous phase.

If the qualitative effect of electron quenching of the insta-
bility is independent of the model, the net quantitative effect
on the spinodal zone depends on the parameters of the nuclear
interaction: the different Skyrme forces we have analyzed [22]
all lead to a complete instability suppression, whereas a small
spinodal region still subsists at zero temperature in NL3 RMF
stellar matter calculations [26].

ng(p) = ©))
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D. Suppression of first-order transitions in stellar matter

To expose how the charge-neutrality constraint affects the
thermodynamics of star matter, we now study the core-crust
transition in two different approaches. One corresponds to
the physical situation, for which electroneutrality has to be
ensured by the correlation between proton and electron density
distributions. For the other approach, we consider a model
system where each charged particle species is independently
neutralized by a uniform background of opposite charge.

The modified Hamiltonian reads

A/ A

H =0y +R AV, +V, +V,, (10)

where the interaction with the opposite background charge has
been subtracted to the various Coulomb terms

Ny iqi (S,'AS,‘/_'/ NN
tg— L f p|(f) '(1,|(r)drdr/, (11)
r —r

e

T+ 8

with 8p;(7) = p;(F)— (p;). This system presents no divergence,
so the free energy f'(T, pu, Pp, pe) can always be defined.
When p, = p. the introduced backgrounds cancel out
exactly. In this case, the canonical ensemble of our initial
stellar problem is equivalent to the canonical ensemble of the
modified Coulomb system along the p, = p. surface:

(T, pu, p) = f(T, pu, pp = p: pe = P)- (12)

The two pressures are connected by the relation

8(T, s ) = &' (T, oy, 1y, 112), (13)

where the chemical potentials ! = df’/dp; of the different
species i = n, p,e, are linked to the physical chemical
potentials by the relations w, = w,,n = pu), + pu,. Let
us, however, note that this equivalence breaks down in phase
coexistence, because a phase mixture in the neutralized model
belongs to the physical model only if p. = 0 in each phase
separately.

In the neutralized Coulomb system, all chemical potentials
and densities are allowed. This model may present phase
transitions according to the usual phenomenology of multifluid
systems [16]. In particular, first-order phase transitions are
characterized by the equality of all intensive parameters
between two points A’ and B’ of the particle-density space:
(pf’,p[/f’,pf’) and (,of’,,off’,,of'). The linear behavior of
ST, py, pp, pe) between A" and B’ corresponds to a single
point in the intensive-parameter space (T, ), pL/p, w,) with
different densities (i.e., pressure derivatives) on both sides.

An illustration of this approach is given by Figs. 2
and 3, presenting mean-field calculations of such neutralized
model, where nuclear and electron contributions are treated
independently. The strong Hamiltonian is parametrized by
the Skyrme Sly230a interaction [23] and the nuclear-matter
thermodynamics is evaluated within the mean-field approxi-
mation, as in the previous section [22,25,27]. Until a critical
temperature, nuclear matter (nNM) presents a first-order
liquid-gas phase transition. Electrons, conversely, are treated
as a single homogeneous Fermi gas. This results in a violation
of the relation p, = p, in each phase, because we have
pp > (<)p. in the dense (dilute) phase. In other words,
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FIG. 2. (Color online) Net charge density p. = —dg’'/du. as a
function of the proton and electron chemical potential for a neutralized
Coulomb system at fixed temperature and neutron chemical potential,
with the Sly230a effective interaction. The solid line gives the
physical constraint p. = cte = 0. The neutralized model presenting
a first-order phase transition with a p. discontinuity, the physical
constraint forces the system to follow the coexistence line, leading to
a continuous transition for the physical system.

Pe = Pp — P 1s an order parameter of the phase coexistence.
This is permitted within the neutralized model where proton
and electron charge are independently canceled in each phase
according to Eq. (11), suppressing the Coulomb contribution.

Figure 2 emphasizes the role of p. as an order parameter
for a phase coexistence occurring in the neutralized model.
In the neutron-star phenomenology, this neutralized system
corresponds to nuclear-matter calculations [12] that do not
explicitly impose the neutrality constraint on the scale of
the Wigner-Seitz cell. The high-density phase represents
the homogeneous liquid core, whereas the low-density one
is the unbound vapor. Let us consider a system such that
pe = 0. The corresponding path is represented on Fig. 3
as a projection in the chemical-potential plane (i, t),), for
different values of the neutron chemical potential u,. Starting
from a high-density homogeneous system, and decreasing the
density, the liquid-gas phase coexistence is reached at point L.
Afterwards, the global requirement p. = 0 has to be fulfilled
by phase coexistence between two phases for which p. # 0.
An exemple is given by points A’ and B’, which obey the
phase-equilibrium condition of equal intensive parameters.
This is a first-order phase transition. Similar features are found
for any fixed undercritical temperature.

However, this does not correspond to the physical situation,
where electroneutrality imposes p. = 0 at any macroscopic
scale. Let us consider the line p. = 0 represented on Fig. 2.
In the neutralized model, this path crosses a coexistence
region (N-L portion). Turning to the physical system, the
states of this region cannot be described in terms of phase
coexistence, as discussed previously: they instead consist in
microscopic fluctuations constituting a single dishomogeneous
phase. In this restrained p. = 0 subspace, the grand-potential

065805-4



ANOMALOUS THERMODYNAMICS AND PHASE . ..

PHYSICAL REVIEW C 75, 065805 (2007)

i, (MeV)

L B B L R L

"' FIG. 3. (Upper left) Representation of the

constraint p, = p. as paths in the chemical-
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given neutron chemical potential, proton density
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derivatives remains continuous (e.g., proton density evolves
continuously): the physical free energy does not present a
linear behavior, which means that the phase transition is no
longer of first order. However, the path p. = 0 is nonanalytical
when it enters the region of p. discontinuity (points L and N
on Fig. 2). The pressure is nonanalytical at such points, which
trace continuous transitions in the physical system.

To summarize, as the neutralized-model system enters the
coexistence region and undergoes a first-order phase transition,
the physical system restrained to the subspace p. = 0 turns
into a dishomogeneous phase via a continuous transition. The
only way to keep a first-order phase transition in the physical
system would be to have no p. discontinuity at the phase
transition in the neutralized system, which could be realized
only if the electron distribution followed closely the proton
distribution leading to a complete screening.

In the neutron-star phenomenology, the mixed phase
consists in a Coulomb lattice of neutron-rich nuclei at zero
temperature, or the pasta phase(s) at finite temperature. Most
calculations presented in literature treat the electron dynamics
at the mean-field level either by considering electrons as
a uniform background [4,12,28] or allowing for a slight
polarization of the electron gas, leading to a screening length
of some tens of fm [5]. An explicit calculation of the electron
screening in the RMF coupled to the electric field [29]
confirms this assumption. In this condition, the clusters (nuclei
or pasta) show a net positive charge at their (microscopic)
scale, meaning that the total charge is an order parameter
for the transition in the model neutralized system. As a
result, the physical crust matter cannot be described as a
phase coexistence: the core-crust transition occurs between
uniform matter and a mixed phase presenting microscopic
dishomogeneities. This transition is necessarily continuous,
contrary to what is almost universally assumed in the literature
[10,12-14,30]. Of course, for such dishomogeneous structures

to emerge, calculations beyond the mean field are necessary,
as will be discussed in the next section. In this case the
phase diagram can be more complicated and present other
bifurcations if the different pasta structures, here represented
by a single coexistence region, correspond to different phases
as suggested by molecular-dynamics calculations [30]. The
limited increase of the static form factor to neutrino scattering
observed in the numerical calculations of Ref. [20] is con-
sistent with the thermodynamic arguments developed in this
section.

E. Quenching of critical behavior in stellar matter

Turning now to the mixed-phase phenomenology of high-
temperature supernova cores, it is interesting to remark
that long-range Coulomb interactions also strongly affect
critical behaviors. Indeed, the Coulomb-energy density can
be expressed as a function of charge fluctuations as

A/
Vo)«
Q 2Q

Md?d?' :2770(/%(’”)"‘”’ (14)

7 =7

where o(F,7") = (8p.(F)8p.(r)) is the charge-density fluc-
tuation, and translational and rotational invariance imposes
o.(F, 7)) = o.(JF — F'|). If the electron screening is a small
effect even at high temperature, i.e., if p. keeps being an order
parameter up to the critical point, then o.(r) is expected to
scale as

o.(r) oc P24, (15)

where d is the space dimensionality and n is a critical
exponent which turns out to be close to zero in most physical
systems (n = 0.017 for the liquid-gas universality class). A
critical point would then correspond to a divergent Coulomb
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energy. Hence, only three behaviors are allowed. Either the
critical temperature goes to infinity, or the order parameter
becomes independent of the total charge or the phase transition
in the neutralized system ends at a first-order point. The
corresponding second-order point in the physical system
cannot then be a critical point, and critical opalescence is
suppressed. Concerning supernova cores, the presence of
critical opalescence may have important consequences on the
opacity to neutrino scattering [18], and neutrino transport is
crucial for simulation studies of supernova explosions [4,5].
According to this qualitative argument, we do not expect a
strong increase of matter opacity to neutrino scattering. To
have some quantitative estimation, it is clear that calculations
of stellar phase structure going beyond the mean-field approx-
imation are necessary.

Our recent finite-size-scaling calculations within a lattice
gas model confirm the suppression of critical behavior in stellar
matter, as we now show [31]. In this schematic but exactly
solvable model, each site of a three-dimensional lattice of 2 =
L3 sites is characterized by an occupation number n; = 0, 1
and an effective charge ¢; = n; — E?:ln j/ S2. The effective
charge represents the proton distribution screened by a uniform
electron background.

The schematic Hamiltonian H = Hy + H with

€
HNz—EE:mW (16)
(ij)
_ KN4 _ K
%_Eg%v_2§?mq (17)

is introduced to study the interplay of nuclear-like (Hy) and
Coulomb-like forces (Hc). Xy is a sum extended over closest
neighbors, and r;; is the distance between sites i and j.
The short-range and long-range interactions are characterized
. 1/3 2 .
by the coupling constants € and k = ap,’ x“, respectively,
where p is the nuclear saturation density and x is the proton
fraction.

To accelerate thermodynamic convergence, the finite lattice
is repeated in all three directions of space a large number
Npg of times. The Coulomb interaction with the different
replicas of each site is analytically calculated and shown
to be equivalent to a renormalization of the long-range
couplings C;; [31]. The phase diagram of the model is
evaluated with standard Metropolis techniques [31] and shown
to contain for all simulated lattice sizes L a coexistence
region terminating at a limiting temperature Tiim(L). The
quenching of criticality can be formally verified in terms
of critical exponents. If the asymptotic value of the limit-
ing temperature Ty, = limLﬁoof"ﬁm(L) did correspond to
a critical point, any generic thermodynamic observable Y
characterized by the critical exponent & should fulfill close
t0 Tiim:

Y(L,t) = f(L/E@)I, (18)

with t = T/ Tiim — 1. Scale independence close to the critical
point imposes for the scaling function f(s) o< s~*/¥, where
v rules the divergence of the correlation length, § o 7V,
Specifying Eq. (18) to the behavior of the limiting temperature
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gives

|Ttim(L) = Tiim| o< L™, (19)
The scaling of the order parameter Ap = (n);, — (n)s and of
the susceptibility x = Zg(Sn,-(Snj)/T results
L Ap o (L)1) T < Tiim(L),
L7y o (L) T 2 Tim(L),

L>»¢& (20
L>E&, (21

whereas both expressions should become independent of L and
T as soon as the critical point is approached for each given
finite size, L ~ &. For T<Tym(L), x contains also jumps
between the low-density solution (n)s and the high-density
one (n); and should obey first-order scaling as t~>#x oc LY.
Introducing the hyperscaling relation d = (y +28)/v, we get

L7y o (LMt T <Tim(L), L>E& (22

Figure 4 illustrates that finite-size scaling is violated
for the neutralized long-range Ising model at the approach
of the limiting temperature: it is not possible to find a

13- 13+
w ~0.66
E ot@  v=3s - () v=0
w12 1.2 RHX X X XX
1 l 1 ‘
0 ) 0 0.1
L—l
T '
a >
L ¥ @
= L 0.5 S 4
3 N
205 ) © &
l 1 l 1 l 1 l 1 l il
L: 0 /
- 10
; o4 t / R
— i # T<Tlim /. 4
4
=
2
T
-
&
k)
3 2 -1 0 4 -1 0 1
log,o (L™]t]) log,o (L™ |t])

FIG. 4. (Color online) Finite-size scaling for the neutralized
Ising model with long-range interactions. (Upper part) Limiting
temperature as a function of the lattice linear size giving the
exponent v. (Medium part) Scaling of the order parameter giving
the consistence between S and v. (Lower part) Scaling of the
susceptibility giving the consistence between y and v. The right and
left parts of the figure give two different ways of fixing the critical
exponents. None of them gives a coherent scaling of all the quantities.
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thermodynamically consistent set of critical exponents ful-
filling at the same time Eqgs. (19)—(22). If we fix 8 and v from
Egs. (19) and (20) [panels (a) and (b) in Fig. 4], the value of y is
fixed from the hyperscaling relation. The calculations with dif-
ferent lattice sizes do not collapse on a single curve in the repre-
sentation of Egs. (21) [Fig. 4(c)], even if the first-order scaling
Egs. (22) is nicely respected up to 7~"1im(L). If conversely we
fix y and v such as to fulfill Eq. (21) [Fig. 4(d)], this does not
affect the behavior of the order parameter Eq. (20) [Fig. 4(e)],
but the scaling of the limiting temperature Eq. (19) is violated
[Fig. 4(f)].

The loss of critical behavior has been already observed in
Ising models with long-range frustrating interactions, where
the coexistence region was seen to end at a first-order point
[32]. This effect was absent in the mean-field approximation
and was attributed to fluctuations.

The fact that no enhancement is observed in the static
form factor of clusterized matter in the molecular-dynamics
simulations by Horowitz and coworkers [20] may also be an
indication of this fluctuation quenching.

F. Extension of the pasta phases

Another remarkable effect that should manifest beyond
the mean-field approximation is an extension of the mixed-
phase pasta region in stellar matter with respect to standard
uncharged nuclear matter. Even if at the ending point of the
coexistence region the correlation length may not diverge as
discussed in the previous section, we can still expect that it
will be characterized by large correlated structures. As we
infer from Eq. (11) and Eq. (14), in the neutralized system the
Coulomb energy will be minimized in homogeneous partitions
corresponding to pure phases, and it will be maximal in
clusterized partitions. This increase of the energy difference
between the pure phases and the mixed phase results in
an extension of the coexistence region, i.e., an extension
of the dishomogeneous phase corresponding to the mixed
partitions situated in between the pure phases for each
temperature. Consequently, the limiting temperature for the
existence of such mixed phase is increased with respect to the
uncharged system. This effect has been recently observed in
the neutralized long-range lattice-gas model presented in the
previous section [31], as shown in Fig. 5. The phase diagram
of this model (cNM line in Fig. 5) is compared to the one
obtained when the Coulomb interaction is neglected, k = 0
in Eq. (17) (nNM lines in Fig. 5). For both models the phase
diagram is extracted from the Metropolis simulated density
distribution in the grand-canonical ensemble, also shown in
the figure for different chosen temperatures.

As we have argued in Sec. IID, at the mean-field level
the two models only differ for the presence of the electron
pressure in cNM, which is not added in Fig. 5 and would
transform the coexistence curve into a second-order transition
line. For a given value of p,, the charged-particle density
pp = pe = xpp is fixed and so is the electron pressure [see
Eq. (5)], meaning that the microstates explored by the calcula-
tion with (cNM) or without (nNM) Coulomb in the canonical
ensemble are the same at the level of mean field. Figure 5 shows
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FIG. 5. (Color online) Metropolis calculations of the density dis-
tributions of the neutralized Ising model with long range interactions
at different temperatures, for a cubic lattice of linear size L = 10
and with a proton fraction p, /0, = 0.3 (c(NM). The extension of the
coexistence zone, corrected for finite size effects through finite size
scaling, is also shown. The lines labeled nNM give the coexistence
zone of neutral matter for different lattice sizes and the extrapolation
to the thermodynamic limit.

that this is not true once the phase diagram is numerically
calculated from the exact Hamiltonian without any mean-field
approximation. The limiting temperature decreases with the
lattice size for nNM fulfilling finite-size scaling with standard
3d-Ising exponents [31], whereas it is almost completely
independent of L when Coulomb is accounted for, reflecting
the finite correlation lenght at the limiting point and criticality
quenching discussed in the previous section. More important,
the limiting temperature is increased for increasing strenght
of the Coulomb field (about 6% for the proton fraction
x = 1/3 considered in Fig. 5). This expansion of the
coexistence region is due to the energy cost of fragmented
inhomogeneous configurations at p/pp ~ 0.5 respect to the
the largely uniform proton-charge distribution in pure phases,
whose Coulomb energy is almost exactly compensated by the
electron background. This effect is entirely due to the screening
effect of the electrons, under the assumption that they can be
approximated by a fixed background.

As such, the coexistence-region expansion is specific of
the stellar problem, whereas other physical systems subject
to Coulomb frustration exhibit the opposite behavior. This is
notably the case of frustrated Ising ferromagnets, as well as
of finite atomic nuclei. In such cases the Coulomb repulsion
is known to reduce the limiting temperature [32-36]. This
reduction is also a usual expectation in the astrophysical
context [2,7,9,12—14,16]. An amplification of the mixed-phase
region at zero temperature has already been reported in
Ref. [29]. In this work a consistent treatment of the proton-
density rearrangement effect due to the Coulomb field under
the constraint of strict charge neutrality in the Wigner Seitz cell
is seen to defavor, at each given total density, the formation
of large charged structures (rods respect to droplets, bubbles
respect to tubes). The net effect is a density amplification
of the mixed phase. Our results imply that this effect should
persist at finite temperature. An increase of the maximum
temperature for the coexistence region might be expected,
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and the mixed-phase phenomenology may be relevant for the
proto-neutron-star structure in a wider temperature range than
usually expected [16].

III. CONCLUSION

In this article we have shown that long-range Coulomb
forces in dense stellar matter require a nontrivial discussion on
the definition of the thermodynamic limit. When the constraint
of total charge is not strictly zero, the divergence of the
Coulomb energy implies that the chemical potential associated
with the total charge loses its thermodynamic meaning. Hence,
the grand potential, i.e., the system pressure, and its derivatives,

PHYSICAL REVIEW C 75, 065805 (2007)

i.e., the particle densities, result independent of the charge
chemical potential. The suppression of a thermodynamic
degree of freedom strongly affects the thermodynamics of
the charged system and the phase-transition phenomenology.
In general, the Coulomb field modifies the nonanalytical
properties of the partition sums and changes the order of the
transitions: the first-order core-crust transition obtained when
the coulomb energy is disregarded, turns into a continuous
transition from the homogeneous core phase to a mixed
phase (the so-called pasta phases), when the coulomb energy
is accounted for. A critical point can be found at finite
temperature if and only if the net charge does not present
fluctuations. Only in this case, critical opalescence in stellar
matter can be compatible with the long-range Coulomb force.
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