
PHYSICAL REVIEW C 75, 065501 (2007)

Parity-violating observables of two-nucleon systems in effective field theory
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A newly-proposed parity-violating nucleon-nucleon interaction based on effective field theory is studied in
this work. Using the hybrid effective field theory treatment, it is found that the parity-violating phenomena at low
energy, where S-P transitions dominate, can be well specified by a set of six parameters. This includes five low-
energy constants, which are equivalent to the Danilov parameters, and an additional parameter that characterizes
the long-range one-pion exchange and is proportional to the parity-violating pion-nucleon coupling constant h1

π .
Selected observables in two-nucleon systems are analyzed, with their dependences on these parameters being
determined by employing high-quality wave functions.
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I. INTRODUCTION

Study of the parity-violating (PV) nucleon-nucleon (NN)
interaction, V PV, and its associated nuclear PV phenomena
begins with the report by Tanner [1] shortly after parity
violation was confirmed experimentally in 1957. The first
clear evidence is found a decade after by observing a nonzero
circular polarization in the γ -decay of 181Ta [2]. Although
quite a few PV observables have been measured later on
in various nuclear systems, ranging from simple two-body
scattering to heavy nuclear reaction, our current understanding
of nuclear parity violation is still far from complete (see, e.g.,
Refs. [3–6] for reviews of this field). The major difficulty is
twofold: not only these experiments require high precision
to discern the much smaller PV signals, but also in theory,
the nonperturbative character of the quark-gluon dynamics
makes a “first-principle” formulation of V PV as yet impossible.
Despite the difficulties and that the underlying theory, the
SU (3) ⊗ SU (2) ⊗ U (1) gauge theory, is well-established, the
study of V PV is still valuable for two main reasons. First, it is
the only viable venue to observe the neutral weak interaction
between two quarks at low energy. Second, it supplies more
information about the nucleon-nucleon dynamics in addition
to existing scattering data.

The phenomenological development of V PV proceeds in
a similar fashion as what has been achieved in the parity-
conserving (PC) NN interaction—starting out from pure
phase-shift analyses, then parametrization in meson exchange
models, and finally to rigorous effective field theory (EFT)
formulation nowadays. It is first pointed out by Danilov [7–9]
that, at low energy, V PV can be characterized by five S-P scat-
tering amplitudes: λ

pp
s , λ

np
s , and λnn

s for 1S0-3P0 transitions, λt

for 3S1-1P1 transition, and ρt for 3S1-3P1 transition. This idea
is generalized by Desplanques and Missimer [10,11] to an
effective version—through the Bethe-Goldstone equation—
which applies to many-body systems. On the other hand,
formulations of V PV in terms of meson exchange models can
be dated back to the seminal works by Blin-Stoyle [12,13]
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and Barton [14]. The specific form involving one π -, ρ-, and
ω-exchanges, V PV

OME, then becomes the standard in this field
after Desplanques, Donoghue, and Holstein (DDH) give their
prediction of the seven PV meson-nucleon coupling constants,
hi

m’s (m denotes the type of meson and i the isospin), based on
a quark model calculation [15].1 As explained in Ref. [3], V PV

OME
has a close connection to the S-P amplitude formulation,
V PV

S-P , at low energy: The amplitude ρt contains a long-range
one-pion-exchange contribution, and the other amplitudes,
including the short-range part of ρt , are all related to the
vector-meson exchanges.

Most of the existing PV observables have been analyzed
in the one-meson-exchange (OME) framework. However, a
consistent constraint of the PV coupling constants is not
realized yet. There are several reasons. On the experimental
side, many data have large errors so are not very constrictive;
also, these observables in terms of hi

m’s are not independent
enough to allow a simultaneous determination of these seven
parameters. On the theoretical side, several precise data involve
many-body systems; the reliabilities of these calculations are
questionable. As one can see from, e.g., Refs. [4,16,17], a two-
dimensional constraint on the particular linear combinations
of the isoscalar and isovector couplings already shows some
discrepancy. Besides these possibilities, one might also wonder
if the analysis framework, i.e., V PV

OME, could be the culprit.
To address the last question, Zhu et al. [18] recently

reformulate V PV in the EFT framework to the order of Q

(Q is the momentum scale). This new framework comes
with two incarnations: one with pions fully integrated out,
V PV

π/ , and the other with dynamical pions, V PV
EFT. The pionless

version only contains the short-range (SR) interaction, V PV
1,SR,

and it is specified by ten low-energy constants (LECs) at the
superficial level. It can be argued that at this order, only five
LECs are truly independent and can be exactly mapped to

1As the conventional nomenclature, the “DDH” potential, could be
somewhat misleading, it is referred as the PV one-meson-exchange
potential, V PV

OME, in this work. We thank B. Desplanques for this
clarification.
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the five S-P amplitudes.2 In the pionful version, dynam-
ical pions generate two explicit terms: the leading-order,
long-range (LR) interaction, V PV

−1,LR, due to the one-pion
exchange (OPE), and the sub-leading-order, medium-range
(MR) interaction, V PV

1,MR, due to the two-pion exchange (TPE).
While the OPE part is also familiar in V PV

OME, the TPE part
has never been systematically treated before. By considering
vertex corrections to the OPE term, the original formulation
by Zhu et al. contains an extra next-to-next-to-leading-order
interaction, V PV

1,LR, whose operator structure is thought to be
different from others already being specified. This term has
recently been shown as redundant [19], so will be ignored in
our discussion. Overall, in addition to the five LECs in the SR
interaction, the pionful theory introduces, to O(Q), two more
parameters: one with the interaction (h1

π ) and the other with
the pion-exchange current (c̄π ). An important point to note
is that, although V PV

1,SR takes the same form in both V PV
EFT and

V PV
π/ , the LECs in these two EFT frameworks have different

meanings: all the pion physics is included in the LECs for the
pionless version; but it is singled out in the pionful version.

With the advance of experimental techniques showing
promise of PV measurements in few-body systems—where
reliable theoretical calculations are available—an extensive
search program to re-analyze PV observables is sketched
in Ref. [18]. The proposed re-analysis makes use of the
“hybrid” EFT framework, which combines the state-of-the-
art wave functions (from phenomenological potential-model
calculations) and the most general form of V PV(from EFT
techniques).3 The immediate goal is to find out whether a more
consistent picture of nuclear parity violation can be reached
among few-body systems. The long-term goal of including
other precise measurements in many-body systems certainly
relies on the previous success.

This paper takes the first step dealing with two-nucleon
systems at low energy. The aim is to express the observables,
both existing and potentially possible, in terms of the EFT
parameters, and to serve as a part of the database which
the complete search program calls for. The general formal-
ism is introduced in Sec. II. The connection between V PV

(both V PV
π/ and V PV

EFT) and the S-P amplitudes is studied in
Sec. III. The observables of two-nucleon systems are discussed
subsequently in Sec. IV, and a summary follows in Sec. V.

II. FORMALISM

A fully consistent study of nuclear PV phenomena in the
EFT framework requires treating PC and PV interactions order
by order on the same footing. On the other hand, the “hybrid”
approach, which combines the state-of-the-art wave functions

2One simple way to argue this is the following. At short distances,
the radial function of the partial wave with orbital angular momentum
l scales like rl . Therefore, to the order of Q—with Q acting like
d/dr—only five S-P mixings can be induced by the EFT contact
interaction (higher partial wave mixings need higher orders of Q).

3This is a temporary step until an EFT strong potential is developed
to the required precision.

from phenomenology and the general operator structure from
EFT, is shown to have quite some success. In this work, we
follow the latter approach as outlined in Ref. [18].

A. Parity-conserving potential and wave functions

In the hybrid EFT framework, the unperturbed scattering
and deuteron (the binding energy ED ∼= 2.22 MeV) wave func-
tions, |ψ〉(±) and |ψ〉D, are obtained by solving the Lippmann-
Schwinger and Schrödinger equations, respectively,

(H0 + V PC ∓ iε)|ψ〉(±) = E|ψ〉(±), (1)

(H0 + V PC)|ψ〉D = x − ED|ψ〉D, (2)

with a chosen high-quality phenomenological potential as
V PC. In this work, we use Argonne v18 (AV18) [20] model
exclusively. The model dependence of PV observables on
strong potentials has been extensively studied in Refs. [21,22];
for most cases, no strong deviation from AV18 is found.

Since the PV interaction is small, we treat it as a first-order
perturbation. The PV scattering amplitude, M̃ , is obtained by
the first-order distorted-wave Born approximation

M̃ =(−)〈ψ |V PV|ψ〉(+). (3)

The parity admixtures of the scattering and deuteron states,
|̃ψ〉(±)

and |̃ψ〉D, are obtained by solving the inhomogeneous
differential equations

(E − H0 − V PC)|̃ψ〉(±) = V PV|ψ〉(±), (4)

(ED + H0 + V PC)|̃ψ〉D = −V PV|ψ〉D, (5)

respectively, where the product of the PV potential and the
unperturbed wave function serves as the source term. We refer
more technical details regarding the partial wave expansion,
phase shifts, and numerical procedures to Refs. [21–23], but
only mention a subtle point about the phase convention: We
adopt, exclusively, the Condon-Shortley phase convention; it
is different from the Biedenharn-Rose phase convention which
contains an additional phase iL for the partial wave of orbital
angular momentum L.

B. Parity-violating interaction in pionless EFT

In the pionless EFT, the PV interaction is entirely short-
ranged and takes the following form in the coordinate
space [18]:

V PV
π/ (r) = V PV

1,SR(r)

= 2

�3
χ

{[C1 + (C2 + C4)τ z
+ + C3τ·

+C5τ
zz]σ− · ym+(r)

+ [C̃1 + (C̃2 + C̃4)τ z
+ + C̃3τ·

+ C̃5τ
zz]σ× · ym−(r)

+ (C2 − C4)τ z
−σ+ · ym+(r)

+ C̃6τ
z
×σ+ · ym−(r)}, (6)

where �χ is the scale of chiral symmetry breaking and related
to the pion decay constant Fπ by �χ = 4πFπ ≈ 1.161 GeV;
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τ· ≡ τ 1 · τ 2, τ z
± ≡ (τ z

1 ± τ z
2 )/2, τ z

× ≡ i(τ 1 × τ 2)z/2, and
τ zz ≡ (3τ z

1 τ z
2 − τ 1 · τ 2)/(2

√
6) are the isospin opera-

tors;4σ± ≡ σ 1 ± σ 2 and σ× ≡ iσ 1 × σ 2 are the spin
operators. The spatial operator ym−(+)(r) is defined as the
(anti-) commutator of −i∇ with the mass2-weighted Yukawa
function fm(r)

ym±(r) = [−i∇, fm(r)]± ≡
[
−i∇,m2 e−mr

4πr

]
±

. (7)

When m → ∞, fm(r) → δ(r)/r2; the potential thus takes a
four-fermion contact form as expected.

While using a Yukawa functional form for fm(r) leads to
a similar spatial behavior as the conventional V PV

OME, other
choices—as long as they are realized in the context of
EFT—are also possible. For instance, taking into account the
monopole form factors at both the strong and weak vertices
with a cutoff �m, one obtains a modified Yukawa function

f̄m(r) = m2

4πr

{
e−mr − e−�mr

[
1 + 1

2

(
1 − m2

�2
m

)
�mr

]}
.

(8)

At the �m → ∞ limit, f̄m(r) recovers the “bare” Yukawa form
fm(r). We note that in Refs. [21,22], a recent and extensive
OME analyses of two-body nuclear PV, the authors adopt
f̄m(r) instead of the conventional choice fm(r).

At this point, we emphasize that the Yukawa function serves
as a regulator for the strict contact interaction (as a delta
function). Therefore, the Yukawa mass m should be realized as
a cutoff scale for the short range: for pionless theory, m >∼ mπ ;
for pionful theory, m >∼ mρ,�χ—with some arbitrariness.
While all the LECs C’s and C̃’s defined here should bear
this regulator dependence, the physical results should not, as
will be illustrated in later sections.

As C̃2 and C̃4 appear as a linear combination C̃2 + C̃4 in
Eq. (6), V PV

1,SR contains 11 − 1 = 10 LECs at the superficial
level. After resolving the isospin and spin matrix elements of
all allowed two-nucleon states, the PV observables depend on
the following ten linear combinations of C’s and C̃’s:

(i) pp:Dpp
v = C1 + C3 + C2 + C4 + C5/

√
6 and

D̃
pp
v = C̃1 + C̃3 + [C̃2 + C̃4] + C̃5/

√
6,

(ii) nn:Dnn
v = C1 + C3 − C2 − C4 + C5/

√
6 and

D̃nn
v = C̃1 + C̃3 − [C̃2 + C̃4] + C̃5/

√
6,

(iii) np|Ti=Tf =1:Dnp
v = C1 + C3 − 2C5/

√
6 and

D̃
np
v = C̃1 + C̃3 − 2C̃5/

√
6,

(iv) np|Ti=Tf =0:Du = C1 − 3C3 and D̃u = C̃1 − 3C̃3,
(v) np|Ti �=Tf

:Dw = C2 − C4 and D̃w = C̃6.

4The operators τ zz and τ z
× we adopt are different from Ref. [18].

Therefore, the LECs C5, C̃5, and C̃6 in our definition are greater than
their counterparts in Ref. [18] by factors of −2

√
6, −2

√
6, and 2,

respectively. Also note that the notation of C6 in Ref. [18] is changed
into C̃6 in this paper, because it is associated with a ym− type operator
like other C̃’s.

C. Parity-violating interaction in pionful EFT

When pions are treated explicitly, the EFT PV interaction,
as formulated in Ref. [18], contains three parts5

V PV
EFT(r) = V PV

−1,LR(r) + V PV
1,MR(r) + V PV

1,SR(r). (9)

For the SR interaction, even though it takes the same
operator structure as in the pionless theory, one has to adopt a
bigger Yukawa mass. A very useful choice is m ∼ mρ,mω. In
this case, V PV

1,SR is tantamount to the ρ- and ω-sectors of V PV
OME

if one assumes the following relations between C̃’s and C’s:

C̃1

C1
= C̃2

C2
= 1 + χω, (10a)

C̃3

C3
= C̃4

C4
= C̃5

C5
= 1 + χρ, (10b)

where χω and χρ are the isoscalar and isovector strong tensor
couplings, respectively. The remaining 11 − 5 = 6 LECs then
have a one-to-one mapping to the PV heavy-meson-nucleon
coupling constants as

(C1, C2) → −gω

2

(
h0

ω, h1
ω

) �3
χ

mNm2
ω

, (11a)

(C3, C4, C5, C̃6) → −gρ

2

(
h0

ρ, h
1
ρ, h

2
ρ, h

1′
ρ

) �3
χ

mNm2
ρ

,

(11b)

where gx denotes the strong x-meson-nucleon coupling con-
stant. Note that in analyses based on V PV

OME, the h1′
ρ part is

usually ignored because it has the same operator structure as
the LR OPE interaction, i.e., the h1

π part, but a very small
predicted value for h1′

ρ .
The leading term V PV

−1,LR is the familiar PV OPE potential

V PV
−1,LR(r) = 2

�3
χ

C̃π
6 τ z

×σ+ · yπ−(r), (12)

with

C̃π
6 = h1

πgA

2
√

2

�3
χ

Fπm2
π

= h1
πgπ

2
√

2

�3
χ

mNm2
π

, (13)

where gA = 1.27 is the nucleon axial vector coupling constant
and mπ = 139.57 MeV; and the second equality follows from
the Goldberger-Trieman relation.

The subleading MR interaction is due to TPE and has the
form6

V PV
1,MR(r) = 2

�3
χ

{
C̃2π

2 τ z
+σ× · yL

2π − (r)+C̃2π
6 τ z

×σ+

· [(1−1/
(
3g2

A

))
yL

2π − (r)−1/3 yH
2π − (r)

]}
,

(14)

5As mentioned in the Introduction, we ignore the higher-order LR
term V PV

1,LR in Ref. [18], since it is shown to be redundant [19].
6Some mistakes in Eq. (121) of Ref. [18] have been fixed in

order to produce Eqs. (15) and (16); see also Ref. [24]. We thank
B. Desplanques and Zhu et al. for pointing this out.
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FIG. 1. (Color online) The r-weighted Yukawa-like radial func-
tions rf L

2π (r) and rf H
2π (r) in the two-pion-exchange potential.

with

C̃2π
2 = −4

√
2πg3

Ah1
π , (15)

C̃2π
6 = 3

√
2πg3

Ah1
π . (16)

The Yukawa-like radial functions f L
2π (r) and f H

2π (r), for
generating yL

2π − (r) and yH
2π − (r) via Eq. (7), are obtained

from the Fourier transforms of

L(q) =
√

4m2
π + q2

|q| ln

(√
4m2

π + q2 + |q|
2mπ

)
, (17)

H (q) = 4m2
π

4m2
π + q2

L(q), (18)

respectively. In Fig. 1, the plots of rf L
2π (r) and rf H

2π (r) are
shown with several dipole cutoff factors (�2 − 4m2

π )2/(�2 +
q2)2—including the bare case, i.e., � → ∞—introduced in
the Fourier transforms. As one clearly sees, the short distance
behaviors are quite cutoff-sensitive, especially for f L

2π (r) since
L(q) diverges logarithmically as ln q/mπ . On the other hand,
the long-range tails, roughly decrease like e−1.58r and e−1.47r ,
track well with e−2mπ r = e−1.41r .

The way we define C̃π
6 , C̃2π

2 , and C̃2π
6 is handy for the

bookkeeping purpose; this gives V PV
−1,LR and V PV

1,MR the same
formal structure as the corresponding parts—as hinted by
the subscripts—in V PV

1,SR (also, all the Yukawa functions
fm(r), fπ (r), f L

2π (r), andf H
2π (r) have the same limit when

m,mπ → ∞). However, this does not imply these pion PV
constants are comparable in magnitude with LECs C’s and
C̃’s. Comparing Eqs. (13), (15), and (16), one sees C̃2π

2,6 smaller
than C̃π

6 roughly by an order of magnitude. By Eqs. (11a) and
(11b) and assuming all the π -, ρ-, and ω-coupling constants
approximately the same, one estimates C’s smaller than C̃π

6

TABLE I. Sets of strong parameters used for OME mapping.

gπ gρ gω κρ κω

DDH-best [3] 13.45 2.79 8.37 3.70 −0.12
DDH-adj. [22] 13.22 3.25 15.85 6.10 0.0

roughly by a factor of m2
ρ/m2

π ∼ 30; for C̃’s, due to the tensor
couplings, Eqs. (10a) and (10b), the suppression can be less.
If the above assumptions are not too far off, we can roughly
conclude that C̃2π

2,6 and the LECs, C’s and C̃’s, are of the
same order, and all of them smaller than C̃π

6 by an order
of magnitude. This observation is consistent with the power
counting scheme that both the MR and SR terms are of the
same higher order than the OPE one. But, more definitive
answer should still be sought from experiments.

We also emphasize that the MR term V PV
1,MR, as expressed

in Eq. (14), is not the full PV TPE potential. According to
Ref. [18], it only contains the non-analytic part of the TPE, and
all the analytic terms are effectively included in the short-range
interaction. In this sense, V PV

EFT in fact depends on the chosen
regularization scheme, in addition to the cutoff dependence
already mentioned above.

D. Setup and parameters

In the following sections, various PV observables in two-
nucleon systems will be analyzed by V PV

EFT. The Yukawa mass
parameter in V PV

1,SR is fixed to the ρ meson mass, m = mρ =
771.1 MeV, since this has an easy connection to the meson-
exchange picture. For the convenience of presentation, these
calculations will be referred as the “bare” calculations, because
all Yukawa functions in V PV

EFT are not modified by any form
factor. The results will be checked against existing calculations
in the V PV

OME framework. This is done by applying the relations
Eqs. (10a), (10b), (11b), (11a), and (13) to V PV

EFT and ignoring
all the TPE contribution; from now on, we call this procedure
OME-mapping (OME-m). For numerical estimates, the strong
parameters are taken from Ref. [3] and the weak ones are set
to be the “best-guess” values of DDH [15]. This set is labeled
as “DDH-best” in Tables I and II.

In order to compare with Refs. [21,22], as pointed out
previously, one has to use the monopole-modified Yukawa
functions instead. For this matter, we perform a parallel set of
calculations using f̄m(r) with the cutoff parameters chosen to
be �SR = 1.31GeV for the SR interaction and �LR = �MR =

TABLE II. Sets of weak parameters used for OME mapping
(in units of 10−7). Note that for pp systems, h0

ρ + h1
ρ + h2

ρ/
√

6 =
−22.3, instead of −24.8 as shown in this table, will be used [21].

h1
π h0

ρ h1
ρ h2

ρ h0
ω h1

ω h1′
ρ

DDH-best
[15]

4.56 −11.4 −0.19 −9.50 −1.90 −1.14 0.00

DDH-adj.
[21,22]

4.56 −16.4 −2.77 −13.7 +3.23 +1.94 0.00
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1.72 GeV for the LR and MR ones; they correspond to �ρ

and �π in Ref. [22], respectively. These calculations will be
referred as the “mod” calculations. For numerical results in
this set of calculations, the strong parameters are taken from
the Bonn model [25] and the weak ones are the fitted results
of Refs. [21,22]. This set is labeled as “DDH-adj.” in Tables I
and II.

In addition, we also perform calculations in the pionless
framework, V PV

π/ , with the Yukawa mass scale set to be m =
mπ . In this case, calculations using bare and modified Yukawa
functions do not differ a lot, so we only quote the bare one.
This set is labeled as “π -less”.

III. S-P AMPLITUDES AND DANILOV PARAMETERS

A PV potential with 11 (10 LECs plus h1
π ) undetermined

parameters certainly poses a formidable challenge—how can
we gather sufficient data and do reliable theoretical analyses
of them? A substantial reduction of the LECs is proposed in
Ref. [18] by building the connection to the S-P amplitude
analysis, which is pioneered by Danilov [7–9], and extended
by Desplanques and Missimer later on [10,11,26]. The main
idea of this reduction goes like the following.

For low-energy PV phenomena in which only the S-P
mixings contribute substantially, the observables can be
expressed by five independent PV scattering amplitudes:
vpp,nn,np(1S0 →3P0), u(3S1 →1P1), and w(3S1 → 3P1). From
the last section, we know each amplitude due to V PV

1,SR is
a linear combination of the corresponding D and D̃ with
the coefficients being determined by the matrix elements of
ym+ and ym−, respectively. An important observation comes
from that the matrix elements 〈 ym+〉 and 〈 ym−〉 are equal
in the zero-range approximation (ZRA). This causes D and D̃

always appear in a (D + D̃) combination which works actually
like one energy-independent LEC. Therefore, the number of
LECs can be reduced to five which corresponds to the number
of independent S-P amplitudes and reflects the actual EFT
counting. In order to implement this idea in the hybrid EFT
treatment properly, we try to address the following issues:

(i) The 10-to-5 reduction can still work as long as the matrix
elements of ym+ and ym− have (almost) the same energy
dependence, i.e., the condition

〈 ym+〉
〈 ym−〉 ≡ R(E; m) ∼= R(m), (19)

is satisfied. Note that this ratio depends on the Yukawa
mass scale (and also �m if a modified Yukawa function
is used). Even though it is not a physical quantity, it gives
a rough estimate how this reduction in the hybrid EFT
scheme would work with a chosen m.

(ii) When higher partial waves become important, the S-P
analyses are no longer valid. We try to estimate the
energies when D-P transitions become non-negligible.

(iii) The pionless EFT works for Q <∼ mπ , which corresponds
to Elab <∼ 10 MeV. We also examine the 10-to-5 reduc-
tion in this framework.

(iv) At the end of this section, we determine the zero-energy
S-P amplitudes, the so-called Danilov parameters, in
terms of the PV parameters. They will be the actual
physical parameters used to express the PV observables
in the next section.

According to the definitions by Desplanques and
Missimer [10], the S-P amplitudes are calculated by the
following formulas:

v = mN

ip

〈3P0|V PV
EFT|1S0〉

〈3P0|σ− · r̂|1S0〉
eηπ

|�(1 + iη)||�(2 + iη)|
= v−D̃v + v+Dv + v2π C̃2π

2 , (20a)

u = −mN

ip

〈1P1|V PV
EFT|3S1〉

〈1P1|σ− · r̂|3S1〉
= u−D̃u + u+Du, (20b)

w = −mN

ip

〈3P1|V PV
EFT|3S1〉

〈3P1|σ+ · r̂|3S1〉
= w−D̃w + w+Dw + wπC̃π

6 + w2π C̃2π
6 , (20c)

where all the amplitudes are functions of energy, p is the
two-nucleon relative momentum, and the factors are chosen
to reproduce the normalization and limiting behaviors of
Refs. [5,10]. Note that for the v amplitude, an extra factor,
which is 1 when the Sommerfeld number η = 0, is introduced
in order to completely subtract the Coulomb effect for pp

scattering at threshold.
Since the total cross section is proportional to the imaginary

part of the forward scattering amplitude, we concentrate on
Im[v, u,w], and start with the cases of pionful theory, m = mρ .

The top panels of Fig. 2 show the energy dependences of
the x−-type S-P amplitudes (x ∈ vpp,nn,np, u,w), proportional
to 〈 ym−〉, up to Elab = 100 MeV. Because the form factors
suppress the short-distance contributions, the results from the
“mod” calculations are consistently smaller than the “bare”
ones. On the other hand, their energy dependences are almost
the same, which implies the cutoff effect can be simply
simulated by an overall factor. Another noticeable feature is
the plots of vpp, vnn, and vnp overlap, and the tiny difference
is mostly due to the small charge-dependent interaction built
in AV18.

The bottom panels of Fig. 2 show the percentage deviations
of x+/x− from their zero-energy values x+(0)/x−(0), i.e.,

�x+/x− ≡ x+/x− − x+(0)/x−(0)

x+(0)/x−(0)
. (21)

In case the energy dependences of x+ and x− keep the same,
�x+/x− remains zero. Therefore, this quantity is a measure
of the departure from the perfect scaling, Eq. (19), which a
strict 10-to-5 reduction scheme requires. As these plots show,
the deviations all grow with energy in the positive direction.
For the v and w amplitudes, the scaling actually works very
well—though not perfect—up to Elab = 100 MeV where the
deviations are still less than 10% for the “bare” case. For the
u amplitude, however, the 10% tolerance for scaling deviation
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FIG. 2. (Color online) Top panels: the energy dependences of the x−-type S-P amplitudes. Bottom panels: the percentage deviations of
x+/x− from their zero-energy values x+(0)/x−(0), where the dotted lines mark the 10% level.

can only allow Elab go as high as 40 MeV.7 It might come as
a surprise why the u and w amplitudes have such different
behaviors, since both involve the same 3S1 wave and the
1P1 wave (for u) does not differ from the 3P1 one (for w)
dramatically. The answer is due to the tensor force, by which
a true distorted 3S1-wave acquires some D-wave component.
From the ratios

〈1P1|σ− · r̂|3S1, L = 2〉/〈1P1|σ− · r̂|3S1, L = 0〉 = −
√

2,

(22)

〈3P1|σ+ · r̂|3S1, L = 2〉/〈3P1|σ+ · r̂|3S1, L = 0〉 = 1/
√

2,

(23)

one learns that the D-wave component is more enhanced in
the u than the w amplitude, and this is the main cause of
the difference. A mock calculation by pretending the ratio in
Eq. (22) to be 1/

√
2 as in Eq. (23) verifies that the scaling

of u+/u− would then be similar to w+/w−. The “mod”
calculations generally show larger deviations, so the ranges
within which the scaling works have to be reduced. This can
be understood from that the difference of ym+ and ym− is a term
involving the gradient on the wave function. As the form factor
suppresses the short-range contribution, the longer-range part

7This 10% level is mainly set to match the precision which future
PV experiments aim at. One can certainly relax this very conservative
estimate to a 20–30% level, which corresponds to the typical size of
chiral expansion parameters.

of the wave function which has a larger gradient thus gets a
bigger weight; this leads to an enhancement of the deviation.

The importance of the D-P transitions is illustrated in
Fig. 3, where their ratios to the S-P counterparts are shown for
x−,π,2π -type amplitudes. For the v-type amplitudes, which in-
volve the SR and MR interactions, the D-P transitions appear
to be non-negligible when energy reaches Elab ∼ 70–90 MeV.
For the u-type amplitude, which purely comes from the SR in-
teraction, the D-P transition starts to kick in at a smaller energy
Elab ∼ 30–50 MeV. The more complex case is the w-type am-
plitude, where the LR, MR, and SR interactions all contribute.
As one expects the LR interaction plays the most important
role, the D-P transitions (could be 3D1-3P1 or 3D2-3P2)
can become important when energy reaches Elab ∼ 20–
40 MeV. The reason that the importance of 3D2-3P2 mixing
rapidly increases with energy is mainly because the first
node of 3D2 wave occurs at a relatively large distance
r >∼ 5 fm, while the first node of 3S1-3D1 wave occurs at
r ∼ 2–4 fm, which leads to cancellation between short-
and large-distance contributions. As these D-P amplitudes
have quite different energy dependences compared to the
S-P ones, the 10-to-5 reduction should also be subject
to this prerequisite of S-P dominance, which is more
stringent.

In Fig. 4, whether the OPE and TPE contributions can
be effectively included in the SR potential is studied by
examining the scaling behaviors of the LR and MR amplitudes
xπ,2π with respect to x−. As one can see, all the deviations
increase with energy in the negative direction. In the “bare”
calculations, the MR amplitudes scale very well with the SR
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FIG. 3. (Color online) The ratios of the D-P to S-P transition amplitudes of x−,π,2π -types as functions of energy, where the dotted lines
mark the 10% level.

one. Allowing a 10% deviation, the scaling works as Elab

reaches up to more than 100 MeV for the v amplitudes and
60 MeV for the w one; both limits are less constrictive than
the S-P -dominant requirement. On the other hand, the scaling
works quite poorly—only up to Elab = 20 MeV—in the “mod”
calculations—this can be easily seen from Fig. 1, where the
modified two-pion Yukawa-like functions differ substantially
from the bare ones at short distances—but still consistent with
the S-P -dominant requirement.

The most noteworthy information in Fig. 4 comes from the
observation that it is almost impossible for the OPE amplitude
to scale with the SR one (with m = mρ), unless within a very
restricted energy range, e.g., near threshold. From threshold

to 20 MeV, in which the S-P dominance holds for the w

amplitude, the scaling deviation increases to 40%. Thus, this
reconfirms the old wisdom that it takes two parameters—one
for the SR and the other for the LR term—to characterize the
physics of the 3S1-3P1 transition [3,10].

We also note at this point that when pions have to be kept
as explicit degrees of freedom, it is not required that the MR
amplitude (from TPE) has the same energy dependence as the
SR amplitudes: the scaling between MR and SR amplitudes
does not result in any reduction of required parameters. In
fact, as the MR and SR interactions have different ranges—the
former being ∼1/(2mπ ) and the latter being ∼1/�χ—one
would expect they should have different energy dependences
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FIG. 4. (Color online) The percentage deviations of xπ,2π/x− from their zero-energy values xπ,2π (0)/x−(0), where the dotted lines mark
the 10% level.
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FIG. 5. (Color online) The similar analysis as Fig. 2 for the x− and x+ amplitudes with the Yukawa mass parameter in V PV
+1,SR chosen to be

m = mπ . The dotted lines mark the 10% level.

over a broad energy range. However, in the considered range
of S-P dominance, as these two amplitudes (with the chosen
cutoffs) do not differ too much in energy dependence, we will
group them together for the following discussions and only
single out the OPE part.

The similar analysis as Fig. 2 for the pionless framework
with m = mπ is presented in Fig. 5; and the plots only
extend to Elab = 10 MeV—beyond which one would not
expect a pionless theory work properly. As the range of
the interaction ∼1/mπ is somewhat longer than the one in
pionful calculations, the results are rather insensitive to the
Yukawa cutoff �m: one can see that the “bare” and “mod”
plots hardly make much difference. The scaling of 〈 ym+〉 and
〈 ym−〉 roughly works up to a few MeV for the v- and w-type
amplitudes. On the other hand, for the same reason given
above, the applicable scaling range for the u-type amplitude is
severely constrained to a lower energy ∼1 MeV. Compared to
the pionful case, all the scaling ranges here are much narrower;
the reason is again that, by making the effective range of V PV

1,SR
longer, the difference between 〈 ym+〉 and 〈 ym−〉 gets enhanced
as the long-range part of the wave function, having a larger
gradient, gets a bigger weight.

To summarize the discussions so far, we conclude that at low
energy, where S-P transitions dominate, a hybrid pionful EFT
analysis requires six parameters: five LECs plus C̃π

6 ∝ h1
π . One

may think that this conclusion makes V PV
EFT equivalent to V PV

OME,
which also has six PV parameters: five heavy-meson-nucleon
couplings (ignoring h1′

ρ ) plus h1
π . However, this statement is not

true in general, because the six-parameter EFT framework only
works under the assumption of S-P dominance, but the OME
framework is not limited by this requirement. Furthermore,
the OME framework implies some prescribed relationships,
Eqs. (10a), (10b), (11a), and (11b), between C’s and C̃’s in

V PV
EFT; unfortunately, these relationships can not be justified

without going to high energy. When one further restricts the
analysis to very low energy, then the OPE exchange can also
be absorbed and this results in a pionless version, in which
only five LECs are needed.

At last, we come to the determination of the Danilov
parameters, λ

pp,nn,np
s , λt , and ρt , which will serve as the five

independent LECs. The relations between Danilov parameters
and the zero-energy S-P amplitudes are given by

vNN ′
(0) = −aNN ′

s ei(δNN ′
3P 0 (0)+δNN ′

1S0 (0))λNN ′
s , (24a)

u(0) = −ate
i(δ1P 1(0)+δ3S1(0))λt , (24b)

wSR(0) = −ate
i(δ3P 1(0)+δ3S1(0))ρt , (24c)

where a denotes the corresponding scattering length and
δ(0) the zero-energy phase shift (including the Coulomb
contribution) [10]. The notation “wSR” means the OPE-
subtracted 3S1-3P1 amplitude for the pionful theory and the
full amplitude for the pionless theory (since everything is
short-ranged). Using the values a

pp
s = −7.8064 fm, ann

s =
−18.487 fm, a

np
s = −23.7318 fm, and at = 5.4192 fm, we

get the dimensionless Danilov parameters

mNλpp
s = 5.507 × 10−3

(
D̃pp

v + 0.789Dpp
v − 1.655 C̃2π

2

)
,

(25a)

mNλnn
s = 5.796 × 10−3

(
D̃nn

v + 0.792Dnn
v + 1.648 C̃2π

2

)
,

(25b)

mNλnp
s = 5.778 × 10−3

(
D̃np

v + 0.809Dnp
v

)
, (25c)

mNλt = −1.462 × 10−3(D̃u − 2.230Du), (25d)

mNρt = 3.108 × 10−3(D̃w + 0.604Dw − 1.771 C̃2π
6

)
,

(25e)
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for the “bare” case;

mNλpp′
s = 3.628 × 10−3

(
D̃pp′

v + 0.849Dpp′
v − 1.260C̃2π ′

2

)
,

(26a)

mNλnn′
s = 3.809 × 10−3

(
D̃nn′

v + 0.853Dnn′
v + 1.237C̃2π ′

2

)
,

(26b)

mNλnp′
s = 3.772 × 10−3

(
D̃np′

v + 0.871Dnp′
v

)
, (26c)

mNλ′
t = −0.867 × 10−3(D̃′

u − 2.425D′
u), (26d)

mNρ ′
t = 2.003 × 10−3(D̃′

w + 0.664D′
w − 1.586C̃2π ′

6

)
,

(26e)

for the “mod” case, and

mNλpp′′
s = 7.576 × 10−3

(
D̃pp′′

v + 1.314Dpp′′
v

)
, (27a)

mNλnn′′
s = 7.374 × 10−3

(
D̃nn′′

v + 1.372Dnn′′
v

)
, (27b)

mNλnp′′
s = 7.126 × 10−3

(
D̃np′′

v + 1.396Dnp′′
v

)
, (27c)

mNλ′′
t = −1.053 × 10−3(D̃′′

u − 4.639D′′
u), (27d)

mNρ ′′
t = 2.505 × 10−3(D̃′′

w + 1.665D′′
w), (27e)

for the “π -less” case. As these three calculations involve dif-
ferent Yukawa mass m and/or cutoff �m, we use the unprimed,
primed, and double-primed notations to remark the different
regulator choices. However, the values of Danilov parameters,
as physical quantities, should be regulator independent.

IV. PARITY-VIOLATING OBSERVABLES IN
TWO-NUCLEON SYSTEMS

Having determined a minimal set of PV parameters, i.e.,
mNλ

pp,nn,np
s ,mNλt ,mNρt and C̃π

6 , to describe the low-energy
PV phenomena, we will use them in this section to express the
PV observables which have been or will be measured in two-
body systems. As analyses of these observables have been quite
extensively discussed in the V PV

OME framework, we refer most of
the details which also apply to the EFT framework to literature

and only highlight the new results and the comparison with the
old framework.

A. A �p p
L in �p p scattering

The “nuclear” total asymmetry for �pp scattering [21,27–
31],

A
�pp

L (E) = Im
[
M̃10,00(E, 0) + M̃00,10(E, 0)

]
Im

∑
S,MS

MSMS,SMs
(E, 0)

 , (28)

is defined through the Coulomb-subtracted, forward (θ =
0) scattering amplitude M(E, 0), where the subscript pair
S ′M ′

S, SMS denotes the final and initial two-body spin states,
respectively. As the Coulomb scattering amplitude, MC,
diverges at the forward angle, the total asymmetry (with
full 4π angular coverage) can only be well-defined after this
singular piece is subtracted: M ≡ M − MC. One should note
that A

�pp

L is not a quantity an experiment directly measures;
a theoretical correction is needed to fold an experimen-
tal result into A

�pp

L (E) (see, e.g., Refs. [21,31] for more
discussions).

Currently, there are two low-energy data points at 13.6 MeV
and 45 MeV which give A

�pp

L = −(0.93 ± 0.21) × 10−7 [4,32]
and −(1.57 ± 0.23) × 10−7 [33], respectively. These super-
sede the earlier, less accurate experiments at 15 and 45 MeV
which yield −(1.7 ± 0.8) × 10−7 [34,35] and −(2.31 ±
0.89) × 10−7 [36,37], respectively. At higher energy, there
is one measurement at 221 MeV, yielding +(0.84 ± 0.29) ×
10−7 [38,39]; it is motivated by the theoretical prediction that
this would uniquely determine the PV ρ-exchange coupling
constant h

pp
ρ ≡ h0

ρ + h1
ρ + h2

ρ/
√

6 in V PV
OME [29].

The EFT analysis of A
�pp

L for the low-energy data points
is tabulated in Table III. Apparently, the observables are
dominated by the S-P transition. Using the Danilov parameters
obtained in the last section, we find that

A
�pp

L (13.6 MeV) = −0.449 mNλ
pp
s + (−0.035D

pp
v − 0.088 C̃2π

2 ) × 10−3, (bare)

= −0.445 mNλ
pp′
s + (−0.032D

pp′
v − 0.157 C̃2π ′

2 ) × 10−3, (mod)

= −0.278 mNλ
pp′′
s + (−1.016D

pp′′
v ) × 10−3; (π -less)

(29)

A
�pp

L (45 MeV) = −0.795 mNλ
pp
s + (−0.329D

pp
v − 0.395 C̃2π

2 ) × 10−3, (bare)

= −0.771 mNλ
pp′
s + (−0.276D

pp′
v − 0.813 C̃2π ′

2 ) × 10−3, (mod)

= −0.289 mNλ
pp′′
s + (−3.207D

pp′′
v ) × 10−3. (π -less)

(30)

In the pionful framework, the correction terms, enclosed in
parentheses, are in general quite small except for the TPE part
in the “mod” calculation for the 45 MeV case, which amounts
to ∼ − 25%—though somewhat larger than ±10%, but still
consistent with the typical EFT expansion parameters ∼ ±
(20–30)%. Therefore, we conclude that these two data only

depend on one single parameter, mNλ
pp
s . In fact, the theoretical

prediction for the ratio of A
�pp

L (45 MeV)/A �pp

L (13.6 MeV) ≈
−0.795/ − 0.449 = 1.77 (or −0.771/ − 0.445 = 1.73 for the
“mod” case) agrees very well with the experimental result
≈ −1.57/ − 0.93 = 1.69 (discarding errors). Furthermore,
one can see from the comparison between the “bare” and
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TABLE III. Analysis of A
�pp

L decomposed in partial waves. Each entry denotes the multiplicative coefficient for the
corresponding PV coupling constant. The full result is the sum of every “entry×coupling” in the same row. The last
column “OME-m” shows the numerical value of A

�pp

L by performing the OME-mapping to the pionful EFT result with
the PC and PV parameters specified in Tables I and II.

1S0−3P0(×10−3) 1D2−3P2(×10−3) 1D2−3F2(×10−3) OME-m

Dpp
v D̃pp

v C̃2π
2 Dpp

v D̃pp
v C̃2π

2 Dpp
v D̃pp

v C̃2π
2

(×10−7)

13.6 bare −1.980 −2.476 4.010 −0.005 0.006 −0.012 0.001 −0.001 0.002 −0.971
mod −1.398 −1.617 1.885 −0.004 0.004 −0.010 0.000 −0.001 0.001 −0.960

π -less −3.706 −2.133 −0.061 0.047 −0.012 −0.016
45 bare −3.686 −4.476 7.026 −0.122 0.132 −0.243 0.027 −0.033 0.064 −1.746

mod −2.582 −2.868 2.842 −0.089 0.094 −0.180 0.019 −0.023 0.050 −1.662
π -less −5.505 −2.426 −0.594 0.374 −0.155 −0.009

221 bare −0.069 −0.073 0.112 −2.749 2.618 −3.784 0.164 −0.388 0.633 0.426
mod −0.046 −0.043 0.015 −1.888 1.678 −1.636 0.086 −0.270 0.420 0.853

π -less −0.067 −0.018 −3.304 1.259 −0.780 −0.418

“mod” results that even though mNλ
pp
s and mNλ

pp′
s are

defined with different regulators, the expressions for A
�pp

L

in terms of them are almost regulator-independent. This
justifies the advantage of using the Danilov parameters instead
of the LECs C’s, C̃ ′s, etc. On the other hand, one sees
that the pionless analysis is not successful: not only the
corrections are large, but also the theoretical prediction for
A

�pp

L (45 MeV)/A �pp

L (13.6 MeV) ≈ 1.04 is very inconsistent
with the experimental result. However, this is not unexpected.
These energies are higher than the upper limit (∼few MeV)
under which the pionless framework is supposed to work.
Therefore, in the pionless analyses, these data points should
not be taken into account.

Even though it is doubtful that the V PV
EFT of order O(Q) is

sufficient for analyzing the high-energy datum at 221 MeV,
it is nonetheless interesting to see how the analysis turns out
to be. The result, also shown in Table III, clearly indicates
the insufficiency of our S-P analysis based on the Danilov
parameters. The D-P amplitude becomes the most dominant
contribution, with the D-F one also being non-negligible. Both
amplitudes have their own scaling factors between D

pp
v , D̃

pp
v ,

and C̃2π
2 components different from the S-P amplitude. While

it is not clear if the D-P and D-F amplitudes can be completely
specified by D

pp
v , D̃

pp
v , and C̃2π

2 , they certainly can not be
uniquely fixed by the only high-energy measurement.

By OME-mapping the EFT results in Table III, our
calculations are checked with literature. The “bare+DDH-
best” results are consistent with works such as Refs. [27–30],
given that different strong potential models are used. The
“mod+DDH-adj.” results agree well with Refs. [21,31]; the
small difference is because we do not use a different mass and
a cutoff factor for the ω meson.

It is worth to point out that the analysis by Carlson et al. [21],
which is based on a OME framework with two independent
parameters h

pp
ρ and h

pp
ω , claims a good fit to both low- and

high-energy data. Unfortunately, due to the lack of more high
energy data, it is currently impossible to verify this fit along
with its important dynamical assumptions—the monopole
form factors and big isovector tensor coupling χρ—within
the EFT framework. On the other hand, their fitted PV

ωNN coupling constant, h
pp
ω = h0

ω + h1
ω, is only marginally

consistent with most hadronic predictions and needs further
clarification. For these issues, we refer to Ref. [40] for more
discussions.

Finally, we turn our attention to the MR contributions,
which have not received extensive study and are left out while
we do the OME-mapping in Table III. By writing out C̃2π

2
in term of h1

π explicitly and assuming the DDH best value
for h1

π , one sees the asymmetry in the “bare” case increased
by ∼70% for the 13.6 and 45 MeV data points and ∼60%
for the 221 MeV one. In the “mod” case, the increases are
∼30% and ∼20% for low- and high-energy cases, respectively.
Since V PV

1,MR and V PV
1,SR have the same power counting, it

is not unnatural to expect their contributions have similar
magnitude. Another remark concerns the general trends that
the TPE enhances the asymmetry and it is the the low-energy
cases that get more boost than the high-energy ones. These
points have also been noticed in Ref. [40], where part of
the TPE contribution is accounted for by formulating it as
a ρ-resonance.

B. φ
�n p
n and Pnp

n in neutron transmission through parahydrogen

It was first pointed by Michel [41] and later on by Stodolsky
[42,43] that nuclear parity violation can be studied through
low-energy neutron transmission, where the whole process acts
like optics. The observables could be a spin rotation, φn, about
the longitudinal axis (assumed to be ẑ) for the transversely-
polarized neutron, or a net longitudinal polarization, Pn, that an
unpolarized neutron beam picks up when traversing through
medium—the latter is equivalent to the asymmetry in cross
section for the longitudinally-polarized neutron scattering,
A

�np

L . These quantities per unit length (assuming the target
is uniform), dφn/dz and dPn/dz, can be related to the
PV forward scattering amplitude M̃(E, 0) by

dφn

dz
= −2π

k
NRe(M̃+z(E, 0) − M̃−z(E, 0)), (31)

dPn

dz
= −2π

k
N Im(M̃+z(E, 0) − M̃−z(E, 0)), (32)
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TABLE IV. Analysis of (I) dφ �np
n (th.)/dz in rad/m and (II) dP np

n (th.)/dz in 10−4/m decomposed in partial waves.
See Table III for the explanation of tabularization.

1S0−3P0(×10−2) 3S1−1P1(×10−2) 3S1−3P1(×10−2) OME-m

Dnp
v D̃np

v Du D̃u Dw D̃w C̃π
6 C̃2π

6

(×10−7)

(I) bare 1.169 1.444 −0.186 0.083 0.214 0.355 0.286 −0.628 6.711
mod 0.821 0.943 −0.120 0.049 0.152 0.229 0.284 −0.363 5.149

π -less 2.487 1.781 −0.279 0.060 0.476 0.286
(II) bare 4.805 5.939 0.175 −0.079 −0.202 −0.334 −0.269 0.591 2.165

mod 3.378 3.878 0.113 −0.047 −0.143 −0.215 −0.267 0.341 −2.220
π -less 10.227 7.325 0.262 −0.057 −0.269 −0.448

where k is the magnitude of the neutron momentum, N is
the target number density, and the subscript ±z denotes the
direction of neutron polarization.

For a thermal neutron beam, En ≈ 0.025eV, transmitting
through liquid parahydrogen, N = 0.24 × 1023/cm3, the EFT
analysis of dφn/dz and dPn/dz is tabulated in Table IV. At
thermal energy, the magnitude of dP

np
n /dz is about four orders

of magnitude smaller than dφ
�np
n /dz. When neutron energy

is further decreased, dφ
�np
n /dz stays constant, but dP

np
n /dz

drops as
√

En; therefore, the spin-rotation measurement is

more feasible for low-energy neutrons. This trend is consistent
with the argument made by Stodolsky [43] about the elastic
scattering. It is also pointed out in Ref. [43] that exothermic
processes, i.e., inelastic exit channels, can possibly result in
a nonvanishing dPn/dz at zero energy. However, it is not the
case for np scattering, where the only exothermic reaction,
np → dγ (will be discussed in Sec. IV D), does not lead to a
total asymmetry, as remarked in Ref. [44].

In this case, all three different S-P amplitudes come into
play, and the results in terms of Danilov parameters and C̃π

6
(in pionful theory) are

dφ
�np
n (th.)

dz

∣∣∣∣
m/rad

= 2.500 mNλ
np
s − 0.571 mNλt + 1.412 mNρt + 0.286 C̃π

6 + (0.000), (bare)

= 2.500 mNλ
np′
s − 0.571 mNλ′

t + 1.412 mNρ ′
t + 0.284 C̃π

6 + (0.000), (mod)
= 2.500 mNλ

np′′
s − 0.571 mNλ′′

t + 1.412 mNρ ′′
t + (0.000). (π -less)

(33)

Because this process is close to zero energy, it is not a surprise
that the Danilov parameters work extremely well (almost no
error). The result does not depend on the Yukawa mass m

and cutoff �m. Furthermore, the OPE contribution can be
effectively included in the pionless framework as the last line
shows. Therefore, these two EFT analyses are very consistent
in this case.

By OME-mapping the EFT results, the “bare+DDH-best”
value, dφ

�np
n (th.)/dz � 6.71 × 10−7 rad/m, is about 20%

smaller in magnitude than an early prediction using the Paris
potential [45], and with a different sign. Thus, we confirm the
assertion of Ref. [22] about the sign problem in Ref. [45].
As for the “mod+DDH-adj” value, �5.15 × 10−7 rad/m, it
agrees well with Ref. [22]. If these numerical estimates are
not too far off, the plan of doing such an experiment aiming at
a 2.7 × 10−7 rad/m precision [46] at the Spallation Neutron
Source (SNS) will certainly provide a valuable data point.

The MR contribution enters through the 3S1–3P1 transition.
Because C̃π

6 and C̃2π
6 have the same sign, Table IV suggests that

the MR term reduces the OPE contribution which dominates
the above OME-m estimates. The correction is about −15%
for the “bare” calculation, and −10% for the “mod” calcula-

tion. This ∼10% correction is consistent with the qualitative
power-counting argument that the MR contribution is smaller
than the leading OPE one by an order of magnitude.

C. Pnp
γ in np → dγ and A �γ d

L in �γ d → np

Low-energy radiative neutron capture mainly involves the
lowest-order electromagnetic transitions. For np → dγ , it is
M1 for the PC part, and E1 for the PV part. Since the total cross
section is dominated by the 1S0-wave scattering, the nonzero
circular polarization takes an approximate simple form
as

P np
γ = 2

〈D||E1| ˜|3P0〉 +D ˜〈1P1||E1||1S0〉
〈D||M1||1S0〉 , (34)

where the double bar “||” denotes the reduced matrix element.
In this case, the observable depends on the 1S0-3P0 and
the deuteron D-1P1 admixtures. It is important to recognize
that we rely on the Siegert theorem [47], through which the
E1 operator is related to the charge dipole operator C1, to
calculate the E1 matrix elements. This manipulation not only
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TABLE V. Analysis of P np
γ (th.) decomposed in partial waves. See Table III for

the explanation of tabularization.

1S0 − 3P0 mix. (×10−3) D − 1P1 mix. (×10−3) OME-m

Dnp
v D̃np

v Du D̃u

(×10−7)

bare −0.751 −0.935 2.166 −0.980 0.247
mono −0.525 −0.607 1.391 −0.580 0.520
π -less −1.367 −0.981 3.156 −0.972

implicitly includes most O(v/c) meson exchange currents,
but also imposes a �S = 0 spin selection rule as shown in
Eq. (34).

For thermal neutron, the EFT analysis is tabulated in
Table V. In terms of Danilov parameters, the result can be
expressed as

P
np
γ (th.) = −0.161 mNλ

np
s + 0.670 mNλt + (0.005D

np
v + 0.019Du) × 10−3, (bare)

= −0.161 mNλ
np′
s + 0.669 mNλ′

t + (0.004D
np′
v + 0.016D′

u) × 10−3, (mod)
= −0.138 mNλ

np′′
s + 0.923 mNλ

′′
t + (0.002D

np′
v + 1.361D′′

u) × 10−3. (π -less)
(35)

Although the observable P
np
γ is not determined directly by

the scattering amplitudes—as shown in Eq. (34), it involves
parity admixtures and transition matrix elements—the Danilov
parameters still do a good job in the pionful analyses. However,
this is not the case for the pionless case. In particular for the
D-1P1 part (u-type amplitude), the correction term is too big
to make the analysis reliable. As one can see from the central
bottom panel of Fig. 5, the scaling of u+ and u− amplitudes
already poses a serious problem not far from threshold; the
deuteron binding energy, though small, could be worrisome
already. Therefore, we shall rely on the pionful analysis for this
observable, and leave the inconsistency with pionless theory
for future study.

The OME-mapping gives the “bare+DDH-best” value
P

np
γ (th.) = 2.5 × 10−8 which agrees well with a recent cal-

culation [48] and is also consistent with pre-80’s predictions,
e.g., Refs. [8,49–52], around (2–5) × 10−8, (see Ref. [53]
for a summary). For the “mod+DDH-adj.” value P

np
γ (th.) =

0.52 × 10−7, we have an excellent check with Ref. [22].
Historically, the first measurement of P

np
γ (th.) done by

the Leningrad group reports a result −(1.3 ± 0.45) × 10−6

[54], which not only exceeds most theoretical predictions by
two orders of magnitude but also has an opposite sign. The
follow-up experiment does correct the sign problem; however,
the published result P

np
γ (th.) = (1.8 ± 1.8) × 10−7 [55] still

has too large an error bar. In order to circumvent the difficulty
of measuring a circular polarization, the inverse process, the
asymmetry A

�γ d

L in deuteron photo-disintegration, �γ d → np,

can be a good alternative. By detailed balancing, A
�γ d

L = P
np
γ

if all kinematics are exactly reversed. One can show that,
for photon with energy of 1.32 keV above the threshold,
A

�γ d
γ (1.32 keV+) = P

np
γ (th.).

As demonstrated in several theoretical works [22,56–
59], the asymmetry A

�γ d

L gets larger when approaching the

threshold, but on the other hand, the total cross section
gets smaller. There are two data points reported in 80s:
(2.7 ± 2.8) × 10−6 at Eγ = 4.1 MeV and (7.7 ± 5.3) × 10−6

at Eγ = 3.2 MeV [60,61]; though they qualitatively justify the
statement above, the precisions are too low to be of use. As
indicated in Ref. [18], there seem to be several group showing
interests of such new measurements.

An important point to note for this particular observable
analyzed in the OME framework is that, unlike the case for
neutron transmission, the D-1P1 admixture has an important
contribution so that the model dependence is worrisome. The
situation is most clear when comparing with other semi- and
nonlocal potential model calculations. As shown in Refs. [22,
48], the CD-Bonn and Bonn-B calculations give predictions
two times larger, and the Bonn calculation even enhances by an
order of magnitude. The difference is mostly due to the large
variations of these models in the 1P1 channel at short distances
[48]. However, in the EFT treatment, this model-dependence
can be absorbed in the Danilov parameters and all that matters
is the result in Eq. (35).

D. Aγ in �n p → dγ

By the same approximation as in the above subsection,
the photon asymmetry in �np → dγ,A

�np
γ , which is defined

through dσ±(θ )/d� ∝ 1 ± A
�np
γ cos θ ,8 can be expressed as

A�np
γ = −

√
2
〈D||E1| ˜|3P1〉 +D ˜〈3P1||E1||3S1〉

〈D||M1||1S0〉 . (36)

8From this expression, one clearly sees
∫

d�dσ+(θ ) =∫
d�dσ−(θ ). This confirms the earlier statement that A

�np

L vanishes at
zero energy, even if an exothermic process exists.
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TABLE VI. Analysis of A�np
γ (th.) decomposed in partial waves. See Table III for the explanation of

tabularization.

3S1 − 3P1 mix. (×10−3) D−3P1 mix. (×10−3) OME-m

Dw D̃w C̃π
6 C̃2π

6 Dw D̃w C̃π
6 C̃2π

6

(×10−7)

bare −0.108 −0.185 −0.133 0.321 −0.066 −0.103 −0.139 0.193 −0.506
mod −0.076 −0.118 −0.132 0.172 −0.048 −0.069 −0.138 0.128 −0.486
π -less −0.197 −0.133 −0.212 −0.139

Unlike the case for P
np
γ , it is the 3S1-3P1 and D–3P1 admixtures

that contribute in this case.
For thermal neutron, the EFT analysis is tabulated in

Table VI, and expressed as

A�np
γ (th.) = −0.093 mNρt − 0.272 C̃π

6 + (
0.003 C̃2π

6

) × 10−3, (bare)

= −0.093 mNρ ′
t − 0.270 C̃π ′

6 + (
0.004 C̃2π ′

6

) × 10−3, (mod)

= −0.109 mNρ ′′
t + (0.044D′′

w)10−3. (π -less) (37)

Again, the Danilov parameter mNρt pretty much summarizes
the short-distance physics in the pionful analyses, and the result
is independent of the regulators. Comparatively, the pionless
analysis has a much larger correction term which is about 10%.
Given this error bar, the pionless analysis can be considered
being consistent with the pionful analysis, and again we leave
the resolution for this small error for future study.

The OME-mapping values, A
�np
γ (th.) = −5.06 × 10−8 for

the “bare+DDH-best” case and −4.85 × 10−8 for the
“bare+DDH-adj.” case, are consistent with existing predic-
tions, e.g., Refs. [8,48,49,51,53,62–65] for the former and
Refs. [22,66] for the latter, respectively.

The MR contributions change the above OME-m results
somewhat. Their corrections to the OPE contributions are
−13% and −8% for the “bare” and “mod” cases, respectively.
This is similar to the neutron spin rotation case, and consistent
with a recent calculation [24].

The great interest of measuring A
�np
γ is mainly because it is

dominated by the OPE in the V PV
OME framework. This can also

be observed from the above EFT analysis: If one assumes
the natural size of mNρt/C̃

π
6 ∼ 0.1, the OPE contribution

then dominates the SR one by a factor of 30 or so.9 One
of the outstanding puzzles in nuclear PV is the difficulty of
accommodating the extremely small upper limit on h1

π , set by
the 18F results [3], with hadronic predictions and other nuclear
PV experiments. The NPDGamma experiment [67], currently
running at the Los Alamos Neutron Science Center (LANSCE)

9We stress that this argument is based on naturalness. Without
further experimental confirmation, one should still keep other
possibilities open.

and will be at SNS later on, aims to reach an ultimate sensitivity
of 5 × 10−9. Results from this experiment will certainly
improve the long-existing value: (0.6 ± 2.1) × 10−7 [61,68],
and hopefully resolve the h1

π puzzle.
Concluding this section, we shall make an important

remark about the PV meson exchange current (MEC) effects
which manifest in electromagnetic processes such as radiative
neutron capture being discussed here and in Sec. IV C.
Although the Siegert theorem alleviates much of the problem
regarding the calculations of transverse electric multipole
operators EJ ’s due to MECs, there is no easy simplification
when the transverse magnetic multipole operators MJ ’s are
concerned. Furthermore, the Siegert theorem only applies to
MECs which are constrained by the continuity equation; for
other transverse MECs, their effects to EJ ’s have to be added
separately.

In Ref. [18], there is indeed such a transverse MEC, which
can not be accounted for by gauging the PV interaction,
and it introduces a new PV constant designated as c̄π .
This MEC takes the following form in the configuration
space:

j c̄π
(x; x1, x2)

= −i

√
2gπ c̄π

mN�χFπ

(τ1+τ2−)[σ 2 · r̂σ 1 × ∇xδ
(3)(x − x1)]

× e−mπ r

4πr2
(1 + mπr) + (1 ↔ 2), (38)

where τ± = τx ± iτy , and r = |x1 − x2|. Compared with
the dominant part of the PV OPE MEC, the so-called
pair current (which is constrained by the Siegert the-
orem, so its contribution has already been implicitly
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calculated),

jπpair(x; x1, x2)

= − gπh1
π

2
√

2mN

(
τ 1 · τ 2 − τ z

1 τ z
2

)
[σ 1δ

(3)(x − x1)]

× e−mπ r

4πr
+ (1 ↔ 2), (39)

the matrix element 〈 j c̄π
〉 roughly scales with 〈 jπpair〉 by a

factor 〈−i∇x/�χ 〉 = k/�χ , assuming 〈r〉 ∼ 1/mπ for typical
nuclei. Therefore, for the radiative processes considered in this
work, where the photon energy k is just a few MeV so that
k/�χ <∼ 1%, the contribution of j c̄π

is negligible. Hence we
do not have to include this extra PV constant c̄π in the current
search program at low energy.

V. SUMMARY

In this work, we study the newly-proposed search program
for nuclear parity violation based on the effective field theory
framework [18]. It is found that, in a hybrid EFT treatment, the
nuclear PV phenomena at low energy, where S-P transitions
dominate, can be well specified by six parameters. These
six parameters to be determined phenomenologically are the
five dimensionless Danilov parameters: mNλ

pp,nn,np
s ,mNλt

and mNρt , and the long-range one-pion-exchange parameter
C̃π

6 , which is proportional to the parity-violating pion-nucleon
coupling constant h1

π .
The two-body parity-violating observables being studied in

this work are summarized as following:

A
�pp

L (13.6 MeV) = −0.45mNλpp
s , (40)

A
�pp

L (45 MeV) = −0.78mNλpp
s , (41)

d

dz
φ �np

n (th.)|rad/m = 2.50 mNλnp
s − 0.57 mNλt

+ 1.41 mNρt + 0.29 C̃π
6 , (42)

P np
γ (th.) = −0.16 mNλnp

s + 0.67 mNλt

= A
�γ d

L (1.32 keV+), (43)

A�np
γ (th.) = −0.093 mNρt − 0.27 C̃π

6 . (44)

Because A
�pp

L (13.6 MeV) and A
�pp

L (45 MeV) essentially deter-
mine the same quantity, mNλ

pp
s , these equations only serve

as four constraints—if precise data can all be obtained for
the three listed neutron experiments. In order to have at least
two more linearly-independent equations, other experimental
possibilities have to be explored. In few-body systems, where
reliable theoretical analyses can be performed, the candidate
reactions include pd, nd, pα, nα, etc.—just to name a few.
Currently, there are a published datum for pα: A �pα

L (45 MeV) =
−(3.3 ± 0.9) × 10−7 [69], and an ongoing experiment of
thermal neutron spin rotation in liquid helium, φ �nα

n (th.),
at the National Institute of Standard and Technology [46].
In this respect, existing calculations of these PV five-body
processes should be updated. Because alpha particle is a
tightly bound state such that nucleons inside have larger
momenta, whether the S-P dominance—the cornerstone of
this six-parameter analysis—can still hold should be carefully
examined. On the other hand, low-energy reactions involving
d or t might suffer less the problem. However, in order
to motivate new experiments, updated theoretical works are
indispensable.
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