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Axial N → �(1232) and N → N∗(1440) transition form factors
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We calculate the axial N → �(1232) and N → N∗(1440) transition form factors in a chiral constituent
quark model. As required by the partial conservation of axial current (PCAC) condition, we include one- and
two-body axial exchange currents. We compare the axial N → �(1232) form factors with previous quark model
calculations that use only one-body axial currents, and with experimental analyses. The paper provides the
first calculation of all weak axial N → N∗(1440) form factors. Our main result is that exchange currents are
very important for certain axial transition form factors. In addition to improving our understanding of nucleon
structure, the present results are relevant to the neutrino-nucleus scattering cross section predictions needed in
the analysis of neutrino mixing experiments.
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I. INTRODUCTION

The axial N → N∗ transition form factors play an impor-
tant role in neutrino-induced pion production on the nucleon,
e.g., in ν̄e + p → �0 + e+ → n + π0 + e+. The two lowest-
lying nucleon resonances, �(1232) and N∗(1440) (Roper
resonance), are expected to give the dominant contribution to
the neutrino scattering cross section for moderate neutrino en-
ergies. Weak �(1232) production has been studied experimen-
tally in a series of neutrino scattering experiments on hydrogen
and deuterium targets [1–3]. New data on the N → � axial
vector transition form factor are expected from experiments at
Jefferson Laboratory [4]. On the theoretical side, the weak
axial � excitation has been attracting attention since the
1960s and has been studied using different approaches. For
an overview, see Refs. [5,6]. The first lattice computation of
N → � axial form factors has just appeared [7].

To our knowledge, there is no experimental information
on the axial N → N∗(1440) transition form factors. In
Ref. [8], the authors provided a theoretical estimate of the
weak N∗(1440) production cross section in electron-induced
reactions in the kinematic region of the � resonance, but
no prediction for the axial N → N∗(1440) form factors was
made. The only theoretical determination of weak form factors
for the N → N∗(1440) transition that we are aware of was
done in Ref. [9], but only one of them, namely, g∗

A (see below),
was evaluated in that study.

It is important to have quark model predictions for the weak
N → N∗ transition form factors for two reasons. First, they
contain information on the spatial and spin structure of the
nucleon and its excited states that is complementary to that
obtained from electromagnetic N → N∗ form factors [10].
Second, they are required for neutrino-nucleus scattering cross
section predictions which in turn are needed for a precise
determination of neutrino mass differences and mixing angles
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[11]. Previous quark model calculations [6,12–17] included
only one-body axial currents, i.e., processes in which the weak
probe couples to just one valence quark at a time (impulse
approximation). However, this approximation violates the
partial conservation of axial current (PCAC) condition, which
requires that the axial current operator be a sum of one-body
and two-body exchange terms, and that the latter be connected
with the two-body potentials of the quark model Hamiltonian
[18,19]. The axial exchange currents provide an effective
description of the non-valence quark degrees of freedom in
the nucleon as probed by the weak interaction.

Recently, employing a chiral quark model with gluon and
pseudoscalar meson exchange potentials and corresponding
axial exchange currents, we evaluated the elastic axial nucleon
form factors gA(q2) and gP (q2) [18], as well as the axial
couplings g8

A(0) and g0
A(0) related to the spin content of the

nucleon [19]. The results obtained were in good agreement
with experimental data. Furthermore, they allowed a consistent
quark model interpretation of the missing nucleon spin as
orbital angular momentum carried by the nonvalence quark
degrees of freedom in the nucleon. In the present paper, we
apply this model to the weak excitation of nucleon resonances
as shown in Fig. 1 and calculate the axial N → �(1232)
and N → N∗(1440) form factors. As in our previous work,
we go beyond the impulse approximation and include not
only pion exchange currents but also two-body axial currents
arising from gluon exchange and the confinement interaction
as required by PCAC. We will see below that in certain axial
form factors, the contribution of various exchange currents
can be clearly identified, and thus further details of nucleon
structure can be revealed.

The paper is organized as follows. After a short review of the
chiral quark model in Sec. II, we calculate in Sec. III all four
Adler form factors CA

i (q2), i = 3, . . . , 6 of the weak N →
�(1232) transition and compare them with other theoretical
calculations and experimental analyses of neutrino-induced
pion production on the nucleon. Section IV is devoted to
the axial N → N∗(1440) transition, for which we present the
first theoretical prediction of all three axial form factors. We
summarize our results in Sec. V.
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FIG. 1. Feynman diagrams for neutrino-induced pion production
on the nucleon via resonance excitation. Left: Axial transition
form factors CA

3 (q2), CA
4 (q2), CA

5 (q2), and CA
6 (q2) contributing to

weak N → �(1232) excitation. Right: Axial transition form factors
g∗

A(q2), g∗
P (q2), and g∗

T (q2) contributing to weak excitation of the
N∗(1440) resonance. The four-momentum transfer of the weak gauge
boson W is denoted by q.

II. CHIRAL QUARK MODEL

The calculation of the axial form factors is performed within
the framework of the chiral constituent quark model in which
chiral symmetry is introduced via the non-linear σ model.
Although we refer the reader to Ref. [19] for details of the
model, we explain here its main ingredients. The Hamiltonian
includes, apart from a confinement potential V conf , a one-gluon
exchange potential V g and a one-pion exchange potential V π 1

H =
3∑

j=1

(
mq + p2

j

2mq

)
− P2

6mq

+
3∑

j<k=1

(V conf(rj , rk) + V g(rj , rk) + V π (rj , rk)) , (1)

where mq is the constituent quark mass. Here, rj , pj are the
position and momentum operators of the j th quark, and P
is the momentum of the center of mass of the three-quark
system. The kinetic energy of the center-of-mass motion is
subtracted from the total Hamiltonian. Explicit expressions
for the individual potentials can be found in Ref. [19].

The axial currents employed in this work are shown in
Fig. 2. As mentioned in the Introduction, the axial current op-
erator contains not only one-body currents but also two-body
gluon, pion, and confinement exchange currents consistent
with the two-body potentials in Eq. (1) as required by the
PCAC relation, that is,

q · A(q) − [H,A0(q)] = −i
√

2fπ

m2
π

q2 − m2
π

Mπ (q). (2)

The PCAC equation links the strong interaction Hamiltonian
H , the weak axial current Aµ = (A0, A) operators, and the

1For the observables calculated here, the contribution of the η8

exchange potential and axial current is small and can be ignored.

TABLE I. Admixture coefficients for the N (939), N∗(1440),
and �(1232) states as defined in Eqs. (4) and (5). Model A:
color-screened confinement potential [19]; model B: quadratic
confinement potential with anharmonic terms of Eq. (6).

N aSS
aS′

S
aSM

aDM
aPA

A 0.9585 −0.1475 −0.2344 −0.0672 0.0011
B 0.9571 −0.0723 −0.2704 −0.0753 0.0005

N∗ a∗
SS

a∗
S′
S

a∗
SM

a∗
DM

a∗
PA

A 0.1689 0.9832 0.0683 0.0122 −0.0006
B 0.1211 0.9793 0.1604 0.0232 −0.0005

� bSS
bS′

S
bDS

bDM

A 0.9564 0.2433 −0.1303 0.0957
B 0.9283 0.3273 −0.1406 0.1069

pion emission operator described by Mπ . Here, mπ is the pion
mass and fπ is the pion decay constant. Equation (2) also
demands that the axial coupling of the quarks, gAq , is related
to the pion-quark coupling constant, gπq , via a Goldberger-
Treiman relation [18]

gAq = fπ

gπq

mq

. (3)

Inserting the physical values for the constituent quark mass,
the pion decay constant, and the pion-quark coupling, one
finds that gAq is renormalized from its bare value of 1 for
structureless QCD quarks to 0.77 for constituent quarks.

To solve the Schrödinger equation for the Hamiltonian
in Eq. (1), the wave functions are expanded in a harmonic
oscillator basis that includes up to N = 2 excitation quanta.
The N ground state and N∗(1440) wave functions are given
by a superposition of five harmonic oscillator states,

|N〉= aSS
|SS〉+aS ′

S
|S ′

S〉+aSM
|SM〉+aDM

|DM〉+aPA
|PA〉,

(4)
|N∗〉= a∗

SS
|SS〉+a∗

S ′
S
|S ′

S〉+a∗
SM

|SM〉+a∗
DM

|DM〉+a∗
PA

|PA〉,
while for the � ground state we have

|�〉 = bSS
|SS〉� + bS ′

S
|S ′

S〉� + bDS
|DS〉� + bDM

|DM〉�. (5)

The mixing coefficients for the N (939), N∗(1440), and
�(1232) wave functions are determined by diagonalization of
the Hamiltonian in Eq. (1) in this restricted harmonic oscillator
basis and are given in Table I (model A). The N and � are
mainly in the SS harmonic oscillator ground state, while the
N∗(1440) is mainly given by the radial excitation state denoted
as S ′

S . Note that the D state probabilities are typically 1% or
less. A complete description of the wave functions in Eqs. (4)
and (5) can be found in Ref. [20].

(a)

g

(b)

Conf.

(c) (d)

π 
FIG. 2. Feynman diagrams for the axial

currents employed in this work: (a) one-body
current (impulse approximation), (b) one-gluon
exchange current, (c) confinement exchange
current, (d) one-π exchange current.
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TABLE II. Parameters of the confinement potential in Eq. (6),
harmonic oscillator parameter b, and gluon-quark coupling αs of
model B.

b αs ac A B C

(fm) (MeV/fm2) (MeV) (MeV fm) (MeV/fm)

0.5844 1.16 13.141 14.993 −9.765 12.152

To check the sensitivity of our results with respect to the
model of confinement, we employ two confinement potentials.
Model A refers to the confinement potential in Ref. [19],
which is linear at short distances and color-screened at large
interquark distances as a result of quark-antiquark pair creation
[21]. This is our preferred choice. In model B we use a
quadratic (harmonic) dependence on the interquark distance
r corrected by anharmonic terms2

V conf(rj , rk) = −λc
j · λc

k

(
acr

2 + A + B

r
+ Cr

)
. (6)

Here, the color factor λc
j · λc

k = −8/3 for quarks in a color-
singlet baryon, and r = |rj − rk| is the relative distance
between the two quarks. As in the case of the color-screened
potential [19], the confinement parameters together with the
quark-gluon coupling αs and the oscillator parameter b of
model B have been adjusted using the N and � mass spectrum
and low-energy nucleon electromagnetic properties (magnetic
moments and charge and magnetic radii). The numerical values
of these parameters are given in Table II; the corresponding
parameters of model A are listed in Ref. [19].

III. AXIAL N → � TRANSITION FORM FACTORS

Following the work of Llewellyn Smith [22], one can
write the most general form of the axial current for the
N → � transition describing, e.g., neutrino-induced pion
production on the nucleon as depicted in Fig. 1, as a sum
of four axial current terms, each of which is multiplied by a
Lorentz-invariant form factor CA

i (q2) that depends only on the
square of four-momentum transfer q2, that is,

ū�ν(p′)
[
CA

3 (q2)

MN

(gµνqσ γ σ − γ µqν)

+ CA
4 (q2)

M2
N

(gµνp′q − p′µqν) + CA
5 (q2)gµν

+ CA
6 (q2)

M2
N

qµqν

] √
3T†u(p). (7)

Here, T† is the 1/2 to 3/2 isospin transition operator with
reduced matrix element taken to be unity. For the n → �+ or
p → �++ transitions, one needs the −T†

+1 component of the

2Anharmonic terms are needed, when using a quadratic confinement
with harmonic oscillator wave functions, in order to break the
degeneracy of the harmonic oscillator states and thus obtain a
reasonable excitation spectrum.

isospin transition operator; whereas for n → �− or p → �0,
the T†

−1 component has to be used.3 In the following, we
use the n → �+ transition for global normalization of the
axial form factors. In Eq. (7), u(p) and u�ν(p′) are Dirac
and Rarita-Schwinger spinors [23], respectively, for a nucleon
with three-momentum p and a � with momentum p′. The
four-momentum transfer q is given by q = p′ − p = (q0, q),
where q0 is the energy transfer, and q the three-momentum
transfer. All four Adler form factors CA

i (q2) with i = 3, . . . , 6
are real from T invariance. Before we evaluate the axial N →
� transition form factors in the chiral quark model, we discuss
some of their low-energy properties.

The form factor CA
5 (q2) is the N → � analog of the nucleon

isovector axial form factor gA(q2).4 PCAC relates its value at
q2 = 0 to the strong πN� coupling constant gπN�(0) through
the non-diagonal Goldberger-Treiman relation

CA
5 (0) = fπ√

6

gπN�(0)

MN

. (8)

With the empirical value for gπN� at the pion mass, as extracted
from a K-matrix analysis of πN scattering phase shifts,
gπN�(q2 = m2

π ) = 28.6 ± 0.3 [24], and with fπ = 92.4 MeV
[25] as measured in weak pion decay, then CA

5 (0) = 1.15 ±
0.01 is obtained.

The form factor CA
6 (q2) is the inelastic analog of the

induced pseudoscalar form factor gP (q2) of the nucleon. In
the framework of heavy baryon chiral perturbation theory
(HBχPT), it has been shown that at low momentum transfers,
CA

6 (q2) is given as [26]

CA
6 (q2)

∣∣
HBχPT = gπN�(q2)√

6
fπ

MN

m2
π − q2

− 1

6
√

6

×MN fπ gπN�(q2) r2
A + O

(
q2,m2

π

)
, (9)

quite analogous to the result obtained for the elastic induced
pseudoscalar form factor [27]. The first term in Eq. (9) is
the dominant pion-pole form factor, and the second term is
the leading-order non-pole term, where r2

A is the square of the
axial N → � transition radius defined as

r2
A = 6

CA
5 (0)

d CA
5 (q2)

d q2

∣∣∣∣
q2=0

. (10)

The weak axial N → � transition radius r2
A as extracted from

an analysis of neutrino scattering on deuterium [3] lies in the
range (see below)

r2
A � 0.394 ∼ 0.477 fm2. (11)

3These are the appropriate isospin components corresponding,
respectively, to the quark level axial currents 	̄uγ

µγ5	d and
	̄dγ

µγ5	u.
4The relation between the N → � axial form factor and the Adler

form factor is gN→�
A (q2) = √

6CA
5 (q2). In the SU(6) symmetry limit,

the relation between the elastic N → N and N → � axial couplings
is gn→�+

A (0) = (6
√

2/5)gn→p

A (0).
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Combining Eqs. (9) and (11), one gets for the non-pole part of
the CA

6 form factor

C
A,non-pole
6 (0)

∣∣
HBχPT � − 1

6
√

6
MN fπ gπN�(0) r2

A

= −(1.71 ∼ 2.07). (12)

As discussed in Ref. [6], the form factor CA
3 (q2) is the axial

counterpart of the electric quadrupole (E2) transition form
factor GE2(q2) [10], which is important for determining the
shape of the nucleon [28]. In several analyses (see Table V),
CA

3 (q2) = 0 is assumed. Below, we will see that CA
3 (q2)

is mainly determined by pion-exchange currents, thereby
providing the unique possibility of studying the nucleon pion
cloud without major interference from valence quark and gluon
degrees of freedom. As to CA

4 (q2), in the SU(6) symmetry
limit, this form factor is connected with the scalar helicity
amplitude [6], which in the electromagnetic case corresponds
to the charge quadrupole transition form factor GC2(q2) [10].
However, unlike the latter, CA

4 (0) �= 0 in the SU(6) symmetry
limit. Experimentally, both CA

3 (q2) and CA
4 (q2) are poorly

known.
We now proceed and calculate all four axial N → �

transition form factors. To this end, we have to convert the
Dirac spinors in Eq. (7) into Pauli spinors and extract the
corresponding operator structure. By including the normal-
ization factors for the N and � spinors, one obtains in the
center-of-mass frame of the resonance

A0
N� =

√
3T†

(
CA

3 (q2) + CA
4 (q2)

M�

MN

− CA
6 (q2)

q0

MN

)

×
√

EN + MN

2EN

σ
[1]
N� · q
MN

AN� =
√

3T†
{
σ

[1]
N�

[(
CA

3 (q2)
M� − MN

MN

+ CA
4 (q2)

M�q0

M2
N

+ CA
5 (q2)

)

− q2

3M2
N

(
CA

6 (q2) + CA
3 (q2)

2MN

EN + MN

)]

+ [
σ

[1]
N� ⊗ Y [2](q̂)

][1] q2

M2
N

√
8π

3

×
(

CA
6 (q2) + CA

3 (q2)

4

2MN

EN + MN

)

− [
σ

[2]
N� ⊗ Y [2](q̂)

][1] q2

M2
N

√
5π√
6

CA
3 (q2)

2MN

EN + MN

}

×
√

EN + MN

2EN

. (13)

The σ
[j ]
N� are tensor operators of rank j defined at the baryon

level. They are normalized such that their reduced matrix
elements are all equal to unity. Furthermore, the energy and
three-momentum imparted by the weak probe are denoted,

respectively, by q0 and q, EN =
√

q2 + M2
N , and Y [2](q̂) is

TABLE III. Axial couplings CA
i (0) for the N → �(1232)

transition obtained with model A for confinement (color-screened
confinement). The axial current contributions are denoted as one-
body (imp), gluon exchange current (gluon), pion exchange current
(pion), confinement current (conf), and total result (total).

Imp Gluon Pion Conf Total

CA
3 (0) −0.0068 −0.0054 0.049 −0.0010 0.035

CA
4 (0) −0.56 0.31 0.14 −0.15 −0.26

CA
5 (0) 0.93 −0.17 0.14 0.029 0.93

C
A,non-pole
6 (0) 0.033 0.28 −0.30 −0.73 −0.72

a spherical harmonic of rank 2 with q̂ = q/|q|. With the
axial current operators of the chiral quark model [19], we
can calculate all Adler form factors by comparing our quark
model matrix elements with the matrix elements of the baryon
level operators in Eq. (13). Numerical results are discussed in
the next section.

A. N → � axial form factors at q2 = 0

Our numerical results for the four axial N → � transition
form factors at q2 = 0, obtained with our preferred choice for
confinement (model A), are shown in Table III. In contrast
to most model predictions (see Table V), the axial coupling
CA

3 (0) is non-zero in the present approach. As can be seen
from Table III, the finite value for CA

3 (0) is mainly due to pion
exchange currents. Thus, this observable may be useful for
determining the relative importance of gluon and pion degrees
of freedom in the nucleon. There are non-zero contributions
to CA

3 (0) already in impulse approximation. However, these
are small compared to the π -exchange current contribution
if realistic D state probabilities PD < 1% consistent with the
Hamiltonian (see Table I) are employed.

For the induced pseudoscalar form factor CA
6 (0), we

evaluate only the non-pole contribution C
A,non-pole
6 (0), i.e.

the second term in Eq. (9), which is very small in impulse
approximation. Moreover, gluon and pion exchange current
contributions cancel to a large extent, so that the scalar
confinement current is the dominant contribution. This is also
the case for the elastic g

non-pole
P (0) axial coupling [18]. Our

result in Table III agrees in sign with the one predicted by
Eq. (9), but it is a factor of 2 ∼ 3 smaller in magnitude.
As mentioned above, CA

6 (0) is dominated by the pion-pole
contribution of Eq. (9). The large value C

A,pion-pole
6 (0) ≈ 52

makes the extraction of the small non-pole part a difficult task.
For CA

4 (0), both one- and two-body exchange current
contributions are similar in size, and exchange currents modify
the result obtained in impulse approximation considerably.
Because of a cancellation of pion and confinement exchange
currents at q2 = 0, the gluon exchange current contribution
provides the largest correction to the impulse approximation.

The axial vector coupling CA
5 (0), which is the counterpart

of the axial nucleon coupling gA(0), is completely dominated
by the one-body axial current (see Table III). As in the case
of gA(0) [18], we observe an almost complete cancellation
between the different exchange current contributions. Because
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TABLE IV. Axial coupling CA
5 (0) for the N → � transition obtained by different groups. Most of this table has been

adapted from Ref. [30].

CA
5 (0)

Quark models 0.97 [13,14] 0.83 [15] 1.17 [6] 1.06 [16] 0.87 [17] 1.5 [29]
Empirical approaches 1.15 ± 0.23 [2] 1.39 ± 0.14 [17] 1.1 ± 0.2 [31] 1.22 ± 0.06 [30]
Current algebra 0.98 [32]

CA
5 (0) is numerically the most important axial N → �

coupling, we discuss it in more detail below.
In Table IV, we give values for CA

5 (0) obtained by
different groups using quark models [6,13–17,29] or empir-
ical approaches [2,17,30,31] that fit the νp → �++µ− and
νd → n�++µ− cross sections. The empirical approaches
employ PCAC and the experimental πN� coupling constant
gπN�(q2 = m2

π ). We also quote a result obtained using a
broken symmetry current algebra approach to QCD [32],
which does not rely on PCAC. The quark model results for
CA

5 (0) are generally smaller than the value obtained from
Eq. (8) using PCAC. An exception is the recent calculation by
Golli et al. [29]. Using a linear σ model, they get CA

5 (0) = 1.5,
some 25% larger than the PCAC estimate in Eq. (8). According
to the authors, this comes from a meson contribution that is
too large, because in their model only mesons bind the quarks,
so their strength is overestimated.

In our model, CA
5 (0) is smaller than expected from Eq. (8)

because the axial coupling of the constituent quarks, gAq ,
is renormalized from its bare value of 1 to 0.77. While
this renormalization led to the correct axial couplings of the
nucleon [18,19], it is seen here to be responsible for a smaller
CA

5 (0) than expected from PCAC and the empirical gπN�(0).
Conversely, from our value for CA

5 (0) in Table III and Eq. (8),
we would obtain gπN�(0) = 22.2, which is only about 4/5
of the empirical strong πN� coupling constant. This is a
large discrepancy if we think of the width of the �(1232)
resonance. Our value would imply a width 
� ≈ 70 MeV,
which is only 60% of the experimental width 
� ≈ 120 MeV.
The ratio gπN�(0)/gπNN (0) evaluated in the present model
[using PCAC to extract gπN�(0) from CA

5 (0)] is close to the

impulse approximation result
√

72/25 ≈ 1.7, which is smaller
than the empirical ratio gπN�(0)/gπNN (0) = 2.1.

The present model is then unable to correctly reproduce,
via PCAC, the strong coupling constant gπN�. On the other
hand, it is conceivable that the “experimental” width of the �

from which gπN�(0)/gπNN (0) = 2.1 is determined contains
some non-resonant background contribution and that the true
πN� coupling constant is actually somewhat smaller [33]. In
addition, the above considerations are based on the assumption
that the non-diagonal Goldberger-Treiman relation in Eq. (8) is
satisfied to the same accuracy as the diagonal one. A different
explanation of the failure to reproduce the � width is given
in the model of Ref. [34], where claims are made that a 10%
admixture of a qqqqq̄ component in the � wave function
could enlarge the naive three-quark model width by a factor of
2 ∼ 3. However, weak form factors have not been evaluated
in this model.

In Table V, we compare our total results for the axial
couplings with other model calculations. The ingredients of
the baryon level calculations [35–38] are discussed in detail in
Ref. [5]. The remaining entries in Table V refer to quark model
calculations. The present model is similar to the Isgur-Karl
and Isgur-Karl 2 (IK) quark models [6]. The main difference
is that in the latter, only the one-body axial current is taken into
account (impulse approximation) and gAq is kept to 1, whereas
we include axial two-body currents and use the renormalized
axial quark coupling gAq = 0.77 as required by the PCAC
condition.

We have already pointed out that for CA
5 (0), axial exchange

current contributions largely cancel, so the difference between
the IK model and the present calculation is mainly due to

TABLE V. Results for the N → � axial couplings obtained in different models.
Most of this table was taken from Ref. [6].

CA
3 (0) CA

4 (0) CA
5 (0) C

A,non-pole
6 (0)

This work (model A) 0.035 −0.26 0.93 −0.72
Salin [35] 0 −2.7 0 0
Adler [36] 0 −0.3 1.2 0
Bijtebier [37] 0 −2.9 ∼ −3.6 1.2 0
Zucker [38] 1.8 −1.8 1.9 0
HHM [17] 0 −0.29 ± 0.006 0.87 ± 0.03 0
SU(6) [6] 0 −0.38 1.17 0
Isgur-Karl [6] −0.0013 −0.66 1.16 0.032
Isgur-Karl 2 [6] 0.0008 −0.657 1.20 0.042
D-mixing [6] 0.052 0.052 0.813 −0.17
Golli [29] 0 0.141 1.53 1.13
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our use of the renormalized axial quark coupling of Eq. (3).
For CA

4 (0) and C
A,non-pole
6 (0), the IK results are similar to our

one-body current contribution; whereas for CA
3 (0), they obtain

smaller values than our impulse approximation. The different
wave function admixture coefficients and oscillator parameter
used here and in Ref. [6] are responsible for this discrepancy.
In any case, the present results clearly show that the main
contribution to CA

3 (0) and C
A,non-pole
6 (0) come from exchange

currents. Both axial transition couplings are considerably
larger than predicted in the impulse approximation. Also CA

4 (0)
is significantly affected by exchange currents. Our total result
for CA

4 (0) agrees with the one obtained by Adler (see Table V)
using dispersion relations.

Next, we compare our results with the D-mixing model
[6], which employs only one-body axial currents and D-wave
admixture coefficients in the N and � that have been adjusted
to reproduce the nucleon axial coupling gA(0) as suggested by
Glashow [39], and the electric quadrupole (E2) over magnetic
dipole (M1) ratio in the electromagnetic N → � transition.
The net result is a large D-wave probability both in the nucleon
(PD = 20%) and � (PD = 30%) wave functions.

As mentioned before, the CA
3 form factor is the weak axial

analog of the N → � electric quadrupole (E2) transition form
factor. The latter is a measure of the deviation of N and �

shape from spherical symmetry. In the D-state mixing model,
the finite values obtained for CA

3 (0) and C
A,non-pole
6 (0) are a

reflection of the nonspherical N and � shape. However, in this
model the sizes and signs of the D-state admixtures, and the
axial current operator are not compatible with the Hamiltonian
of the system, and, as a result, the PCAC condition is severely
violated. In a consistent theory which includes both one- and
two-body axial currents satisfying the PCAC constraint of
Eq. (2), the non-sphericity of the N and � comes mainly from
the non-valence quark degrees of freedom described by the
two-body axial currents and not from highly deformed valence
quark orbits as represented by large D-state admixtures.

B. q2 dependence of the axial N → � form factors

In this section, we discuss the q2 behavior of the axial tran-
sition form factors. The available experimental information
comes from the analysis of neutrino scattering experiments
[1–3]. Here, we refer to the analysis done by Kitagaki et al. [3]
which made no attempt to obtain independent information on
the different form factors. Instead, the authors used the Adler
model [36] as developed by Schreiner and von Hippel [5].
There, the axial form factors for the N → � transition were
parametrized as

CA
j (q2) = CA

j (0)(1 − ajq
2/(bj − q2))(

1 − q2/M2
A

)2 , j = 3, 4, 5, (14)

with

CA
3 (0) = 0, CA

4 (0) = −0.3, CA
5 (0) = 1.2,

a3 = b3 = 0, a4 = a5 = −1.21, b4 = b5 = 2 GeV2.

(15)

In addition, it was assumed that CA
6 (q2) is given by the pion-

pole contribution alone. The axial mass MA is the only free

parameter that was adjusted to experiment, with the result

MA = 1.28+0.08
−0.10 GeV. (16)

In this parametrization, the axial radius as defined in Eq. (10)
is given by

r2
A = 6

(
2

M2
A

− a5

b5

)
, (17)

from which one gets the values in Eq. (11).
To compare with experimental data and other theoretical

calculations, we evaluate the q2 dependence of the form factors
up to q2 = 2(GeV/c)2 with the caveat that the model may not
be reliable at high momentum transfers. For the momentum
transfer dependence of the axial constituent quark coupling,
gAq(q2), we use axial vector meson dominance

gAq(q2) = gAq

1 − q2/m2
a1

, (18)

with ma1 = 1260 MeV, in analogy to the usual vector meson
dominance for the electromagnetic quark form factor [10].

In Fig. 3, we show our results for CA
3 (q2). We get

non-zero, though small, values which are mainly due to the
pion exchange current contribution. The form factor rapidly
decreases with −q2. In the lower panel of this figure, we
also show the results obtained in the Isgur-Karl (impulse
approximation) model [6] leading to very small values over
the whole q2 range. The D-mixing model calculation [6], also
performed in the impulse approximation but in this case with an
unrealistic D-state probability in the N and � wave functions,
obtained larger values. Lattice data [7], not shown in the figure,
are compatible with zero within errors, just as assumed in the
experimental analysis.

In Fig. 4, we plot the form factor CA
4 (q2). Our total result

starts out as expected from the CA
4 (q2) = −CA

5 (q2)/4 relation
assumed in the experimental analysis, but it soon deviates
from it. Exchange currents are responsible for a sign change
at around −q2 = 0.48(GeV/c)2. The results of Golli et al.
[29], obtained in a linear σ -model calculation, are similar in
magnitude to ours but have the opposite sign. They also show
a sign change at approximately −q2 = 0.24(GeV/c)2. The
Isgur-Karl model calculation [6] is very similar to our impulse
contribution except for a difference in the normalization at
q2 = 0, which, as discussed before, comes from the different
gAq values used in both calculations. In the D-mixing model
[6], very small and positive values are obtained.

The results from the Kitagaki-Adler experimental analysis
[3] are also shown in Fig. 4 with vertical bars. The size of the
bars reflects the uncertainties in the determination of the axial
mass MA [see Eq. (16)]. Quenched lattice results [7] display a
similar behavior as the one obtained in the calculation of Golli
et al. [29]. On the other hand, unquenched lattice calculations
give much larger and positive values in the 0 � − q2 � 2 GeV2

region. Apparently, CA
4 (q2) is very sensitive to unquenching,

and more statistics are needed to draw a firm conclusion
concerning its behavior [40]. In any case, it seems that the
assumption CA

4 (q2) = −CA
5 (q2)/4 made in the experimental

analysis is confirmed by neither quark models nor lattice
determinations.
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FIG. 3. Axial form factor CA
3 (q2). Upper panel: present model

calculations with color-screened confinement (model A). The in-
dividual axial current contributions are denoted as the impulse
contribution, gluon exchange current, pion exchange current, con-
finement exchange current, and total result (see legend). The curve
labeled “Total model B” represents our total result when using the
confinement potential of Eq. (6). Lower panel: comparison with other
model calculations. The curve labeled “This work” represents our
total result obtained with our preferred choice for confinement (model
A); the Isgur-Karl and D-mixing model results are from Ref. [6].
There is no experimental information on CA

3 (q2).

In Fig. 5, we present the results for CA
5 (q2). For this

observable, the impulse contribution is dominant. In the low
q2 region, we predict a similar behavior as the Kitagaki-Adler
analysis although with a larger slope at the origin. Our result
for the axial radius r2

A|This work = 0.59 fm2 would be closer
to the one obtained in the experimental analysis if we did
not include the axial vector meson dominance factor in Eq.
(18). The finite axial radius of the constituent quark [18]
contributes r2

Aq = 0.147 fm2 to the axial transition radius.
However, in the low q2 region, the main difference between
the present calculation and the experimental analysis is the
normalization CA

5 (0). We obtain CA
5 (0) = 0.93, which differs

from the CA
5 (0) = 1.21 used in the Kitagaki-Adler analysis.

Again our use of the quark axial coupling gAq = 0.77 is
responsible for this difference.

The σ -model calculation of Golli et al. [29] leads to a
similar q2 dependence at low momentum transfers as that in the
present calculation but with larger CA

5 (q2) values; in particular,
they obtain CA

5 (0) = 1.5. The Isgur-Karl model [6] and our
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FIG. 4. Axial form factor CA
4 (q2). Notation as in Fig. 3. In

the lower panel we also show the results of the Kitagaki-Adler
experimental analysis [3] (vertical bars) and the linear σ -model of
Golli et al. [29] (black circles).

impulse contribution differ mainly in the normalization, and
good agreement with the experimental analysis is obtained
although with a smaller axial radius, r2

A|Isgur-Karl � 0.32 fm2

(our estimate). The axial coupling CA
5 (0) of the D-mixing

model [6] is similar to our result, but the q2 dependence of the
form factor is different, leading to a small axial radius that we
estimate to be around r2

A|D-mixing � 0.30 fm2. Quenched lattice
data from Ref. [7] hint at a value5 CA

5 (0)|Latt.quenched ≈ 0.86
(our estimate from a linear extrapolation of their data), with a
small axial radius that we estimate as r2

A|Latt.quenched ≈ 0.18 fm2

(our estimate).
Finally, in Fig. 6, we give our results for the form factor

C
A,non-pole
6 (q2). The one-body contribution is very small, while

gluon and pion exchange contributions cancel to a large extent,
so the confinement exchange contribution is responsible for
the absolute size and shape of this form factor. The results
of Golli et al. [29] are similar in magnitude to those of the
present calculation, but in contrast to our result, they predict
a positive value. This seems to contradict the findings of
HBχPT [26], where a large negative value for C

A,non-pole
6 (0)

5Note the normalization for the axial form factors is different in the
lattice calculation of Ref. [7]. Our CA

j are given by CA
j =

√
2√
3
CA

j |lattice.

To compare, we multiply the lattice results by
√

2/
√

3.
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FIG. 5. Axial form factor CA
5 (q2). Same notation as in Fig. 4. In

the lower panel, we also show quenched and unquenched lattice data
from Ref. [7].

was obtained. The Isgur-Karl model calculation of Ref. [6]
obtained small and positive values originating from the small
D-wave components of the N and � wave functions. On the
other hand, the D-mixing model calculation of Ref. [6] with its
large D-wave components leads to a negative C

A,non-pole
6 (q2),

although much smaller in magnitude than that of the present
calculation. There is no lattice calculation of C

A,non-pole
6 (q2).

Comparing our results for the color-screened confinement
potential with the ones for the quadratic plus anharmonic type
(total model B in Figs. 3–5), we conclude that there are no
significant differences for the CA

3 (q2), CA
4 (q2), and CA

5 (q2)
form factors. In the case of CA

6 (q2), we observe a 25% change
at small −q2, with CA

6 becoming more negative and thus in
better agreement with the HBχPT result [26].

IV. AXIAL N → N∗(1440) TRANSITION FORM FACTORS

For the n → N∗+(1440) transition used to
normalize the form factors,6 the axial current can be

6For other isospin transitions between the ground and excited state,
appropriate isospin factors have to be taken into account.
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FIG. 6. Non-pole part of the axial form factor CA
6 (q2). Notation

as in Fig. 4.

written as

ū∗(p′)
(

g∗
A(q2)γ µγ5 + 2

MN

m2
π

g∗
P (q2)qµγ5

+ g∗
T (q2)P µγ5

)
u(p), (19)

where u(p) and u∗(p′) are the Dirac spinors for the neutron
and the N∗+(1440) with momentum p and p′, respectively,
and P = p′ + p = (P 0, P). Again the three form factors are
real from T invariance. Because the transition is not between
members of the same isospin multiplet, invariance of strong
interactions under G-parity transformations does not require
g∗

T (q2) to vanish as in the case of the corresponding elastic
axial form factor [18].

Before we present the results of our model calculation, we
first discuss some general properties of the N → N∗(1440)
transition form factors. As in the diagonal axial N → N

transition, the pseudoscalar form factor g∗
P (q2) consists of two

terms, a pion pole and a non-pole term

g∗
P (q2) = g

∗,pion-pole
P (q2) + g

∗, non-pole
P (q2). (20)

The pseudoscalar form factor g∗
P (q2) is dominated by the pion-

pole contribution given by

g
∗,pion-pole
P (q2) = gπNN∗ (q2)

2MN

fπ

m2
π

MN

MN + MN∗

m2
π − q2

, (21)
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where gπNN∗ (q2) is the strong πNN∗ coupling constant
assuming a pseudovector πNN∗ coupling. A determination
of this coupling constant from the analysis of the Roper decay
into nucleon plus pion, assuming a total width of 350 MeV and
a branching ratio of 65% [25], gives gπNN∗ (q2 = m2

π ) = 5.17.
In the case of the N → N∗(1440) transition, PCAC relates the
strong coupling constant gπNN∗ (0) to the form factors g∗

A(0)
and g∗

T (0) through

g∗
A(0) + (MN∗ − MN ) · g∗

T (0) = fπ

gπNN∗ (0)

MN

. (22)

The operator structure at the baryon level extracted from
Eq. (19), including also the normalization factors for the N

and N∗(1440) spinors, is given in the center of mass of the
resonance by

A0 = σ · q
EN + MN

(
−g∗

A(q2) − q0 2MN

m2
π

g∗
P (q2)

− P 0g∗
T (q2)

) √
EN + MN

2EN

,

A = σ

[
g∗

A(q2) −
(

2MN

m2
π

g∗
P (q2) − g∗

T (q2)

)

× q2

3(EN + MN )

]√
EN + MN

2EN

+ [σ [1] ⊗ q[2]][1]

√
5

3

1

EN + MN

×
(

2MN

m2
π

g∗
P (q2) − g∗

T (q2)

)√
EN + MN

2EN

. (23)

Here, σ is the Pauli spin matrix operator at the baryon
level, and q[2]

m = [q ⊗ q][2]
m = q2

√
8π/15Y [2]

m (q̂). These are
the appropriate expressions to compare with our explicit
constituent quark model calculation in order to extract the
axial N → N∗(1440) transition form factors.

A. N → N∗(1440) axial form factors at q2 = 0

Our results for the different axial couplings, obtained with
our preferred choice for confinement (model A), are given in
Table VI. As in the case of CA

5 (0) discussed above, g∗
A(0) is

dominated by the one-body axial current. The different two-
body currents cancel to a large extent, and the total value
differs from the impulse result by less than 1%. The weak axial
coupling constant g

∗,non-pole
P (0) is dominated by confinement

exchange currents. This is similar to our result for the N → �

form factor C
A,non-pole
6 (0) discussed above. The axial coupling

g∗
T (0) is non-zero and receives the largest contribution from

the one-body axial current.
Using our numerical results of Table VI for g∗

A(0) and g∗
T (0),

the evaluation of the left-hand side of Eq. (22) yields7

gπNN∗ (0) = 1.43, (24)

which is too small compared to the phenomenological value
quoted above. Although there is a theoretical analysis [41]
of the Roper width that suggests that it could be smaller,
i.e., 160 rather than 350 MeV, the present gπNN∗ (0) would
still be too small. Equation (24) is also at variance with Ref.
[42], where gπNN∗ (0) ≈ 3.5 was obtained. On the other hand,
their calculation is equivalent to our one-body axial current
calculation, and thus both results for gπNN∗ (0) should agree.
In the meantime, the correctness of our finding in Eq. (24) has
been confirmed [43]. A more recent determination by the same
group, using a Poincaré covariant constituent quark model
with instant, point, and front forms of relativistic kinematics,
gives values for gπNN∗ in the range gπNN∗ (0) = 0.71 ∼ 1.11,

depending on the form used [9], which is in agreement with
our determination.

It has been suggested in Ref. [44] that the N∗(1440) reso-
nance could be a pentaquark state that lies in the near-ideally
mixed 10f ⊕ 8f representation of SU(3)f . This suggestion
has been further supported by a QCD sum rule calculation
[45]. Unfortunately, the expected width is again too small.
However, the Roper width is not the only problem posed for
the pentaquark interpretation. There is also the problem that
recent experimental results have not confirmed previous claims
concerning the existence of pentaquark states [46]. A different
analysis argues that the Roper width can be reproduced in a
model where the Roper wave function has a 30% admixture
of a qqqqq̄ component [47]. As in the case of the N → �

transition, weak form factors have not yet been evaluated in
this model.

B. q2 dependence of the axial N → N∗(1440) form factors

Next, we discuss the q2 behavior of the three N →
N∗(1440) form factors. In Fig. 7, we show g∗

A(q2). We
see that gluon and pion exchange contributions cancel to a
large extent over the whole range of momentum transfers
considered. At very low −q2, the total result is dominated by

7Our theoretical value for the mass of the Roper is M∗ = 1528 MeV.

TABLE VI. Axial couplings of the N → N∗(1440) transition obtained with model A for
confinement (color-screened confinement). The different axial exchange current contributions
are denoted as in Table III.

Imp Gluon Pion Conf Total

g∗
A(0) −0.149 0.169 −0.169 2.510−3 −0.148

g
∗, non-pole
P (0) 0.0038 −0.0030 0.0022 −0.0097 −0.0067

g∗
T (0) (MeV−1) 3.310−4 −2.810−5 1.710−5 1.710−4 4.910−4
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0 0.5 1 1.5 2

-q2 [(GeV/c) 2  ]

-0.2

-0.1

0

0.1

0.2

0.3

0.4
g A

* (q
2

)

Imp.
Gluon
Pion
Conf.
Total
Total model B

FIG. 7. Axial form factor g∗
A(q2). Notation as in the upper panel

of Fig. 3.

the one-body axial current, while the confinement exchange
current contribution grows as −q2 increases. As a result, the
minimum in the form factor moves to lower −q2 values, and
we predict a sign change around q2 ≈ 1 GeV2. The present
impulse approximation is close in shape to the calculation
of Ref. [9] using the instant and front form of relativistic
kinematics8.

Our results for the g
∗,non-pole
P (q2) form factor are shown in

Fig. 8. Again, gluon and pion contributions cancel each other
to a large extent. The confinement exchange current is the
dominant term at low momentum transfers, but its contribution
decreases in magnitude with increasing −q2.

The form factor g∗
T (q2) displayed in Fig. 9 is non-zero

over the entire range of momentum transfers. Gluon and pion
contributions are small, and the total value at low q2 is mainly
given by the one-body axial current with the confinement
exchange current also playing a role. The value for g∗

T (q2)
shows a steady decrease as −q2 increases.

Comparison of the results with the ones obtained with the
quadratic plus anharmonic confinement potential (total model
B in Figs. 7–9) shows large changes for g

∗, non-pole
P (q2) due to

a decrease (in absolute value) of the confinement contribution.

8Note the different normalization and global sign, though.
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FIG. 8. Non-pole part of the axial form factor g∗
P (q2). Notation

as in the upper panel of Fig. 3.
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FIG. 9. Axial form factor g∗
T (q2). Notation as in the upper panel

of Fig. 3.

For gA(q2) and gT (q2), the changes are not that drastic, and
the general trend of the form factors is preserved.

V. SUMMARY

We have investigated the axial form factors of the weak
N → �(1232) and N → N∗(1440) transitions in a chiral
quark model where chiral symmetry is introduced via a
non-linear σ model. In contrast to previous quark model
calculations, our calculations include not only one-body
currents but also two-body axial exchange currents consistent
with the two-body potentials in the Hamiltonian as required
by the PCAC condition.

For the axial N → �(1232) transition, we find that the form
factors CA

3 (q2) and C
A,non-pole
6 (q2) are dominated by two-body

currents. In particular, CA
3 (q2) is mainly determined by pion,

while C
A,non-pole
6 (q2) is entirely given by the scalar confinement

exchange currents. Also, the form factor CA
4 (q2) receives

important contributions from axial two-body currents, mainly
from the gluon exchange current. On the other hand, because
of cancellation of the various exchange current contributions,
CA

5 (q2) is governed by the one-body axial current. At q2 = 0,
its magnitude is smaller than expected from PCAC and the
empirical strong coupling constant gπN�; i.e., our result for
CA

5 (0) does not reproduce, via PCAC, the experimental value
for the strong coupling constant ratio gπN�/gπNN .

For the N → N∗(1440) transition, we find that g∗
A(q2) is

governed by the one-body axial current but with important
corrections coming from scalar confinement exchange currents
resulting in a sign change of this form factor at q2 ≈ 1 GeV2.
At q2 = 0, it agrees with other quark model determinations
[9], but it is too small to explain, via PCAC, the empirical
value for the strong coupling constant gπNN∗ obtained from
the experimental Roper resonance width. The form factor
g

∗,non-pole
P (q2) receives the largest contribution from two-body

currents, in particular the confinement exchange current. For
g∗

T (0), we get a non-zero value mainly due to the one-body
axial current but with a 30% contribution coming from
exchange currents.

In summary, we have found that axial two-body exchange
currents play an important role in the weak excitation of
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nucleon resonances. In particular, the axial N → � transition
form factor CA

3 (q2), which is a measure of the non-sphericity of
the N and �, is mainly determined by pion exchange currents
and thus provides an interesting observable for studying
the role of pions in the nucleon without interference from
valence quark and gluon degrees of freedom. On the other
hand, C

A,non-pole
6 (q2) is almost exclusively determined by the

confinement exchange current. Also the pseudoscalar form
factor g

∗,non-pole
P (q2) in the N → N∗(1440) transition is largely

governed by the confinement exchange current and sensitive to
the confinement model. Further theoretical and experimental
investigation of the axial N → N∗ transition form factors will

undoubtedly be very useful for obtaining a detailed picture of
nucleon structure.
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