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Polarization effects in the reaction e+ + e− → ρ+ + ρ− and determination of the ρ-meson
form factors in the time-like region
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The electron positron annihilation reaction into four-pion production has been studied, through the channel
e+ + e− → ρ̄ + ρ. The differential (and total) cross sections and various polarization observables for this
reaction have been calculated in terms of the electromagnetic form factors of the corresponding γ ∗ρρ current.
The elements of the spin-density matrix of the ρ meson were also calculated. Numerical estimations have been
done, with the help of phenomenological form factors obtained in the spacelike region of the momentum transfer
squared and analytically extended to the timelike region.
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I. INTRODUCTION

The electromagnetic form factors (FFs) of hadrons and
nuclei provide important information about the structure
and internal dynamics of these systems. Although such
measurements are carried out since many decades [1], the
hadron FFs are presently object of extended experimental
studies, due, in particular, to the availability of high-intensity
(polarized) beams, polarized targets, and hadron polarimeters
that allow us to reach very high precision and to access
new kinematical regions. Polarization techniques have been
applied and methods suggested long ago [2] became feasible
in the region of the momentum transfers where data help
to discriminate between different theoretical predictions. The
most surprising result recently obtained concerns the electric
FF of the proton, which turns out to be smaller than previously
assumed and shows a behavior with the momentum transfer
squared, Q2 = −q2, which differs from the magnetic FF [3].

In the case of deuterons, elastic FFs have been determined
up to Q2 = 1.9 GeV2 in the spacelike (SL) region (for a review,
see, for instance, Ref. [4]). The individual determination of the
three deuteron FFs requires the measurement of the differential
cross section and at least one polarization observable, usually
the tensor polarization, t20, of the scattered deuteron in
unpolarized ed scattering. The data on the three deuteron
FFs, charge GC , quadrupole GQ, and magnetic GM , are better
described by impulse approximation (including eventually cor-
rections due to relativistic effects, meson exchange currents,
and � isobars) and contradict QCD predictions, even at the
largest Q2 value experimentally reached, which corresponds
to internal distances of the order of the nucleon dimension.
The measurement of deuteron FFs in the timelike (TL) region
is beyond the present experimental limitations. Estimation of
the cross section and various polarization observables for the
reaction e+ +e− → d + d̄ was given in Ref. [5], extending the
model [6] to the deuteron. This model has proven to work very
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well for the nucleon, in both SL and TL regions. Vector meson
dominance (VMD) models, in general, are very successful in
describing the hadron structure: they contain a small number
of parameters, with clear physical meaning, and they can
be extended to TL region, inducing the necessary imaginary
component, through the resonance widths [7].

Hadron electroweak properties have also been investigated
in the framework of the constituent quark models based on the
Hamiltonian light-front formalism [8].

The determination of the pseudoscalar-meson FFs (for
example, for pions and kaons) requires only cross section
measurements. They have been extensively studied both in
SL and TL regions (see, for example, Ref. [9]).

The light vector mesons are less known, because their
experimental determination is more difficult, due to their short
lifetimes. However, the t dependence of the cross section
for diffractive vector-meson electroproduction gives (model–
dependent) information on the charge radius, and radiative
decays such as ρ+ → π+π0γ allow us to obtain their magnetic
moment. The models based on the light-front formalism
have been applied to the calculation of the electromagnetic
properties of various hadrons, namely the pion charge FF [10],
the ρ-meson electromagnetic FFs [11–14], the vector and axial
FFs of the nucleon [15,16], and the radiative, leptonic, and
semileptonic decays of both pseudoscalar and vector mesons
[17].

For a spin-one hadron, these models have a fundamental
inadequacy: the rotational invariance of the electromagnetic
current operator is not ensured by its one-body component
alone (violation of the angular condition). This violation is
quantified by the deviation of a quantity �(Q2) from zero
[13]. The most studied spin-one hadron is the deuteron. The
calculations of the electromagnetic FFs for spin-one hadron
(deuteron and ρ-meson [11–13]) showed that the quantity
�(Q2) is not zero and it increases with Q2. But for the
deuteron, which is a nonrelativistic system, it was found [18]
that the effects of the violation of the angular condition are
small on FFs at the accessible values of Q2. On the contrary,
the ρ-meson is a relativistic bound system (the momentum of
the constituent quark is not small compared to the ρ-meson
mass) and the violation of the angular condition has large
effects on the ρ-meson FFs [12]. It is therefore interesting
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to measure the electromagnetic FFs of relativistic spin-one
hadrons, as the ρ-meson. For this aim, the most simple reaction
is the annihilation of an electron–positron pair into a ρ+ρ−
pair. The experimental investigation of the electron-positron
annihilation into hadrons (at low energies it is multipion final
state) can also provide important information about the internal
structure of the mesons that consisted of the light quarks, their
interactions, and the spectroscopy of their bound states. In
the low-energy region, these reactions are source of important
information on other problems: the precise calculation of the
strong interaction contribution to the anomalous magnetic
moment of the muon, the check of predictions for the hadronic
tau-lepton decay, etc.

In the past, the experimental study of the reaction e+e− →
hadrons was limited to the measurement of the total cross
sections only. But recently, the construction of large solid angle
detectors that can operate at high luminosity colliders opened
new possibilities for the investigation of the reactions e+e− →
multihadrons [19]. In the energy region 1 � W � 2.5 GeV
(W is the total energy of the colliding beams) the process
of four pion production is one of the dominant processes of
the reaction e+e− → hadrons. For the first time the process
of four-pion production in e+e− annihilation was detected in
Frascati [20] and somewhat later in Novosibirsk [21]. The
energy dependence of the processes e+e− → π+π−π0π0 and
e+e− → π+π−π+π− was studied at the VEPP–2M collider
(Novosibirsk) with the CMD-2 detector [19] in the energy
range 1.05–1.38 GeV. The process of multihadron production
at large energies was also investigated with the help of the
BABAR detector at the PEP–II asymmetric electron-positron
storage ring using the initial-state radiation [22]. A summary
of the hadronic cross section measurements performed with
BABAR via radiative return is given in Ref. [23]. The analysis
of the differential distributions showed that the a1(1260)π and
ωπ intermediate states dominate and that the relative fraction
of the a1(1260)π state increases with the beam energy.

From the theoretical point of view, the processes of
meson production in the electron-positron annihilation were
considered in a number of papers. Using the vector-dominance
model, the authors of Ref. [24] investigated the reaction
e+e− → mesons assuming two-body (or quasi-two-body)
final states. In particular, they considered the a1(1260)π
and ρ+ρ− two-body final states. The estimation of the
hadronic cross section was made under the assumption of
unit FFs. It was emphasized that the comparison of the
VMD model with experiment at low energies would not
be conclusive on the basis of the magnitude and energy
dependence of the cross section only. The observation of
ρ-meson pairs with larger cross sections than predicted in
the article would probably signify, according to the authors,
the presence of appreciable magnetic and/or quadrupole
couplings. Estimations of the cross sections of the processes
e+e− → 3π, 4π were obtained using a VMD model, in
Ref. [25]. Due to the conservation of vector current the
cross section of the e+e− → 4π process can be related
to the probability of the τ → 4πντ decay. Therefore,
all realistic models describing the first process should also
be applicable to the description of the latter one. The free-
parameter investigation of the branching ratios and distribution

functions of the four decay modes of τ → ρππν, in terms of
the effective chiral theory of mesons, agreed with the data [26]
assuming that a1 dominates in these four decay modes of
the tau-lepton. We will consider the a1 production in e+e−
annihilation in a forthcoming work. In this article we consider
the reaction

e+ + e− → ρ+ + ρ−. (1)

Following a model independent formalism developed for spin
1 particles in Ref. [5], we calculate the differential (and total)
cross sections and various polarization observables in terms of
the electromagnetic FFs of the corresponding γ ∗ρρ current.
The elements of the spin-density matrix of the ρ-meson are
also calculated.

The estimation of various observables is done on the
basis of a simple VMD parametrization for ρ-meson FFs.
As no data exist, the parameters were adjusted to reproduce
the existing theoretical predictions in SL region [14] where
the ρ-meson electromagnetic FFs were calculated, both in
covariant and light-front formalisms with constituent quarks.
The parametrization was then analytically extended to the TL
region. The experimental determination of ρ-meson FFs in TL
region, although challenging due to the small counting rate, is
in principle possible at electron positron rings, such as Frascati,
Novosibirsk, and Bejing.

II. FORMALISM

In the one-photon approximation, the differential cross
section of the reaction (1) in terms of the leptonic Lµν and
hadronic Wµν tensors contraction (in the Born approximation
we can neglect the electron mass) is written as

dσ

d	
= α2β

4q6
LµνWµν, (2)

where α = 1/137 is the electromagnetic constant, β =√
1 − 4M2/q2 is the ρ-meson velocity, M is the mass of the

ρ-meson, and q is the four-momentum of the virtual photon,
q = k1 + k2 = p1 + p2 (note that the cross section is not
averaged over the spins of the initial beams).

The leptonic tensor (for the case of longitudinally polarized
electron beam) is

Lµν = −q2gµν + 2(k1µk2ν + k2µk1ν) + 2iλεµνσρk1σ k2ρ, (3)

where λ is the degree of the electron beam polarization (further
we assume that the electron beam is completely polarized and
consequently λ = 1).

The hadronic tensor can be expressed via the electromag-
netic current Jµ, describing the transition γ ∗ → ρ−ρ+

Wµν = JµJ ∗
ν . (4)

The expression for the hadron tensor Wµν , in terms of the
ρ-meson electromagnetic FFs, is calculated using the explicit
form of the electromagnetic current Jµ. The spin-density
matrix of a ρ-meson is composed of three terms, corresponding
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to unpolarized, vector, and tensor polarized ρ-meson:

U1µU ∗
1ν = −

(
gµν − p1µp1ν

M2

)
+ 3i

2M
εµνρσ sρp1σ + 3Qµν.

(5)

Here sµ and Qµν are the ρ-meson polarization four-vector
and quadrupole tensor, respectively. The four-vector of the
ρ-meson vector polarization sµ and the ρ-meson quadrupole-
polarization tensor Qµν satisfy the following conditions:

s2 = −1, sp1 = 0, Qµν = Qνµ,

Qµµ = 0, p1µQµν = 0.

We consider the case when the polarization of the second
ρ-meson in the reaction (1) is not measured.

Taking into account Eqs. (4) and (5), the hadronic tensor in
the general case can be written as the sum of three terms

Wµν = Wµν(0) + Wµν(V ) + Wµν(T ), (6)

where Wµν(0) corresponds to the case of unpolarized particles
in the final state and Wµν(V ) (Wµν(T )) corresponds to the case
of vector (tensor) polarized ρ-meson.

As the ρ-meson is a spin-one particle, its electromagnetic
current is completely described by three FFs. Assuming P and
C invariance of the hadron electromagnetic interaction, this
current can be written as [27]

Jµ = (p1 − p2)µ

[
−G1(q2)U ∗

1 · U ∗
2

+ G3(q2)

M2

(
U ∗

1 · qU ∗
2 · q − q2

2
U ∗

1 · U ∗
2

) ]

−G2(q2)(U ∗
1µU ∗

2 · q − U ∗
2µU ∗

1 · q), (7)

where U1µ (U2µ) is the polarization four-vector describing
the spin-one ρ− (ρ+) and Gi(q2) (i = 1, 2, 3) are the
ρ-meson electromagnetic FFs. The FFs Gi(q2) are complex
functions of the variable q2 in the region of the TL momentum
transfer (q2 > 0). They are related to the standard ρ-meson
electromagnetic FFs: GC (charge monopole), GM (magnetic
dipole), and GQ (charge quadrupole) by

GM = −G2, GQ = G1 + G2 + 2G3,

GC = −2

3
τ (G2 − G3) +

(
1 − 2

3
τ

)
G1,

τ = q2

4M2
.

(8)

The standard FFs have the following normalizations:

GC(0) = 1, GM (0) = µρ, GQ(0) = −M2Qρ, (9)

where µρ(Qρ) is the ρ-meson magnetic (quadrupole) moment.
The explicit form of various contributions to the hadronic

tensor has been derived in Ref. [5] for the deuteron case and
can be applied here, replacing the deuteron mass and FFs by
the corresponding quantities for the ρ meson.

The resulting expression for the unpolarized differential
cross section in the reaction CMS is

dσ un

d	
= α2β3

4q2
D,

D = τ (1+cos2θ )|GM |2 + 3

2
sin2θ

(
|GC |2 + 8

9
τ 2|GQ|2

)
,

(10)

where θ is the angle between the momenta of the ρ− meson
(�p) and the electron beam (�k). Integrating this expression
with respect to the ρ-meson angular variables one obtains
the following formula for the total cross section of the
reaction (1)

σtot(e
+e− → ρ−ρ+)

= πα2β3

3q2

[
3|GC |2 + 4τ

(
|GM |2 + 2

3
τ |GQ|2

)]
. (11)

As for the deuteron case, let us define an angular asymmetry,
Rσ , with respect to the differential cross section, σπ/2,
measured at θ = π/2,

dσ un

d	
= σπ/2(1 + Rσ cos 2θ ), (12)

where Rσ can be expressed as a function of the ρ-meson FFs

Rσ = 2τ
(|GM |2 − 4

3τ |GQ|2) − 3|GC |2
2τ

(|GM |2 + 4
3τ |GQ|2) + 3|GC |2 . (13)

This observable enhances the difference between the terms
containing the FFs, which have a sine-squared and cosine-
squared dependence (10), therefore it is more sensitive to the
different underlying assumptions on the ρ-meson FFs than
the angular distribution itself. A precise measurement of this
quantity, which does not require polarized particles, would be
very interesting.

As in the SL region, the measurement of the angular
distribution of the outgoing ρ-meson determines the modulus
of the magnetic form factor, but the separation of the charge and
quadrupole form factors requires the measurement of polariza-
tion observables [28]. The outgoing ρ-meson polarization can
be determined by measuring the angular distribution of the
ρ−-meson decay products.

As it was shown in Ref. [29], a nonzero phase difference
between FFs of two baryons (with 1/2 spins) leads to a
nonvanishing T-odd single-spin asymmetry normal to the
scattering plane in the baryon-antibaryon production e+e− →
BB̄. This is also valid for spin-one hadrons.

To derive polarization observable it is necessary to define a
particular reference frame. When considering the polarization
of the final particle, we choose a reference system with the z

axis along the momentum of this particle (in our case it is �p).
The y axis is normal to the reaction plane in the direction of
�k × �p; x, y, and z form a right-handed coordinate system.

The cross section can be written, in the general case, as
the sum of unpolarized and polarized terms, corresponding to
the different polarization states and polarization directions of
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the incident and scattered particles:

dσ

d	
= dσ un

d	
[1 + Py + λPx + λPz + PzzRzz + PxzRxz

+Pxx(Rxx − Ryy) + λPyzRyz], (14)

where Pi, Pij , and Rij , i, j = x, y, z are, respectively, the
components of the polarization vector, tensor, and of the
quadrupole polarization tensor of the outgoing ρ−-meson Qµν ,
in its rest system and dσ un/d	 is the unpolarized differential
cross section. λ is the degree of longitudinal polarization of
the electron beam. It is explicitly stressed that these specific
polarization observables are induced by the beam polarization.

Let us recall the expressions of the different polarization
observables in terms of the ρ-meson FFs:

(i) The vector polarization of the outgoing ρ-meson:

Py = −3

2

√
τ sin (2θ ) Im

[(
GC − τ

3
GQ

)
G∗

M

]/
D.

Px = −3

√
τ

D
sin θ Re

(
GC − τ

3
GQ

)
G∗

M,

Pz = 3τ

2D
cos θ |GM |2.

(15)

(ii) The part of the differential cross section that depends on
the tensor polarization can be written as follows

dσT

d	
= dσzz

d	
Rzz + dσxz

d	
Rxz + dσxx

d	
(Rxx − Ryy), (16)

dσzz

d	
= α2β3

4q2

3τ

4

{
(1 + cos 2θ )|GM |2

+ 8 sin2θ

[
τ

3
|GQ|2 − Re (GCG∗

Q)

]}
, (17)

dσxz

d	
= −α2β3

4q2
3τ 3/2 sin (2θ ) Re (GQG∗

M ), (18)

dσxx

d	
= −α2β3

4q2

3τ

4
sin2θ |GM |2. (19)

The part of the differential cross section that depends on
the correlation between the longitudinal polarization of the
electron beam and the ρ-meson tensor polarization can be
written as follows

dσλT

d	
= α2β3

4q2
6τ 3/2 sin θ Im (GMG∗

Q)Ryz. (20)

In the experimental study of reaction (1), one does not measure
the polarization of the outgoing particle as in the case of
stable particles. Their polarization is obtained through the
measurement of the angular distribution of the decay products,
which allow us to determine the individual elements of the
spin-density matrix. Therefore, the discussion of the necessary
observables and of the strategy of measurements is done in
the following chapter where the explicit expressions of the
spin-density matrix elements are given in terms of FFs.

Let us note here that, in principle, one should take into
account the problem of the two–photon-exchange contri-
bution, which, may become important at large momentum

transfer squared, as it is suggested a few decades ago [30].
Model independent properties of the two-photon-exchange
contribution in elastic electron-deuteron scattering have been
derived in Ref. [31]. As shown in Ref. [32], if the detection
of the final particles does not distinguish between ρ− and ρ+
mesons, the interference between one-photon and two-photon
amplitudes does not contribute to the cross section of the
reaction (1).

III. SPIN-DENSITY MATRIX OF ρ-MESON

Let us calculate the elements of the spin-density matrix of
the ρ-meson produced in the reaction (1).

The convolution of the lepton Lµν and hadron Wµν tensors
can be written as (for the case of unpolarized initial lepton
beams)

Sun = SµνUµU ∗
ν , (21)

where Uµ is the polarization four-vector of the detected ρ-
meson and the Sµν tensor can be represented in the following
general form

Sµν = S1gµν + S2qµqν + S3k1µk1ν + S4(k1µqν + qµk1ν)

+ iS5(k1µqν − qµk1ν), (22)

where the structure functions Si (i = 1–5) can be written
in terms of three electromagnetic FFs of the ρ-meson. Their
explicit form is

S1 = 4M2(1 − τ )q2

[
τ |GM |2 + sin2θ |GC + 2

3
τGQ|2

]
,

S2 = q2[2τβ cos θ + (1 − τ )(1 + cos 2θ )]|GM |2

+ 4q2

[
τ (β − cos θ ) cos θReGMG∗

Q

+ sin2θ

(
τ

3
|GQ|2 − ReGCG∗

Q

)]
,

S3 = 4(1 − τ )q2|GM |2,
S4 = −2q2[(1 − τ + τβ cos θ )|GM |2

+ 2τβ cos θReGMG∗
Q],

S5 = −4q2β cos θ ImGM

(
GC − τ

3
GQ

)∗
.

(23)

The T-odd structure function S5 is not zero here because the
electromagnetic FFs of the ρ-meson are complex functions in
this case (TL region).

Then the elements of the spin-density matrix of the ρ-meson
are defined as

Sρmm′ = SµνU
(m)
µ U (m′)∗

ν , S = Sµν

(
−gµν + p1µp1ν

M2

)
,

(24)

where S = 8M2(τ − 1)q2D and U (m)
µ is the polarization four-

vector of the ρ-meson with definite (m = 0,±1) projection
on the z axis. In our case it is directed along the ρ-meson
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momentum and thus U (m)
µ are the polarization vectors with

definite helicity.
So, the elements of the spin-density matrix of the ρ-meson

are

ρ++ = ρ− − = 1

4D

[
τ (1 + cos 2θ )|GM |2

+ 2 sin2θ |GC + 2

3
τGQ|2

]
,

ρ00 = 1

2D

[
τ (1 + cos 2θ )|GM |2 + sin2θ |GC − 4

3
τGQ|2

]
,

ρ+− = ρ−+ = τ

4D
sin2θ |GM |2,

ρ+0 = 1

D

√
τ

2
sin θ cos θ

[
ReGM

(
GC + 2

3
τGQ

)∗

−
(

GC − τ

3
GQ

)
G∗

M

]
,

ρ−0 = −ρ+0, ρ0+ = ρ∗
+0, ρ0− = ρ∗

−0.

The spin-density matrix is normalized as T rρ = 1 or ρ+ + +
ρ− − + ρ00 = 1. The element ρ+0 is complex and we have

Re ρ+0 = 1

D

(τ

2

)3/2
sin 2θReGMG∗

Q,

Im ρ+0 = 1

2D

√
τ

2
sin 2θ ImGM

(
GC − τ

3
GQ

)∗
.

Let us consider the case when the electron beam is
longitudinally polarized. Then the convolution of the spin-
dependent part of the lepton tensor and hadron one can be
written as

S(λ) = Sµν(λ)UµU ∗
ν , (25)

where the Sµν(λ) tensor can be written as

Sµν(λ) = Q1εµναβk1αk2β + Q2(qµaν − qνaµ)

+Q3(qµaν + qνaµ), (26)

where aµ = εµαβγ pαk1βk2γ , p = p1 − p2 and the structure
functions Qi(i = 1–3) can be written in terms of the ρ-meson
FFs as

Q1 = 2iλ(1 − τ )q2|GM |2,
Q2 = −2iλ

[
τ |GM |2 − 2MRe G

(
GC − τ

3
GQ

)∗]
,

Q3 = 4λτ ImGMG∗
Q.

(27)

The T-odd structure function Q3 is not zero because FFs are
complex functions in the TL region.

The elements of the spin-density matrix of the ρ-meson that
depend on the longitudinal polarization of the electron beam
can be defined as

Sρmm′(λ) = Sµν(λ)U (m)
µ U (m′)∗

ν . (28)

After some calculations we obtain

ρ+ +(λ) = −ρ− −(λ) = λ

2D
τ cos θ |GM |2,

ρ00(λ) = ρ+−(λ) = ρ− +(λ) = 0,

ρ+0(λ) = − λ

D

√
τ

2
sin θ

×
[
MRe G

(
GC + 2

3
τGQ

)∗
− τGQG∗

M

]
,

ρ0+(λ) = ρ∗
+0(λ), ρ−0(λ) = ρ+0(λ),

ρ0−(λ) = ρ∗
−0(λ).

(29)

The element ρ+0(λ) is complex quantity and its real and
imaginary parts are

Re ρ+0(λ) = − λ

D

√
τ

2
sin θMRe G

(
GC − τ

3
GQ

)∗
.

Im ρ+0(λ) = − λ

D

√
τ

2
τ sin θ ImGMG∗

Q.

The ρ-meson FFs in the TL region are complex functions. In
the case of unpolarized initial and final particles the differential
cross section depends only on the squared moduli |GM |2
and on the combination G = |GC |2 + 8

9τ 2|GQ|2. So, the
measurement of the angular distribution of the cross section
allows to determine |GM | and the quantity G.

Let us discuss what information can be obtained by
measuring the elements of the spin-density matrix of the
produced ρ-meson. There are three phase differences for three
FFs, which we note as follows: α1 = αM −αQ, α2 = αM −αC ,
and α3 = αQ − αC , where αM = ArgGM , αC = ArgGC , and
αQ = ArgGQ. They are related by the condition: α3 = α2−α1.
These quantities characterize the strong interaction between
final particles.

Consider the ratio of the following elements of the spin-
density matrix Re ρ+0 (when the electron beam is unpolarized)
and Im ρ+0(λ) (let us remind that measurement of this element
requires a longitudinally polarized electron beam). As a result
we have for this ratio

R1 = Re ρ+0

Im ρ+0(λ)
= − cos θ

λ
cot α1. (30)

So, the measurement of this ratio gives us information about
the phase difference α1. The measurement of the ratio of other
spin-density matrix elements ( Re ρ+0 and ρ+−)

R2 = Re ρ+0

ρ+−
= 2

√
2τ cot θ cos α1

|GQ|
|GM | (31)

gives us information about the quantity |GQ|. This allows
to obtain the modulus of the charge form factor, |GC |, from
the quantity G derived from the angular distribution of the
differential cross section. The measurement of the next ratio

R3 = Im ρ+0

Re ρ+0(λ)
= − cos θ

λ

sin α2 − r sin α1

cos α2 − r cos α1
,

r = τ

3

|GQ|
|GC | (32)
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allows us to determine the phase difference α2. And at last, if
we measure the ratio of the spin-density matrix elements ρ++
and ρ+−

R4 = ρ++
ρ+−

= − 1

τ sin2θ
[τ (1 + cos 2θ )

+ 2 sin2θ
|GC |2
|GM |2 (1 + 4r2 + 4r cos α3)] (33)

we can obtain information about the third phase difference α3.
The correctness of the determination of the phase differ-

ences can be verified by checking the relation: α3 = α2 − α1.
Thus, the measurement of the spin-density matrix elements

considered above allows to obtain all information about the
ρ-meson FFs in the TL region. Remind that for the complete
determination of FFs we need the longitudinally polarized
electron beam.

IV. MODEL OF ρ-MESON FORM FACTORS

To predict the polarization observables for the reaction (1)
one needs to know the behavior of the real and imaginary parts
of all three ρ-meson FFs in the TL region. Unfortunately, until
now there are no data on the ρ-meson FFs, or any model for
them, which works in the TL region. Therefore, we constructed
a very simple model of the ρ-meson FFs, which fulfills basic

known properties of these FFs and can be extended to the TL
region with nonzero imaginary part. This model is in a good
agreement with an existing model of ρ-meson electromagnetic
FFs in the SL region [14].

As it was shown in Ref. [11], the dominance of helicity-
conserving amplitudes in gauge theory implies universal ratios
for the charge, magnetic, and quadrupole FFs of spin-one
bound states:

GC(Q2) : GM (Q2) : GQ(Q2) = (
1 − 2

3η
)

: 2 : −1, (34)

where η = Q2/4m2 (m is the mass of the spin-one particle).
These ratios hold at large SL or TL momentum transfer in the
case of composite systems such as the ρ-meson or deuteron
in QCD with corrections of order �QCD/Q and �QCD/Mρ,d ,
where �QCD is the QCD scale.

The dimensional counting rules [33] of pQCD for exclusive
two-body scattering processes at large s, with t/s fixed, predict
the following asymptotic behavior of the differential cross
section

dσ

dt
|t→∞ ∼ 1

tn−2
f (t/s), (35)

where n is the total number of incoming and outgoing fields
(n = 6 in the case of e+e− → ρ+ρ− or e−ρ → e−ρ

reactions).
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FIG. 1. (Color online) Angular dependence of the differential cross section (a); of the angular asymmetry Rσ Eq. (13) (b); of the spin
polarization observables Px (c), Py (d), Pz (e), Pxx :(f), Pyy (g), Pzz (h). The full line corresponds to a 10% width and the dashed line to 1%
width.
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These asymptotic conditions imply the following asymp-
totic behavior of the ρ-meson FFs GC(t),GM (t),GQ(t) (in
our case t = q2)

|GC(t)||t→∞ ∼ t−1, |GM (t)||t→∞

∼ t−3/2, |GQ(t)||t→∞ ∼ t−2. (36)

The normalization of FFs, GC(t), GM (t), GQ(t) at t = 0, is
consistent with the calculation [14]

GC(0) = 1, GM (0) = µρ = 2.14,

GQ(0) = −m2
ρQρ = −0.79.

(37)

The most simple parametrization of the charge ρ-meson
electromagnetic FFs, is a monopole parametrization. However,
it is not possible to obtain a node, as predicted by impulse
approximation models [14] using a simple monopole/dipole
parametrization (monopole/dipole functions are always differ-
ent from zero). We used the following parametrization

GC(t) = (A + Bt)GC(0)

1 − t

m2
C

,

GM (t) = GM (0)(
1 − t

m2
M

)2 ,

GQ(t) = GQ(0)(
1 − t

m2
Q

)2 ,

(38)

where A, B, mC , mM , and mQ are free parameters, which
were fitted to reproduce the ρ meson FFs in SL region given
by Ref. [14]. The values of parameters A and B were fixed by
the normalization and the position of the node t0 � −3 GeV2

GC(0) = A = 1, A + Bt0 = 0 → B = −A

t0
. (39)

For simplicity, we take a dipole form for GM (t) and GQ(t).
Therefore, the behavior for GM (t) does not follow precisely
the asymptotic limits as described above (36). This sim-
ple parametrization is chosen to calculate observables in a
restricted energy range, and the values of the parameters

TABLE I. Parameters of the model for ρ-meson electromagnetic
FFs.

A B mC (GeV) mM (GeV) mQ (GeV)

1. 0.33 1.34 1.42 1.51

(Table I) are fitted on the model predictions from SL region
[14].

The extension of the model to TL region was made by
introducing widths for the particles carrying the interaction.
This leads to the following parametrization, which contains an
imaginary part:

GC(t) = (A + Bt)m4
C(

m2
C − t − imC�C

)2 ,

GM (t) = GM (0)m4
M(

m2
M − t − imM�M

)2 ,

GQ(t) = GQ(0)m4
Q(

m2
Q − t − imQ�Q

)2 .

(40)

V. RESULTS

The ρ meson FFs have been calculated in both SL and TL
regions for two different values of the widths �C , �M , and �Q,
taken as 1 and 10% of the corresponding masses. In TL region,
FFs are complex, and present, in correspondance of the value
of the parameters, a resonant-like behavior that enhances the
three FFs. Therefore, the absolute value of the cross section is
extremely sensitive to a small variation of the parameters, in
this region.

The numerical results are shown for q2 = 3 GeV2. The
differential cross section is shown in Fig. 1(a) and the angular
asymmetry in Fig. 1(b). The shape of these distributions is a
signature of the one photon mechanism. The absolute value
change by 30% in case of 10% width (dashed line), compared
to 1% width (solid line). But the comparison at slightly
different q2 values can differ by order of magnitudes, due to
the presence of the resonances in the FFs parametrization. The
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FIG. 2. (Color online) Angular dependence of the elements of the ρ density matrix: ρ++(λ) (a), Reρ+0(λ) (b), Imρ+0(λ) (c). The full line
corresponds to a 10% width and the dashed line to 1% width.
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different polarization observables are shown in Fig. 1(c)–1(i).
The behavior of Px , Pz, Pxx , and Pxz is almost independent on
the width, as these observables are determined either by the
real part or by the modulus of FFs.

The elements of the (polarized) spin-density matrix of the
ρ meson are plotted in Fig. 2, at q2 =3 GeV2: ρ++(λ) is shown
in Fig. 2(a), the real and imaginary parts of ρ+0(λ) in Figs. 2(b)
and 2(c), respectively. The magnitude of these last two terms
is quite sensitive to the value of the width, whereas ρ++(λ) is
not, because it depends on |GM |2.

All these observables are very sensitive to different combi-
nations of FFs, therefore their measurement will be especially
discriminative toward FFs models.

VI. CONCLUSION

Using the parametrization of the electromagnetic current for
γ ∗ρρ vertex in terms of three complex FFs, we investigated
the polarization phenomena in the reaction (1). We calculated
for these reactions the differential (and total) cross sections
and various polarization observables as functions of the
corresponding set of FFs. The spin-density matrix elements
of the produced ρ meson for the reaction (1) have been also
calculated.

We constructed a simple model for the ρ meson FFs and
fitted free parameters of this model to the predicted values
of these FFs that were calculated (for the SL region) both in
covariant and light-front frameworks with constituent quarks
[14]. Then FFs of our model were analytically continued to
the TL region. Using this model we estimated the differential
cross section and various polarization observables which were
found to be sizable.

The reaction (1) has not yet been detected in the existing
experiments on colliding electron-positron beams in the q2

region between 1 and 4 GeV2. We showed that, in frame
of VMD models, the absolute value is very sensitive to
the presence, the position and the width of resonances in
this momentum range. So, the experimental investigation
of this reaction will give very useful information for the
understanding of the electromagnetic properties of the ρ meson
and constitute a good testing for models of the ρ meson FFs.
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