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A theoretical formalism leading to elegant derivation of formulas for all spin observables is outlined for
photoproduction of mesons with arbitrary spin-parity sπ . The salient features of this formalism, based on
irreducible tensor techniques, are (i) the number of independent irreducible tensor amplitudes is 4(2s + 1), (ii)
a single compact formula is sufficient to express these amplitudes in terms of allowed electric and magnetic
multipole amplitudes, and (iii) all the spin observables, including beam analyzing powers as well as the
differential cross section, are expressible in terms of bilinear irreducible tensors of rank 0 to 2(s + 1). The
relationship between the irreducible tensor amplitudes and the helicity amplitudes is elucidated in general
and explicit expressions for the helicity amplitudes are given in terms of the irreducible tensor amplitudes in the
particular cases of pseudoscalar and vector meson photoproduction. The connection between the irreducible tensor
amplitudes introduced here and the well-known Chew-Goldberger-Low-Nambu amplitudes for photoproduction
of pseudoscalar mesons is also established.
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I. INTRODUCTION

Photoproduction of heavy mesons on a nucleon is a topic
of considerable current interest. Meson photoproduction has
excited attention for more than five decades since the pion
was discovered. In the context of developing a relativistic
dispersion relation approach to pion photoproduction, Chew,
Goldberger, Low, and Nambu (CGLN) [1] have expressed the
reaction amplitude F in terms of four invariants, viz., i σ ·
ε̂, (σ · q̂)[σ · (k̂ × ε̂)], i (σ · k̂)(q̂ · ε̂), and i (σ · q̂)(q̂ · ε̂)
and their respective coefficients, F1, F2, F3, and F4. The
σ denote Pauli spin matrices of the nucleon, the vectors
q and k denote the meson and the photon momenta in
the center-of-mass (c.m.) frame, and ε̂ denotes the photon
polarization. The Fi , i = 1, · · · , 4 are functions of the c.m.
energy W at which the reaction takes place and the angle θ

between q and k. Following the earlier work of Watson [2]
and denoting the isospin index of the photoproduced pion by
β, each of these amplitudes Fi were expressed in terms of
three independent nucleon isospin combinations I (+)

β , I (−)
β ,

and I (0)
β and their respective coefficients F (+)

i , F (−)
i , and F (0)

i .
Explicit formulae for Fi have been given [1] in terms of
the first two derivatives of Legendre polynomials in cos θ

and energy-dependent “magnetic” and “electric” multipole
amplitudes denoted, respectively, by Ml± and El±, where
the suffix ± indicates that the total angular momentum
j = l ± 1

2 , if l denotes the orbital angular momentum of the
emitted meson. This traditional formalism has been reviewed
along with the extension [3] to electroproduction by Berends,
Donnachie, and Weaver [4] in a set of three articles. The

connection with the helicity formalism [5] for photoproduction
as well as formulae for the differential cross-section and spin
observables in terms of the CGLN amplitudes are also found
in Ref. [4] along with numerical values for the amplitudes
up to 500 MeV. The dominance of the first resonance viz.,
�33(1232) is quite conspicuous in this energy region and as
such attention has lately been focused [6,7] on details such
as the quadrupole deformation of this resonance and ratio of
E1+ over M1+. In view of the necessity of neutron multipoles
[8] to determine F (+), F (−), and F (0) and their importance
to decide questions of time reversal violation [9] or the
possible existence of isotensor term [10], a careful discussion
of target asymmetry and effective neutron polarization was
presented [11] as also detailed theoretical analyses to extract
the neutron multipoles more precisely from experiments on
hydrogen isotopes [12]. Pion photoproduction has been studied
extensively and reviewed by several groups [13]. The current
database as well as numerical values for the electric and
magnetic multipole amplitudes derived from accumulated data
can be found on the Center for Nuclear Studies (CNS) Web site
[14]. Observables have been defined in terms of helicity and
transversity amplitudes [15]. The helicity amplitudes [16] can
also be constructed from the multipole amplitudes [14] using
relations found in Ref. [17]. As photon energy is increased,
the nucleon resonances P11(1440),D13(1520), S11(1535), and
S11(1650) start contributing along with the first and higher �

resonances [18].
In contrast to the isovector pion, the η meson is isoscalar.

Consequently, the � resonances do not contribute to photopro-
duction of η and as such it is ideally suited to study the nucleon
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resonances. The enigmatic [6,19] Roper resonance P11(1440)
lies below η production threshold, so that only its high-energy
tail can contribute. Close to threshold, the contributions of
P11(1440) and D13(1520) with larger l values are suppressed
compared to the S11(1535) and S11(1650). However, the decay
pattern of the first and second S wave nucleon resonances
were found to be quite different and are not easily explained
in terms of nucleon models. In fact, a variety of nucleon
models predict a much richer nucleon excitation spectrum
than what has been identified in πN scattering. Considerable
interest has, therefore, been evinced in looking for the so-called
missing resonances [20]. Reference may be made to theoretical
studies [21] based on effective Lagrangian approach. Excellent
reviews [22] exist on these developments and the problem of
missing resonances in photoproduction reactions. As η is also a
pseudoscalar like the pion, the spin structure of the amplitudes
for photoproduction of η is of the same form as for pion
photoproduction and the corresponding multipole amplitudes
can also be found in Ref. [14].

The associated strangeness photo production has been
studied [23] over the past several decades employing dif-
ferent approaches. In contrast to photoproduction of pions
and eta, kaon photoproduction can involve nucleon as well
as hyperon resonances like S01(1405), S01(1670), P01(1810)
and some models include nucleon resonances with spin
greater than 3/2. It was remarked [24] recently that
S11(1650), P13(1720),D13(1700),D13(2080), F15(1680), and
F15(2000) are required to fit one set of experimental
data, whereas P13(1900),D13(2080),D15(1675), F15(1680),
and F17(1990) resonances are required to fit another set.
Although both the sets do not exhibit the need for P11(1710)
and are agreed that the second peak in the cross sections at
W ∼ 1900 MeV originates from the D13(2080) resonance [18]
whose mass lies between 1911 and 1936 MeV, fitting to all
data simultaneously changes the conclusion and results in a
model that is inconsistent to all data sets. It is clear that the
delta resonances can also contribute in addition to the nucleon
resonances in the case of γp → �K . The beam analyzing
powers [25] and beam-recoil observables [26] have also been
measured very recently. In hyperon photoproduction, the
hyperons have spin-parity 1

2
+

just like the nucleons, whereas
kaons are pseudoscalar like the pion. Consequently, the spin
structure of the amplitudes for hyperon and pion photopro-
duction are alike [27], although the isospin considerations are
different as with the case of photoproduction of η.

As photon energy is increased further, the thresholds are
reached for ρ, η′, ω, and ϕ, of which η′ is pseudoscalar
and ρ, ω, ϕ are vector mesons. Experimental studies on
photoproduction of ρ and ω date back to the early 1960s and
it has been observed that the reaction is governed by diffrac-
tion or pomeron exchange at higher energies. The inherent
advantages in employing linearly polarized photons [28] have
been noted and a detailed formalism to analyze production of
vector mesons with polarized photons has also been presented
[29], employing 12 complex helicity amplitudes. A historical
perspective and a detailed account of the theoretical ideas that
motivated early studies on vector meson photoproduction may
be found in Ref. [30]. In the case of photoproduction of a
vector meson, the meson polarization itself is an interesting

observable that has been studied experimentally in recent
years [31] and analyzed using the formalism of Ref. [29]. All
the polarization observables were expressed as bilinear [32]
products of the 12 helicity amplitudes and their behavior
near threshold [33] has been examined. It was shown [34]
that a two-meson decay of a ρ or ϕ does not determine its
vector polarization. More recently [35], it was shown that
the three-meson decay of ω also does not determine its vector
polarization. However, the π0γ decay mode of �ω with a smaller
branching ratio of 8.92% may be utilized to determine its
vecor as well as tensor polarization [36]. The isovector ρ has
a large width of 150.2 MeV, as compared to the widths of 8.44
and 4.458 MeV of the isoscalar ω and ϕ, respectively, and
of 1.18 ×10−3 MeV and 0.2 MeV, respectively, of η and η′.
There are hardly any experimentally known resonances which
decay into Nω, except N (1710) which has a branching ratio
[18] of ∼13%. However, there are theoretical expectations
that missing resonances may couple more strongly or even
exclusively to the Nω channel in comparison with the Nπ

channel. Hence several theoretical studies have been carried
out [37] on the contribution of nucleon resonances in ω

photoproduction. Another interesting aspect of vector meson
photoproduction is the φ/ω ratio [38] in the context of the
violation of OZI rule [39]. This energy region above the
threshold for photoproduction of η, ρ, ω, η′, and ϕ is under
intense study at present with the advent of the new generation
of electron accelerators like CEBEF at JLab, ELSA at Bonn,
ESRF at Grenoble, MAMI at Mainz and Spring8 at Osaka,
which are equipped with tagged photon facilities where the
incident photon energies are known event by event within the
resolution of the tagging detector. While photon beams are pro-
duced by bremsstrahlung at JLab(CLAS), ELSA(SAPHIR),
and MAMI, laser backscattering is employed at BNL(LEGS),
ESRF(GRAAL), and Spring8(LEPS). Availability of linearly
and circularly polarized photons as well as polarized targets
enable measurements of beam and target analyzing powers, in
addition to the differential cross section. Such measurements
are useful to determine resonance parameters. In future one
may look forward to photoproduction of higher spin mesons
[18], like f2(1270) or a2(1320) or f ′

2(1525) with spin-parity
2+, π2(1670) with spin-parity 2−, ω3(1670) or ρ3(1690) with
spin-parity 3− and a4(2040) or f4(2050) with spin-parity 4+.
An exotic baryon state with mass M = 1555 ± 10 MeV and
strangeness +1 was observed [40] in photoproduction from
the proton. More recently, a theoretical analysis has been
carried out on meson spectra in a generalized constituent quark
model [41] that pays attention also to glueballs, hybrids, or
multiquark states. In view of these developments, it is felt that
a supportive theoretical formalism for the spin structure of
the amplitudes and their expansion in terms of “electric” and
“magnetic” multipoles is needed to analyze measurements of
spin observables in photoproduction of mesons with arbitrary
spin-parity sπ .

The purpose of the present article is to answer this need.
Employing irreducible tensor operator techniques [42] we
derive formulas for all spin observables, including beam
analyzing powers, associated with photoproduction of mesons
with isospin Im and arbitrary spin-parity sπ after outlining the
basic theoretical formalism in the next section.
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II. THEORETICAL FORMALISM

Let q and k denote the meson and the photon momenta
in c.m. frame for photoproduction of arbitrary spin mesons at
center-of-mass (c.m.) energy W . If ûx, ûy denote unit vectors
of a right-handed Cartesian coordinate system with k along the
z axis, the left and right circular polarized states of the photon
may be defined, following Rose [43], through

ûµ = 1√
2

(ûx + iµûy) = −µξ̂µ, µ = ±1. (1)

When the reaction is initiated by photons polarized in a
state ûµ, the differential cross section in c.m. frame may be
written as

dσ (µ)

d
= q

k

∑∑
av

|〈f |F(µ)|i〉|2, (2)

where |i〉 and |f 〉 denote, respectively, the initial and final
hadron spin states, q and k have polar coordinates (q, θ, ϕ)
and (k, 0, 0), respectively, and

∑
denotes summation with

respect to final and
∑

av the average with respect to initial
hadron spin states.

When a meson with spin s is photoproduced on a nucleon,
the channel spin sf in the final state could assume either of
the values |s − 1

2 | and (s + 1
2 ) and the transition to the final

hadron system with spin sf takes place from the initial state
of the hadron with spin si = 1

2 . We may, therefore write the
reaction amplitude F(µ) in the form

F(µ) =
(s+ 1

2 )∑
sf =|s− 1

2 |

(sf + 1
2 )∑

λ=|sf − 1
2 |

(
Sλ

(
sf ,

1

2

)
· Fλ(sf , µ)

)
(3)

in terms of irreducible tensor operators Sλ
mλ

(sf , si) of rank
λ in hadron spin space defined in Ref. [42]. To identify the
irreducible tensor amplitudes Fλ

mλ
(sf , µ), we may evaluate

〈f |F(µ)|i〉 by writing it explicitly as〈(
s

1

2

)
sf mf ; q

∣∣∣∣F
∣∣∣∣ kûµ;

1

2
mi

〉

= 4π (2π )
1
2

∞∑
l=0

(−i)l
∞∑

L=1

iL[L]

L+ 1
2∑

j=L− 1
2

C

(
L

1

2
j ; µmim

)

×C(lsf j ; mlmf m)Ylml
(θ, ϕ)(iµ)f+(L,l)F j

lsf ;L, (4)

using the standard multipole expansion [43] for the photon in
the initial state and partial wave expansion for the meson in
the final state. We denote

√
(2L + 1) by [L]. The rest of the

notations follow Rose [43]. Using

f±(L, l) = 1
2 [1 ± π (−1)L−l] (5)

and parity conservation, we may express

F j

lsf ;L ≡ 〈(l(s 1
2

)
sf

)
j
∥∥F∥∥(L 1

2

)
j
〉

= Mj

lsf ;Lf−(L, l) + Ej

lsf ;Lf+(L, l) (6)

in terms of “magnetic” and “electric” multipole amplitudes
denoted by Mj

lsf ;L and Ej

lsf ;L , respectively. We rewrite the

two Clebsch-Gordan coefficients in Eq. (4) as

C

(
L

1

2
j ; µmim

)
C(lsf j ; mlmf m)

=
∑

λ

W

(
L

1

2
lsf ; jλ

)
[j ]2[sf ]−1(−1)L+l+ 1

2 − j (−1)mλ

×C(lLλ; ml − µmλ)(−1)µC

(
1

2
λsf ; mi − mλmf

)
[λ]

(7)

and replace

C
(

1
2λsf ; mi − mλmf

)
[λ] = 〈sf mf |Sλ

−mλ

(
sf , 1

2

)∣∣ 1
2mi

〉
.

(8)

Comparing the resulting expression with 〈f |F(µ)|i〉 and
using Eq. (3) we obtain the elegant and compact formula for
the irreducible tensor amplitudes

Fλ
mλ

(sf , µ) = 4π (2π )
1
2

∞∑
l=0

∞∑
L=1

(i)L−l
∑

j

(−1)L+l+ 1
2 −j

× [j ]2[L][sf ]−1W

(
L

1

2
lsf ; jλ

)

× (iµ)f+(L,l)F j

lsf ;L(−1)µ

×C(lLλ; ml − µmλ)Ylml
(θ, ϕ), (9)

in terms of partial wave multipole amplitudes F j

lsf ;L given by
Eq. (6) for photoproduction of mesons with arbitrary spin-
parity sπ .

Isospin considerations lead to

F j

lsf ;L =
(Im+ 1

2 )∑
I=|Im− 1

2 |
C

(
1

2
ImI ; νf νmν

)

×
1∑

Iγ =0

C

(
1

2
Iγ I ; νi0ν

)
F Iγ Ij

lsf ;L, (10)

where νi, νf , νm denote, respectively, the isospin projection
quantum numbers of the nucleon in the initial and final states
and the meson which is photoproduced. Dropping the indices
j, l, sf , L common to both sides of Eq. (10), the F Iγ I thus
defined for pion photoproduction may readily be related to
the F (±),F (0) of CGLN [1] as shown in Appendix A. The
isospin indices Iγ , I may also be attached using Eq. (10) to
the “magnetic” and “electric” multipole amplitudes defined
by Eq. (6). If one is looking for the possible existence of an
isotensor component [10], the summation over Iγ may readily
be extended in Eq. (10) to include Iγ = 2. The advantage in
having the index I along with j in this formalism is that
it facilitates ready identification with the isospin and spin
quantum numbers of the resonances that contribute in the
intermediate state to photoproduction of mesons with arbitrary
spin-parity sπ .

It may be noted that the spherical harmonics Ylml
in Eq. (9)

contain the azimuthal angle ϕ along with the polar angle θ of
the momentum q of the meson. This facilitates the analysis of
experiments on photo meson production employing linearly
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polarized photons where the state of linear polarization of the
beam is chosen to be along the x axis.

A. Irreducible tensor amplitudes in the Madison frame

In discussing meson photoproduction with a two-body final
state, it is quite often convenient to chose the reaction plane
containing k and q as the zx plane in which case the azimuthal
angle ϕ = 0. In fact this choice of the Cartesian coordinate
system has generally been recommended by the Madison
convention [44]. We may therefore refer to this Cartesian
coordinate system as the Madison frame (MF). The irreducible
tensor amplitudes Fλ

mλ
(sf , µ) in MF are then given by Eq. (9)

with ϕ = 0, in which case they satisfy

Fλ
−mλ

(sf ,−µ) = π (−1)λ−mλFλ
mλ

(sf , µ). (11)

In view of the above, the total number

Ntot =
∑

µ=−1,1

(s+ 1
2 )∑

sf =|s− 1
2 |

(sf + 1
2 )∑

λ=|sf − 1
2 |

(2λ + 1) = 8(2s + 1), (12)

of irreducible tensor amplitudes reduces to 4(2s + 1) indepen-
dent irreducible tensor amplitudes. This number is exactly in
agreement with 4 [1] for s = 0 and 12 [29] for s = 1 arrived at
by using different arguments in those particular cases. In the
case of electroproduction [45], the longitudinal polarization
state with µ = 0 contributes additional 2(2s + 1) independent
amplitudes and consequently the total number of independent
amplitudes for electroproduction turns out to be 6(2s + 1). It
may be noted that Mj

lsf ;L, Ej

lsf ;L and F j

lsf ;L in Ref. [45] are

4π
3
2 il+L(−1)L+ 1

2 −j [L][j ]2[sf ][s]−1 times the Mj

lsf ;L, Ej

lsf ;L

and F j

lsf ;L given by Eq. (6) and that the irreducible tensor

amplitudes Fλ
mλ

(n,µ), n = 0, 1 introduced in Ref. [45] may
also be expressed in terms of the Fλ

mλ
(sf , µ) through

Fλ
mλ

(n,µ) = 1√
2

[n][s]−1
∑
sf

(2sf + 1)

×W

(
λ

1

2
s

1

2
; sf n

)
Fλ

mλ
(sf , µ), (13)

or conversely

Fλ
mλ

(sf , µ) =
√

2[s][sf ]−1
∑

n

W

(
λ

1

2
s

1

2
; sf n

)
Fλ

mλ
(n,µ).

(14)

It may be noted that the irreducible tensor operators
Sn

mn
( 1

2 , 1
2 ) of rank n in Ref. [45] are identified as

S0
0

(
1

2
,

1

2

)
= 1

S1
±1

(
1

2
,

1

2

)
= ∓ 1√

2
(σx ± iσy) (15)

S1
0

(
1

2
,

1

2

)
= σz,

in terms of Pauli matrices. It may perhaps be mentioned that
in the case of kaon photoproduction, the rows and columns
of these matrices are to be labeled by the spin states of
the hyperon and nucleon, respectively. In the particular case
of photoproduction of pseudoscalar mesons, the connection
between our amplitudes given by Eq. (9) with φ = 0 in the
Madison frame [44], and those of CGLN is established in
Appendix A.

B. Irreducible tensor amplitudes in the Transverse frame

The Transverse frame (TF) may be defined as the right-
handed Cartesian coordinate system with the z axis chosen
along k × q, i.e., transverse to the reaction plane and with the
x axis chosen along k. The explicit form for 〈f |F(µ)|i〉, in
this frame given by〈(

s
1

2

)
sf mf ; q

∣∣∣∣F
∣∣∣∣ kûµ;

1

2
mi

〉

= 4π (2π )
1
2

∞∑
l=0

(−i)l
∞∑

L=1

iL[L]

L+ 1
2∑

j=L− 1
2

(iµ)f+(L,l)F j

lsf ;L

×
L∑

M=−L

C

(
L

1

2
j ; Mmim

)
C(lsf j ; mlmf m)

×DL
Mµ

(
0,

π

2
, 0
)

Ylml

(π

2
, θ
)

, (16)

instead of Eq. (4), so that the irreducible tensor amplitudes in
TF are given by

Fλ
mλ

(sf , µ)T F = 4π (2π )
1
2

∞∑
l=0

∞∑
L=1

(i)L−l
∑

j

(−1)L+l+ 1
2 −j

× [j ]2[L][sf ]−1W

(
L

1

2
lsf ; jλ

)

×F j

lsf ;LAλ
mλ

(µ, θ ), (17)

where

Aλ
mλ

(µ, θ ) = (iµ)f+(L,l)
∑
M

(−1)MC (lLλ; ml − Mmλ)

×Ylml

(π

2
, θ
)

dL
Mµ

(π

2

)
, (18)

which now defines the angular distribution of the meson as a
function of θ in the TF.

The amplitudes (17) are related to Fλ
mλ

(sf , µ) in the
Madison frame through

Fλ
mλ

(sf , µ)T F =
+λ∑

m′
λ=−λ

Dλ
m′

λmλ

(π

2
,
π

2
, π
)
Fλ

mλ′ (sf , µ). (19)

In fact, the irreducible tensor amplitudes Fλ
mλ

(sf , µ)AF in
any frame (AF) may be expressed in terms of the Fλ

mλ
(sf , µ)GF

in any given frame (GF) through

Fλ
mλ

(sf , µ)AF =
∑
m′

λ

Dλ
m′

λmλ
(α, β, γ )Fλ

m′
λ
(sf , µ)GF (20)
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if (α, β, γ ) denote the Euler angles [43] which characterize
rotation connecting AF from GF. The relationship between
the irreducible tensor amplitudes and helicity amplitudes is
elucidated in Appendix B.

It is sometimes convenient to chose a frame whose z axis
is along q, y axis is along (k × q), and x axis is along (k ×
q) × q, in which case α = 0, β = θ , and γ = 0, when GF
is identified with MF. The spin states |sms〉 of the meson
defined with respect to this frame remain the same, when we
make a Lorentz transformation along q to reach the meson
rest frame. This Lorentz transformation is needed en route to
Gottfried-Jackson frame [46].

We will express the differential cross section and all spin
observables in the next section in terms of bilinear irreducible
tensors B�

m�
of rank � constructed out of theFλ

mλ
(sf , µ). It may

be noted that the B�
m�

are related to observables measurable
experimentally, which may conveniently be obtained in any
required frame by choosing irreducible tensor amplitudes in
the appropriate frame.

III. DIFFERENTIAL CROSS-SECTION AND
SPIN OBSERVABLES

The unpolarized differential cross section, in c.m. frame, is
given by

dσ0

d
= 1

2

∑
µ=−1,1

dσ (µ)

d
, (21)

where dσ (µ)/d defined by Eq. (2) is readily given, on using
Eqs. (3) and (8) by

dσ (µ)

d
= q

2k

∑
sf

(2sf + 1)
∑
mλ

∣∣Fλ
mλ

(sf , µ)
∣∣2. (22)

A. Beam analyzing powers

The beam analyzing power �3 with respect to left and right
circular polarized states is readily given by

dσ0

d
�3 = dσ (+1)

d
− dσ (−1)

d
, (23)

where dσ0/d and dσ (µ)/d for µ = ±1 are known from
Eqs. (21) and (22). It is clear from Eq. (1) that

ûx = 1√
2

(û+1 + û−1); ûy = −i√
2

(û+1 − û−1), (24)

so that photons linearly polarized along an azimuthal angle α

are represented by

ûα = ûx cos α + ûy sin α

= 1√
2

[û+1e
−iα + û−1e

iα]. (25)

The differential cross section, when the beam is linearly
polarized along α is then given by

dσ (α)

d
= q

4k

∑
sf

(2sf + 1)
∑

λ

∑
mλ

× ∣∣Fλ
mλ

(sf , 1)e−iα + Fλ
mλ

(sf ,−1)eiα
∣∣2 (26)

using which we may readily define the beam analyzing powers
�1 and �2, with respect to linearly polarized states, through

dσ0

d
�1 = dσ (α = 0)

d
− dσ (α = π/2)

d
(27)

= q

k

∑
sf

[sf ]2
∑

λ

∑
mλ

×�[Fλ
mλ

(sf , 1)Fλ
mλ

(sf ,−1)∗
]
, (28)

dσ0

d
�2 = dσ (α = π/4)

d
− dσ (α = 3π/4)

d
(29)

= q

k

∑
sf

[sf ]2
∑

λ

∑
mλ

×[Fλ
mλ

(sf , 1)Fλ
mλ

(sf ,−1)∗
]
, (30)

where Fλ
mλ

(sf , µ)∗ denotes the complex conjugate of Eq. (9).
We may note that the analyzing powers �1, �2, �3

correspond, respectively, to the well-known Stokes parameters
s1, s2, s3 in terms of which the state of polarization of the beam
may be described by the density matrix

ργ = 1
2

[
1 + σ

γ

1 s1 + σ
γ

2 s2 + σ
γ

3 s3
]
, (31)

where σ
γ

1 , σ
γ

2 , σ
γ

3 denote Pauli matrices, whose rows and
columns are labeled by û±1. We may also note that any
arbitrary state of polarization of radiation, represented by a
point on the Poincare sphere with polar coordinates (θP , ϕP ),
may be represented by

ε̂(α, β) = ûα cos β + i ûα+π/2 sin β, (32)

with 0 � α = ϕP /2 < π and −π/4 � β = π/4 − θP /2 � π/4,
corresponding to which the differential cross section is given
by

dσ (α, β)

d
= q

4k

∑
sf

[sf ]2
∑

λ

∑
mλ

∣∣Fλ
mλ

(sf , 1)

× (cos β + sin β)e−iα + Fλ
mλ

(sf ,−1)

× (cos β − sin β)eiα
∣∣2 (33)

= q

4k

∑
sf

[sf ]2
∑

λ

∑
mλ

[
(1 + sin 2β)

∣∣Fλ
mλ

(sf , 1)
∣∣2

+ (1 − sin 2β)
∣∣Fλ

mλ
(sf ,−1)

∣∣2
+ 2 cos 2β sin 2α�[Fλ

mλ
(sf , 1)Fλ

mλ
(sf ,−1)∗

]
+ 2 cos 2β sin 2α[Fλ

mλ
(sf , 1)Fλ

mλ
(sf ,−1)∗

]]
,

(34)

which readily specializes to give Eqs. (21), (22), and (26).

B. General expression for hadron spin observables

The state of polarization of the target is conveniently
specified in terms of the initial spin density matrix

ρi = 1
2 [1 + σ · P], (35)

where σ denote Pauli spin matrices for the nucleon and P
its polarization. Using Eqs. (31) and (35), the state of hadron
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polarization in the final state is, in general, described by the
final spin density matrix

ρf =
∑

µ,µ′=−1,1

F(µ)ρiρ
γ

µµ′F†(µ′) (36)

where ρ
γ

µµ′ denote elements of Eq. (31) and F†(µ), which
denotes the hermitian conjugate of Eq. (3) with respect to
hadron spin states may be written as

F†(µ) =
∑
sf

∑
λ

(−1)
1
2 −sf [sf ][si]

−1

× (Sλ(si, sf ) · F†λ(sf , µ)), (37)

where the notation

F†λ
mλ

(sf , µ) = (−1)mλFλ
−mλ

(sf , µ)∗ (38)

is used. The polarized differential cross section, in general, is
given by

dσ

d
= q

k
Trρf , (39)

where Tr denotes the trace or spur. The results of Sec. III A are
simply particular cases of Eq. (39) with P = 0. Therefore,
all the analyzing powers and initial spin correlations may
be defined in terms of Eq. (39), whereas comprehensive
information with regard to spin transfers as well as final state
polarizations and spin correlations are contained in Eq. (36).
To proceed further and to derive explicit formulas for the
spin observables in terms of the irreducible tensor amplitudes
Eq. (9), we introduce the notations

ρi = 1

2

1∑
λi=0

(
Sλi

(
1

2
,

1

2

)
· P λi

)
, (40)

where P 0
0 = 1; P 1

0 = Pz; P 1
±1 = ∓ 1√

2
[Px ± iPy] and

ρf (µ,µ′) = F(µ)ρiF†(µ′)

=
∑
sf ,s ′

f

sf +s ′
f∑

λf =|sf −s ′
f |

(Sλf (sf , s ′
f ) · tλf ). (41)

Using the known [42] property

(Sλ2 (s3, s2) ⊗ Sλ1 (s2, s1))λmλ

= (−1)λ1+λ2−λ[λ1][λ2][s2]W (s1λ1s3λ2; s2λ)

× Sλ
mλ

(s3, s1), (42)

of the irreducible tensor operators and standard Racah algebra,
we have

t
λf

µf
=

∑
λi ,�,λ,λ′

G(P λi ⊗ B�(λsf ; λ′s ′
f )µµ′)

λf

µf
, (43)

where B�
m�

(λsf ; λ′s ′
f )µµ′ denote the bilinear irreducible ten-

sors

B�
m�

(λsf ; λ′s ′
f )µµ′ = (Fλ(sf , µ) ⊗ F† λ′

(s ′
f , µ′))�m�

(44)

of rank � and the geometrical factors G are given by

G = 1√
2

(−1)s
′
f − 1

2 [s ′
f ][λi][λ][λ′][�]

×
λi+λ′∑

λ′′=|λi−λ′|
(−1)λf −λ′−λ′′+�[λ′′]2

×W

(
s ′
f λ′ 1

2
λi ;

1

2
λ′′
)

W

(
s ′
f λ′′sf λ;

1

2
λf

)
×W (λiλ

′λf λ; λ′′�). (45)

We may thus express ρf in terms of its elements

ρ
f

sf mf ;s ′
f m′

f
=
∑
λf

(−1)µf C(s ′
f λf sf ; m′

f − µf mf )[λf ]T
λf

µf
,

(46)

where the T
λf

µf
are given in general by

T
λf

µf
=

∑
µ,µ′=−1,1

t
λf

µf
ρ

γ

µµ′ , (47)

in terms of t
λf

µf
given by Eq. (43) and ργ specified by Eq. (31).

If the target is unpolarized, the T
λf

µf
reduce to

T
λf

µf
= 1

2

∑
λ,λ′

(−1)s
′
f − 1

2 [λ][λ′][s ′
f ]

×W

(
s ′
f λ′sf λ;

1

2
λf

)
B

λf

µf
(λsf ; λ′s ′

f ), (48)

where B
λf

µf
(λsf ; λ′s ′

f ) are given in terms of Ref. (44) through

B�
m�

(λsf ; λ′s ′
f ) =

∑
µ,µ′=−1,1

B�
m�

(λsf ; λ′s ′
f )µµ′ρ

γ

µµ′ , (49)

with � = λf and m� = µf .
If the beam is also unpolarized, we may replace ρ

γ

µµ′ by
1
2δµµ′ , so that we have

B�
m�

(λsf ; λ′s ′
f )0 = 1

2

∑
µ=−1,1

B�
m�

(λsf ; λ′s ′
f )µµ. (50)

We may note also that Eq. (49) may then be written as

B�
m�

(λsf ; λ′s ′
f ) = 1

2

[
B�

m�
(λsf ; λ′s ′

f )0

+
3∑

i=1

siB
�
m�

(λsf ; λ′s ′
f )i

]
, (51)

where s1, s2, s3 denote the Stokes parameters characterizing
the state of polarization of the beam and

B�
m�

(λsf ; λ′s ′
f )i =

∑
µ,µ′=−1,1

B�
m�

(λsf ; λ′s ′
f )µµ′(σi)µµ′ . (52)

It may be noted that s0 representing the intensity of
the beam is chosen as 1. It is worth noting that the
bilinears B�

m�
(λsf ; λ′s ′

f )µµ′ are known individually, if the
B�

m�
(λsf ; λ′s ′

f )i=0,1,2,3 are determined empirically.
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C. Target analyzing powers

The differential cross section Eq. (39) for a polarized target
may readily be expressed in the form

dσ

d
= dσ0

d
[1 + A · P], (53)

where the target analyzing power A is given in terms of its
spherical components A1

0 = Az; A1
±1 = ∓ 1√

2
[Ax ± iAy] by

dσ0

d
A1

ν = 1√
2

q

k

∑
sf

[sf ]2
∑
λ,λ′

(−1)λ[λ][λ′]

×W

(
1

2
1sf λ;

1

2
λ′
)

B1
ν (λsf ; λ′sf ). (54)

D. Polarization in the final state

Starting with Eq. (46) and effecting a change of basis from
the channel spin states to the individual spin states of the meson
and the nucleon in the final state through

ρ
f

msmN ;m′
sm

′
N

=
∑
sf ,s ′

f

C

(
s

1

2
sf ; msmNmf

)
ρ

f

sf mf ;s ′
f m′

f

×C

(
s

1

2
s ′
f ; m′

sm
′
Nm′

f

)
, (55)

we may express ρf in the form

ρf = 1

2[s]2

∑
λs ,λN ,λf

((
Sλs (s, s) ⊗ SλN

(
1

2
,

1

2

))λf

· Eλf

)

(56)

where

E
λf

µf
=

√
2 [s]

∑
sf ,s ′

f

(−1)s
′
f −sf (−1)λs+λN −λf

× [s ′
f ][sf ]2[λs][λN ]




s 1
2 s ′

f

s 1
2 sf

λs λN λf


 T

λf

µf
, (57)

and {} denotes the Wigner 9j symbol [47]. The irreducible
tensors E

λf

µf
describe clearly that the meson and nucleon spins

are entangled in the final state through Eq. (57). It is clear
from Eqs. (48) to (50) that the entanglement persists even if
the target and beam are unpolarized. If no observations are
made on the spin state of the recoil nucleon in the final state,
the state of polarization of the emitted meson is characterized
by the density matrix ρs , whose elements are given by

ρs
msm′

s
=

1
2∑

mN=− 1
2

ρ
f

msmN ;m′
smN

. (58)

Likewise, if no observations are made on the meson spin
state, the recoil nucleon polarization is specified by the density
matrix ρr whose elements are given by

ρr
mN m′

N
=

s∑
ms=−s

ρ
f

msmN ;msm
′
N
. (59)

E. Recoil nucleon polarization and nucleon spin transfer

Expressing ρr given by Eq. (59) in the form

ρr = Trρr

2
[1 + σ · R], (60)

the recoil nucleon polarization R is given in terms of its
spherical components R1

0 = Rz; R1
±1 = ∓ 1√

2
[Rx ± iRy] by

dσ0

d
R1

µf
= q

k

∑
sf ,s ′

f

GrT
1
µf

(61)

where the geometrical factor Gr is given by

Gr =
√

2[s ′
f ][sf ]2W

(
s 1

2 sf 1; s ′
f

1
2

)
. (62)

If the target is polarized, it is clear from Eqs. (43) and (47)
that R1

µf
is dependent on P and this can be brought out by

expressing Eq. (61) in the form

dσ0

d
R1

µf
=
∑
µi

R′′
µf µi

P 1
µi

(63)

in terms of the nucleon spin transfers R′′
µf µi

which are readily
given by

R′′
µf µi

= q

k

∑
�

C(1�1; µim�µf )
∑
sf ,s ′

f

Gr

×
∑
λ,λ′

G B�
m�

(λsf ; λ′s ′
f ), (64)

where Gr,G and B�
m�

(λsf ; λ′s ′
f ) are given respectively by

Eqs. (62), (45), and (49). It may be noted that the recoil nucleon
is polarized even in the absence of target polarization.

F. Meson polarization and target nucleon to meson spin transfer

Using τλs
µs

= Sλs
µs

(s, s), we may express ρs given by Eq. (58)
in the form

ρs = Trρs

2s + 1

2s∑
λs=0

(τλs · tλs ), (65)

in terms of Fano statistical tensors tλs
µs

of rank λs which are
given by

dσ0

d
tλs

µs
= q

k

∑
sf ,s ′

f

GsT
λs

µs
, (66)

where the geometrical factor Gs is given by

Gs = (−1)sf −s ′
f [sf ]2[s ′

f ]W
(

1
2 ssf λf ; s ′

f s
)

. (67)

Noting from Eqs. (43) and (47) that T λs
µs

are dependent on P ,
when the target is polarized, we may define the target nucleon
to meson spin transfer T λs1

µsµi
through

dσ0

d
tλs

µs
=
∑
µi

T λs1
µsµi

P 1
µi

(68)
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so that

T λs1
µsµi

= q

k

∑
�

C(1�λs ; µim�µs)

×
∑
sf ,s ′

f

Gs

∑
λ,λ′

GB�
m�

(λsf ; λ′s ′
f ). (69)

The meson is polarized even if the target is unpolarized. In
such a case, the Fano statistical tensors tλs

µs
characterizing the

meson polarization are given by Eq. (66), where use is made
of Eq. (48) for T λs

µs
on the right-hand side of Eq. (66).

IV. SUMMARY AND OUTLOOK

Photo production of mesons with arbitrary spin-parity-sπ

is described in terms of a set of 4(2s + 1) independent
irreducible tensor amplitudes, which are expressible in terms
of a single compact formula given by Eq. (9) in terms of the
“magnetic” and “electric” multipole amplitudes Mj

lsf ;L and

Ej

lsf ;L , respectively, introduced through Eq. (6). All hadron
spin observables viz., the target analyzing power, meson and
recoil nucleon polarizations, target to meson and target to
recoil nucleon spin transfers and spin correlations and beam
analyzing powers have been expressed in terms of the bilinear
tensors B�

m�
(λsf ; λ′s ′

f )µµ′ of rank � = 0, ..., 2(s + 1) defined
by Eq. (44). The unpolarized differential cross section itself
is clearly proportional to B0

0 (λsf ; λsf )0, whereas hadron spin
observables in experiments with an unpolarized beam are given
by B�

m�
(λsf ; λ′s ′

f )0 in accordance with Eq. (50). It is also clear
from Eqs. (51) and (52) that each element B�

m�
(λsf ; λ′s ′

f )µµ′

for µ,µ′ = ±1 is known if the four B�
m�

(λsf ; λ′s ′
f )i for i =

0, 1, 2, 3 with unpolarized and appropriate partially polarized
beams are measured for a given � and m�. Thus our approach
employing irreducible tensor amplitudes leads to a systematic
and elegant procedure to analyze experimental data on all
spin and polarization observables including beam analyzing
powers and the differential cross section for photo production
of mesons with arbitrary spin-parity sπ . Further work is in
progress.
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APPENDIX A: CONNECTION BETWEEN IRREDUCIBLE
TENSOR AMPLITUDES AND CGLN AMPLITUDES FOR

PION PRODUCTION

For the particular case of pseudoscalar meson photopro-
duction, the final-state channel spin can take only one value,
namely sf = 1

2 , because s = 0. It is clear that Fλ
mλ

( 1
2 , µ)

for λ = 0, 1 represent respectively the nucleon spin indepen-
dent and spin dependent amplitudes. The CGLN amplitudes
Fi , i = 1, ..., 4 in terms of which the reaction amplitude F
is expressed by Eq. (7.2) of [1] are well known. Rewriting
Eq. (7.2) of Ref. [1] conveniently as

F = L + i σ · K , (A1)

in terms of the nucleon spin-independent and spin-dependent
amplitudes L and K , respectively, we may note

L = q̂ · (k̂ × ε̂) F2 (A2)

K = ε̂ (F1 − F2 cos θ )

+(q̂ · ε̂)[q̂ F4 + k̂ (F2 + F3)], (A3)

where ε̂ denotes photon polarization that is orthogonal to k̂.
We may define L(µ) and K1

mλ
(µ) by substituting ε̂ = ûµ in

Eqs. (A2) and (A3), respectively, after expressing K in terms of
its spherical components K1

0 = Kz ; K1
±1 = ∓ 1√

2
(Kx ± iKy).

We thus have

F0
0

(
1

2
,±1

)
= L(±1) = ∓ i√

2
F2 sin θ (A4)

F1
0

(
1

2
,±1

)
= i K1

0 (±1)

= i√
2

sin θ (F2 + F3 + F4 cos θ ) (A5)

F1
−1

(
1

2
,±1

)
= i K1

−1(±1)

= ±i

(
F1 − F2 cos θ + F4

sin2 θ

2

)
(A6)

F1
1

(
1

2
,±1

)
= i K1

1 (±1) = ∓iF4
sin2 θ

2
, (A7)

where the irreducible tensor amplitudes are explicitly given,
on using Eq. (9), with ϕ = 0 in Madison frame by

F0
0

(
1

2
,±1

)
= ∓ 4π√

2
sin θ

∑
l

P ′
l

1√
l(l + 1)

× [(l + 1)Ml+ 1
2

l,l + lMl− 1
2

l,l

]
(A8)

F1
0

(
1

2
,±1

)
= 4π√

2
sin θ

∑
l

P ′
l


− Ml+ 1

2
l,l√

l(l + 1)
+ Ml− 1

2
l,l√

l(l + 1)

−
√

(l + 2)

(l + 1)
E l+ 1

2
l,l+1 +

√
(l − 1)

l
E l− 1

2
l,l−1


 (A9)

F1
−1

(
1

2
,±1

)
= ±2π

∑
l

Pl

[√
l(l + 1)

(
Ml+ 1

2
l,l −Ml− 1

2
l,l

)

−
√

(l + 2)(l + 1)E l+ 1
2

l,l+1−
√

l(l−1)E l− 1
2

l,l−1

]

(A10)
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F1
1 ( 1

2 ,±1) = ±2π sin2 θ
∑

l

P ′′
l


− Ml+ 1

2
l,l√

l(l + 1)

+ Ml− 1
2

l,l√
l(l + 1)

− E l+ 1
2

l,l+1√
(l + 2)(l + 1)

− E l− 1
2

l,l−1√
l(l − 1)


 . (A11)

Comparing (A4) to (A7) with (A8) to (A11) and using
Eqs. (7.3) to (7.6) of CGLN [1], for Fi , i = 1, ..., 4, we may
identify

Ml± 1
2

l,L = i

√
L(L + 1)

4π
Ml± (A12)

E l± 1
2

l,L = −i

√
L(L + 1)

4π
El± (A13)

in terms of the multipole amplitudes, Ml± and El± of CGLN
[1].

The photoproduction amplitudes for specific reactions are
readily obtained using Eq. (10)

〈nπ+|F |γp〉 = −
√

2

3

(
F1

1
2 − F1

3
2 +

√
3F0

1
2
)

(A14)

〈pπ0|F |γp〉 = 1
3

(
2F1

3
2 + F1

1
2 +

√
3F0

1
2
)

(A15)

〈pπ−|F |γ n〉 =
√

2

3

(
F1

3
2 − F1

1
2 +

√
3F0

1
2
)

(A16)

〈nπ0|F |γ n〉 = 1
3

(
2F1

3
2 + F1

1
2 −

√
3F0

1
2
)
. (A17)

It may be noted that if the different charge states of the pion
are defined in the real three dimensional isospin space through

π0 = πz; π± = 1√
2

(πx ± i πy), (A18)

an extra overall minus sign has to be attached to (A14), because
the three charged state of the pion are identified through
|1νm〉, νm = 0,±1 in deriving (A14) to (A17). We may then
compare the above with

〈nπ+|F |γp〉 =
√

2(F (−) + F (0)) (A19)

〈pπ0|F |γp〉 = F (+) + F (0) (A20)

〈pπ−|F |γ n〉 = −
√

2(F (−) − F (0)) (A21)

〈nπ0|F |γ n〉 = F (+) − F (0) (A22)

in terms of the traditional isospin amplitudes of CGLN and
hence identify

F (0) = 1√
3
F0

1
2 (A23)

F (+) = 1
3

(
F1

1
2 + 2F1

3
2
)

(A24)

F (−) = 1
3

(
F1

1
2 − F1

3
2
)
. (A25)

APPENDIX B: HELICITY AMPLITUDES

The helicity amplitudes may be defined through

Hµsµf ;µiµ ≡ 〈sµs ; 1
2µf

∣∣F ∣∣ 1
2µi ; 1µ

〉
(B1)

where µ and µs denote the photon and meson spin projections
along k and q, respectively, whereas | 1

2µi〉 and | 1
2µf 〉 denote

initial and final helicity states with conventional phases
following [5] and having spin projections µi and µf along −k
and −q, respectively. We may note that the helicity eigenstate
of the photon is given by

|1µ〉 ≡ ξ̂µ = −µûµ; µ = ±1, (B2)

following Eq. (1). We also observe that∣∣∣∣sµs ;
1

2
µf

〉
=
∑
sf

C

(
s

1

2
sf ; µs − µf µ′

f

) ∣∣∣∣
(

s
1

2

)
sf µ′

f

〉

(B3)

in terms of channel spin states |(s 1
2 )sf µ′

f 〉 that are expressed
as ∣∣∣∣

(
s

1

2

)
sf µ′

f

〉
=
∑
mf

d
sf

mf µ′
f
(θ )

∣∣∣∣
(

s
1

2

)
sf mf

〉
(B4)

with respect to q as the quantization axis. The polar coordinates
of q are (q, θ, 0) in the Madison frame [44] where the plane
containing q and k is chosen as the reaction plane with the
z axis along k. Thus, we have

Hµsµf ;µiµ = −µ
∑
sf mf

C

(
s

1

2
sf ; µs − µf µ′

f

)
d

sf

mf µ′
f
(θ )

×
∑
mi

〈(
s

1

2

)
sf mf

∣∣∣∣F(µ)

∣∣∣∣12mi

〉
δmi,−µi

,

(B5)

where the matrix elements are expressible as

〈(
s

1

2

)
sf mf

∣∣∣∣F(µ)

∣∣∣∣12mi

〉

=
∑

λ

C

(
1

2
λsf ; mi − mλmf

)
(−1)mλ[λ]Fλ

mλ
(sf , µ) (B6)

in terms of the irreducible tensor amplitudes given by Eq. (9)
with φ = 0. Using Eq. (B5) and Eq. (11), we obtain the
symmetry relation,

H−µs−µf ;−µi−µ = −π (−1)s+µs+µi−µf Hµsµf ;µiµ. (B7)

In the particular case of psuedoscalar meson photoproduction
with s = µs = 0, sf = 1

2 and π = −1, the helicity amplitudes
are explicitly given by

H− 1
2 ;− 1

2 1
=

√
2 sin θ

2F
1
1

(
1
2 , 1
)− cos

θ

2

[
F0

0

(
1
2 , 1
)

+F1
0

(
1
2 , 1
)]

(B8)

H− 1
2 ;

1
2 1

= −
√

2 cos θ
2F

1
−1( 1

2 , 1) − sin θ
2

[
F0

0

(
1
2 , 1
)

−F1
0

(
1
2 , 1
)]

(B9)
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H 1
2 ;− 1

2 1
=

√
2 cos θ

2F
1
1

(
1
2 , 1
)+ sin θ

2

[
F0

0

(
1
2 , 1
)

+F1
0

(
1
2 , 1
)]

(B10)

H 1
2 ;

1
2 1

=
√

2 sin θ
2F

1
−1

(
1
2 , 1
)− cos θ

2

[
F0

0

(
1
2 , 1
)

−F1
0

(
1
2 , 1
)]

, (B11)

satisfying

H−µf ;−µi−µ = (−1)µi−µf Hµf ;µiµ, (B12)

in exact agreement with Walker [16], where the notation
H1,H2,H3, and H4 is used, respectively, for the four indepen-
dent helicity amplitudes (B8),...,(B11). Using (A8) to (A11)
in (B6), we readily obtain the helicity amplitudes in terms of
the CGLN amplitudes as

H1 = − 1√
2

sin θ cos
θ

2
[F3 + F4] (B13)

H2 =
√

2 cos
θ

2

[
(F2 − F1) + 1

2
(1 − cos θ )(F3 − F4)

]
(B14)

H3 = 1√
2

sin θ sin
θ

2
(F3 − F4) (B15)

H4 =
√

2 sin
θ

2

[
(F1 + F2) + 1

2
(1 + cos θ )(F3 + F4)

]
, (B16)

which are in exact agreement with Walker [16].
In the case of vector meson photoproduction with s = 1, we

may once again use Eqs. (B6) in (B5) to obtain explicitly the
12 independent helicity amplitudes in terms of the irreducible
tensor amplitudes as

H−1
1
2 ;− 1

2 1

= cos
θ

2

{
−
√

3

2
(1 − cos θ )

[
F1

0

(
3

2
, 1

)
+ F2

0

(
3

2
, 1

)]

− (1 + cos θ )F2
2

(
3

2
, 1

)}
+ sin

θ

2

{
−

√
3

2
(1 − cos θ )

×
[
F1

−1

(
3

2
, 1

)
+ 1√

3
F2

−1

(
3

2
, 1

)]
−

√
3

2
(1 + cos θ )

×
[
F1

1 ( 3
2 , 1) +

√
3F2

1

(
3

2
, 1

)]}
(B17)

H
0

1
2 ;− 1

2 1

= cos
θ

2

{√
2

3
F1

1

(
1

2
, 1

)
+
√

3

2
(1 − cos θ )

[
F1

−1

(
3

2
, 1

)

+ 1√
3
F2

−1

(
3

2
, 1

)]
+ 1√

6
(3 cos θ − 1)

[
F1

1

(
3

2
, 1

)

+
√

3F2
1

(
3

2
, 1

)]}
+ sin

θ

2

{
1√
3

[
F0

0

(
1

2
, 1

)

+F1
0

(
1

2
, 1

)]
+ 1√

3
(3 cos θ + 1)

[
F1

0

(
3

2
, 1

)

+F2
0

(
3

2
, 1

)]
−

√
2(1 + cos θ )F2

2

(
3

2
, 1

)}
(B18)

H
1

1
2 ;− 1

2 1

= cos
θ

2

{
−
√

2

3

[
F0

0

(
1

2
, 1

)
+ F1

0

(
1

2
, 1

)]

− 1√
6

(3 cos θ − 1)

[
F1

0

(
3

2
, 1

)
+ F2

0

(
3

2
, 1

)]

− (1 − cos θ )F2
2

(
3

2
, 1

)}
+ sin

θ

2

{
2√
3
F1

1

(
1

2
, 1

)

−
√

3

2
(1 + cos θ )

[
F1

−1

(
3

2
, 1

)
+ 1√

3
F2

−1

(
3

2
, 1

)]

+ 1

2
√

3
(3 cos θ + 1)

[
F1

1

(
3

2
, 1

)
+

√
3F2

1

(
3

2
, 1

)]}

(B19)

H−1
1
2 ;

1
2 1

= cos
θ

2

{√
3

2
(1 − cos θ )

[
F1

−1

(
3

2
, 1

)

−
√

3F2
−1

(
3

2
, 1

)]
+

√
3

2
(1 + cos θ )

[
F1

1

(
3

2
, 1

)

− 1√
3
F2

1

(
3

2
, 1

)]}
+ sin

θ

2

{√
3

2
(1 + cos θ )

× [F1
0

(
3

2
, 1

)
− F2

0

(
3

2
, 1

)
] − (1 − cos θ )

×F2
−2

(
3

2
, 1

)}
(B20)

H
0

1
2 ;

1
2 1

= cos
θ

2

{
− 1√

3

[
F0

0

(
1

2
, 1

)
− F1

0

(
1

2
, 1

)]

− 1√
3

(3 cos θ − 1)

[
F1

0

(
3

2
, 1

)
− F2

0

(
3

2
, 1

)]

+
√

2(1 − cos θ )F2
−2

(
3

2
, 1

)}

+ sin
θ

2

{√
2

3
F1

−1

(
1

2
, 1

)
+
√

3

2
(1 + cos θ )

×
[
F1

1

(
3

2
, 1

)
− 1√

3
F2

1

(
3

2
, 1

)]

− 1√
6

(3 cos θ + 1)

[
F1

−1

(
3

2
, 1

)
−

√
3F2

−1

(
3

2
, 1

)]}
(B21)

H
1

1
2 ;

1
2 1

= cos
θ

2

{
− 2√

3
F1

−1

(
1

2
, 1

)
+

√
3

2
(1 − cos θ )

×
[
F1

1

(
3

2
, 1

)
− 1√

3
F2

1

(
3

2
, 1

)]
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+ 1

2
√

3
(3 cos θ − 1)

[
F1

−1

(
3

2
, 1

)

−
√

3F2
−1

(
3

2
, 1

)]}
+ sin

θ

2

{
−
√

2

3

[
F0

0

(
1

2
, 1

)

−F1
0

(
1

2
, 1

)]
− 1√

6
(3 cos θ + 1)

[
F1

0

(
3

2
, 1

)

−F2
0

(
3

2
, 1

)]
− (1 + cos θ )F2

−2

(
3

2
, 1

)}
(B22)

H−1− 1
2 ;− 1

2 1

= cos
θ

2

{
− 2√

3
F1

1

(
1

2
, 1

)
+

√
3

2
(1 − cos θ )

×
[
F1

−1

(
3

2
, 1

)
+ 1√

3
F2

−1

(
3

2
, 1

)]

+ 1

2
√

3
(3 cos θ − 1)

[
F1

1

(
3

2
, 1

)

+
√

3F2
1

(
3

2
, 1

)]}
+ sin

θ

2

{
−
√

2

3

[
F0

0

(
1

2
, 1

)

+F1
0

(
1

2
, 1

)]
+ 1√

6
(3 cos θ + 1)

[
F1

0

(
3

2
, 1

)

+F2
0

(
3

2
, 1

)]
− (1 + cos θ )F2

2

(
3

2
, 1

)}
(B23)

H
0− 1

2 ;− 1
2 1

= cos
θ

2

{
1√
3

[
F0

0

(
1

2
, 1

)
+ F1

0

(
1

2
, 1

)]

− 1√
3

(3 cos θ − 1)

[
F1

0

(
3

2
, 1

)
+ F2

0

(
3

2
, 1

)]

−
√

2(1 − cos θ )F2
2

(
3

2
, 1

)}

+ sin
θ

2

{
−
√

2

3
F1

1

(
1

2
, 1

)
−
√

3

2
(1 + cos θ )

×
[
F1

−1

(
3

2
, 1

)
+ 1√

3
F2

−1

(
3

2
, 1

)]

+ 1√
6

(3 cos θ + 1)

[
F1

1

(
3

2
, 1

)
+

√
3F2

1

(
3

2
, 1

)]}

(B24)

H
1− 1

2 ;− 1
2 1

= cos
θ

2

{√
3

2
(1 + cos θ )

[
F1

−1

(
3

2
, 1

)

+ 1√
3
F2

−1

(
3

2
, 1

)]
+

√
3

2
(1 − cos θ )

[
F1

1

(
3

2
, 1

)

+
√

3F2
1

(
3

2
, 1

)]}
+ sin

θ

2

{
−
√

3

2
(1 + cos θ )

×
[
F1

0

(
3

2
, 1

)
+ F2

0

(
3

2
, 1

)]
− (1 − cos θ )

×F2
2

(
3

2
, 1

)}
(B25)

H−1− 1
2 ;

1
2 1

= cos
θ

2

{√
2

3

[
F0

0

(
1

2
, 1

)
− F1

0

(
1

2
, 1

)]

− 1√
6

(3 cos θ − 1)

[
F1

0

(
3

2
, 1

)
− F2

0

(
3

2
, 1

)]

+ (1 − cos θ )F2
−2

(
3

2
, 1

)}

+ sin
θ

2

{
− 2√

3
F1

−1

(
1

2
, 1

)
+

√
3

2
(1 + cos θ )

×
[
F1

1

(
3

2
, 1

)
− 1√

3
F2

1

(
3

2
, 1

)]

− 1

2
√

3
(3 cos θ + 1)

[
F1

−1

(
3

2
, 1

)

−
√

3F2
−1

(
3

2
, 1

)]}
(B26)

H
0− 1

2 ;
1
2 1

= cos
θ

2

{√
2

3
F1

−1

(
1

2
, 1

)
+
√

3

2
(1 − cos θ )

×
[
F1

1

(
3

2
, 1

)
− 1√

3
F2

1

(
3

2
, 1

)]
+ 1√

6
(3 cos θ − 1)

×
[
F1

−1

(
3

2
, 1

)
−

√
3F2

−1

(
3

2
, 1

)]}
+ sin

θ

2

{
1√
3

×
[
F0

0

(
1

2
, 1

)
− F1

0

(
1

2
, 1

)]
− 1√

3
(3 cos θ + 1)

×
[
F1

0

(
3

2
, 1

)
− F2

0

(
3

2
, 1

)]
−
[√

2(1 + cos θ )

×F2
−2

(
3

2
, 1

)]}
(B27)

H
1− 1

2 ;
1
2 1

= cos
θ

2

{
−
√

3

2
(1 − cos θ )

[
F1

0

(
3

2
, 1

)

−F2
0

(
3

2
, 1

)]

+ (1 + cos θ )F2
−2

(
3

2
, 1

)}
+ sin

θ

2

{√
3

2
(1 + cos θ )

×
[
F1

−1

(
3

2
, 1

)
−

√
3F2

−1

(
3

2
, 1

)]
+

√
3

2
(1 − cos θ )

×
[
F1

1

(
3

2
, 1

)
− 1√

3
F2

1

(
3

2
, 1

)]}
, (B28)
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which are identifiable, respectively, with Hi,µs
, i = 1, ..., 4 of

Ref. [32]. It may be noted that the above formulas are not
restricted to threshold production but are applicable at higher
energies as well. Even at low energies, the higher-order partial
waves could be expected to play a role in determining the spin
observables.

Likewise, in anticipation of future experimental develop-
ments, explicit expressions for the helicity amplitudes for

photoproduction of higher spin mesons may also be obtained,
not only at threshold but also at all energies using Eq. (B6) in
Eq. (B5). Our approach thus provides incidentally an elegant
methodology to obtain the helicity amplitudes in terms of
the partial wave multipole amplitudes for all orders not only
in the case of vector meson photoproduction but also for
photoproduction of mesons with arbitrary spin-parity sπ , even
if s is greater than 1.
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