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Retrieving nuclear information from protons propagating through a thick target
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The multiple scattering of high-energy particles in a thick target is formulated in an impact parameter
representation. A formalism similar but not identical to that of Molière is obtained. We show that calculations
of particle beam broadening due to multiple Coulomb scattering alone can be given in closed form. The focus of
this study is on determining whether the broadening of the Coulomb angular distribution prevents the retrieval of
nuclear-interaction information from the measurement of the angular distributions of charged particles scattered
from a thick target. For this purpose, we study multiple scattering with both the nuclear and Coulomb interactions
included, and we do not make a small-angle expansion. Conditions for retrieving nuclear information from
high-energy protons propagating through a block of material are obtained.
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I. INTRODUCTION AND BASIC FORMALISM

Understanding and calculating the broadening of a particle
beam when it propagates through a block of materials are
important not only in making multiple-scattering corrections
for cross-section measurements in physics experiments but
also in many applications such as radiography by means of
high-energy protons. Many different theories of the multiple
scattering of electrons by thick targets have been formulated
in the past 60 years [1–7]. The theory of Molière [1,7] has
received extensive attention because it gives the best agreement
with data concerning the broadening of the Coulomb angular
distribution, arising from the multiple scattering of charged
particles from the atoms in thick targets. An excellent and
succinct derivation of the Molière theory was given by Mott
and Massey [8].

As one deals with a large (almost astronomical) number
of scatterers in a thick target, the numerical aspect of the
calculation becomes extremely demanding. One can obtain
good results provided that careful approximations are car-
ried out. Over the years, successful parametrizations of the
broadening of angular distributions due to Coulomb multiple
scattering have been established [9]. For hadronic projectiles,
such as protons, nuclear interactions also contribute to multiple
scattering. However, this latter aspect has not yet received
sufficient attention in the literature. In this work, our focus
is, therefore, on the effects of multiple scattering on angular
distributions in the Coulomb-nuclear interference region and
in the region where the nuclear interaction dominates. We
formulate the multiple-scattering problem in such a way that
the analytical evaluation of beam broadening not only becomes
possible in the case with Coulomb multiple scattering alone
but also is greatly facilitated when both nuclear and Coulomb
interactions are taken into consideration.

*giraud@dsm-mail.saclay.cea.fr
†liu@lanl.gov

For a very high energy (e.g., � 20 GeV) proton scattering
from a single nucleus, the Coulomb cross section decreases
rapidly with the increase of scattering angles in such a way
that the Coulomb cross section is negligible with respect to the
nuclear cross section already at scattering angles as small as
several milliradians. However, the Coulomb peak is rapidly
broadened by proton-atomic nucleus multiple scattering.
Clearly, for the purpose of extracting the forward amplitude
of the basic hadron-nucleus strong interaction, one should use
targets as thin as possible and then employ Molière-type theory
to correct for the Coulomb contribution from the measurement
(see, for example, Ref. [10]). On the other hand, in many
practical applications, the thickness of the “target” is often
fixed by specific needs and is by no means thin. It becomes,
therefore, interesting to know how much nuclear information
can still be learned from hadrons scattered from a thick target.
Certainly, the feasibility of learning nuclear information can
bring added value to probing materials with hadronic beams.
In other words, will the broadening of the Coulomb angular
distribution render impossible any study of the nuclear cross
sections? One naturally expects that the survival of nuclear
information, if any, depends on the target thickness, i.e., on
the number of nuclear scatterers that a proton encounters in
a block of material. We use our formalism to examine this
question.

In this section, after deriving the basic multiple-scattering
formalism, we discuss the important bearing of the ability to
retrieve nuclear information on many applications. In Sec. II,
we show the broadening of angular distributions by Coulomb
multiple scattering in closed form. The broadening of angular
distributions by combined Coulomb and nuclear interactions
are studied by means of semianalytical models in regions
of small momentum transfers (Sec. III) as well as large
momentum transfers (Sec. IV). We find that it is possible
to retrieve nuclear information from protons scattering from
a thick target. Conclusions and suggestions are presented in
Sec. V.
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It is well known that high-energy elastic scattering is
basically forward peaked, which allows one to make a very
good approximation in neglecting the longitudinal momentum
transfer. Glauber [11] has shown that in an impact-parameter
representation, every function O(q) of the transverse
momentum transfer q, whether O is an amplitude or a cross
section, can be parametrized in terms of a profile function φ(b)
defined in the impact plane, that is,

O(q) = (2π )−2
∫

d �b exp(i �q · �b)φ(b)

= (2π )−1
∫ ∞

0
bdbJ0(qb)φ(b), (1)

where azimuthal symmetry is assumed, J0 is the Bessel
function of the first kind, and q and b are the moduli of
the transverse momentum transfer �q and impact parameter
�b, respectively. Nonessential complications (e.g., spins, etc.)
are here understood. Conversely, the profile function results
from the inverse Fourier transform and is given by

φ(b) =
∫

d �q exp(−i �q · �b)O(q) = 2π

∫ ∞

0
qdqJ0(qb)O(q).

(2)

Without loss of generality, we consider a target which
consists of one kind of nuclei. For a thin target of thickness t

and atomic density ρ, the probability that a beam particle
undergoes a scattering is ptot

1 = tρσ tot
1 , where σ tot

1 is the
total cross section [12]. (The subscript 1 denotes the single
scattering.) The transmission probability is, therefore, given by
ptrans

1 = 1 − ptot
1 . From the definition of the differential cross

section σ1(�q), one obtains the sum rule σ tot
1 = ∫

d �qσ1(�q). The
scattering probability density p1(�q) is related to the differential
cross section by [12,13]p1(�q) = tρσ1(�q). It is the probability
that a particle experiences scattering in the direction �q. The
sum rule of σ1(�q) leads to the sum rule ptot

1 = ∫
d �qp1(�q).

Most often, only the modulus q counts, σ1(�q) = σ1(q). Hence,
σ tot

1 = π
∫

d(q2)σ1(q).
In thick targets, the beam can bounce forward from

many nuclei, electronic clouds, and different atoms. These
multiple scatterings are incoherent because the scatterers
are separated far apart with respect to the ranges of the
screened Coulomb and nuclear interactions, so the scattering
waves are already in the asymptotic region before the next
collision occurs. Furthermore, the target is not crystalline on a
macroscopic scale, and thus the distances between scatterers
are largely random. One must, therefore, add probabilities
(not amplitudes) coming from individual scatterings. If one
splits the thick target with thickness T into a large number
N of thin targets each with thickness T/N, then the total
multistep probability for a particle to be transmitted without
any scattering is P trans

M ≡ P0 = (1 − σ tot
1 Tρ/N )N .

The differential probability density for just one scattering
in this situation with many thin targets, each with thickness
T/N , is

P1(�q) = Nσ1(�q)(T/N)ρ
(
1 − σ tot

1 Tρ/N
)N−1

. (3)

This represents a combination of scattering from any one single
layer and transmission through the remaining (N − 1) layers

without scattering. The factor N in front of the right hand side
accounts for the N layers, obviously.

For double scattering, one must count pairs of layers and
fold two single-scattering probability densities p1. Hence,

P2(�q) = N (N − 1)

2

(
Tρ

N

)2

σ2(�q)

[
1 − σ tot

1 Tρ

N

]N−2

, (4)

where

σ2(�q) =
∫

d �q ′σ1(�q ′)σ1(�q − �q ′). (5)

For triple scattering, an identical argument induces the
result

P3(�q) =
(

N

3

) (
Tρ

N

)3

σ3(�q)

[
1 − σ tot

1 Tρ

N

]N−3

, (6)

where

σ3(�q) =
∫

d �q ′
∫

d �q ′′σ1(�q ′)σ1(�q ′′ − �q ′)σ1(�q − �q ′′) (7)

is a double convolution. Again, the first factor is the counting
of all triplets of layers.

It is useful at this stage to introduce the profiles

φ1(b) =
∫

d �q exp(−i �q · �b)σ1(�q) = 2π

∫ ∞

0
qdqJ0(qb)σ1(q),

(8)

with φ1(0) = σ tot
1 , and ∀n,

φn(b) =
∫

d �q exp(−i �q · �b)σn(�q) = [φ1(b)]n . (9)

If we define �1 as the profile of P1, then we see that

�1(b) = N

(
Tρ

N

)
φ1(b)

(
1 − σ tot

1 Tρ/N
)N−1

, (10)

and, more generally, the profile of Pn reads

�n =
(

N

n

) (
Tρφ1

N

)n [
1 − σ tot

1 Tρ

N

]N−n

. (11)

The “total multistep profile” due to PM = ∑N
n=1 Pn can be

written as

�M (b) =
(

1 − σ tot
1 Tρ

N
+ Tρφ1(b)

N

)N

− P0

=
{

1 + ν
[
φ1(b)/σ tot

1 − 1
]

N

}N

− (1 − ν/N)N , (12)

where we have introduced the parameter ν = σ tot
1 Tρ. Like

ptot
1 , ν is dimensionless. However, it is not a probability for

a thick target. Indeed, because the mean free path � of a
beam particle is 1/(ρσ tot

1 ), therefore, ν = T/� represents the
average number of collisions of a beam particle when it passes
through a target of thickness T . Hence ν can be a very large
number.

In the limit N → ∞, we obtain

�M (b) = exp

[
ν

(
φ1(b)

σ tot
1

− 1

)]
− exp(−ν). (13)
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Here, we emphasize the nonlinear action of ν on �M (b). The
second term in Eq.(13) comes from the limit of P0; it also
shows that ν has the meaning of a beam decay rate in a target
of thickness T . Note that this latter term is neglected in the
Molière theory [1] as well as in its reformulation by Bethe [7]
and by Mott and Massey [8]. Hence, we find a form similar
but not identical to that of the Molière theory for the final
multistep probability density PM :

PM (q) = (2π )−2 exp(−ν)
∫

d �b exp(i �q · �b)

×
{

exp

[
ν
φ1(b)

σ tot
1

]
− 1

}
. (14)

Again, we note that PM (q) depends nonlinearly on ν. It is ap-
propriate to underline the importance of the above-mentioned
extra term in the present formulation. If T is small rather than
large, T = t , then ν is also small. The presence of this extra
term reduces PM to p1 = tρ σ1, as should be for thin targets.
On the other hand, φ1(b) → 0 as b → ∞. Consequently,
the first term in the curly bracket has a limit, exp[ ] →
1, that exactly compensates the second term in the curly
bracket, ensuring the convergence of the integration for PM (q).

It is interesting to note from Eq. (14) that

P tot
M ≡

∫
d �qPM (�q) = 1 − exp(−ν) = 1 − PMt , (15)

where PMt is the total transmission probability. This last
equation is a sum rule for the multiple-scattering probability.
Multiple-scattering differential cross sections can be related to
probability densities by the general relation

PM (q) = Tρ σM (q), (16)

in the same way σ1(�q) is to p1(�q). In summary, three steps thus
occur in this formalism: (i) Fourier transform thin target data
σ1 into their profile φ1, see Eq. (8); (ii) find ν = Tρσ tot

1 and
exponentiate Tρφ1, see Eq. (13); and (iii) Fourier transform
�M back into a probability distribution PM , see Eq. (14).

It is reasonable to parametrize the single-scattering dis-
tribution as σ1 = σ1c + σ1n with σ1c being the Coulomb
cross sections and σ1n the sum of cross sections of nuclear
scattering and nuclear-Coulomb interference. The separation
of σ1 into σ1c and σ1n induces the same for the profile function:
φ1 = φ1c + φ1n. The relation

exp(βφ1c) exp(βφ1n) − 1 = [exp(βφ1c) − 1]

+ exp(βφ1c)[exp(βφ1n) − 1]

(17)

with β = ν/σ tot
1 then leads to a split of PM as the sum of two

probability densities, that is,

PMc = exp(−ν)

(2π )2

∫
d �b exp(i �q · �b)

{
exp

[
ν
φ1c(b)

σ tot
1

]
− 1

}
,

(18)

and

PMn = exp(−ν)

(2π )2

∫
d �b exp(i �q · �b) exp

[
ν
φ1c(b)

σ tot
1

]

×
{

exp

[
ν
φ1n(b)

σ tot
1

]
− 1

}
. (19)

This allows a perturbative consideration of nuclear effects at
those angles where Coulomb scattering dominates. Note that
the exponent in Eq. (18) contains a denominator σ tot

1 and not
σ tot

1c . Hence PMc is proportional to a pure Coulomb process
with an effective value of ν, namely, νeff = (σ tot

1c /σ tot
1 )ν.

Alternately, at angles where nuclear scattering might
dominate, the roles of φ1c and φ1n can be interchanged to
generate similar formulas, namely,

P ′
Mn = exp(−ν)

(2π )2

∫
d �b exp(i �q · �b)

{
exp

[
ν
φ1n(b)

σ tot
1

]
− 1

}
,

(20)

and

P ′
Mc = exp(−ν)

(2π )2

∫
d �b exp(i �q · �b) exp

[
ν
φ1n(b)

σ tot
1

]

×
{

exp

[
ν
φ1c(b)

σ tot
1

]
− 1

}
. (21)

One can parametrize the screened Coulomb interactions
as σ1c(q) = ∑

α Cα(q2 + κ2
α)−α. The powers α, screening

momenta κα , and normalizations Cα are mainly functions of
the charge Z of each individual nucleus. But σ1n will depend
on both Z and the mass number A. The global normalization of
σM will also depend on the target thickness or the parameter ν.
Hence, the theory is essentially driven by three parameters of a
thick target, namely, Z, A, and ν. Experimental measurements
of σM might, conversely, permit a determination of such three
parameters when the nuclear nature of the target is unknown
a priori, as is most often the case for radiographic studies
where a recovery of A, besides Z, would be precious. Success
will occur, however, only if multiple scattering does not spoil
the information carried by A. This question is the main concern
of the following sections.

II. BROADENING OF ANGULAR DISTRIBUTIONS BY
MULTIPLE SCATTERINGS

The mean-square width 〈q2〉1 of the distribution σ1 rep-
resents a useful observable for the broadening of the cross-
section distribution σ1 and can be defined by the integral

〈q2〉1 = (
σ tot

1

)−1
∫

d �qq2σ1(�q) = 2π
(
σ tot

1

)−1
∫ ∞

0
dqq3σ1(q),

(22)

if it converges. The use of Eq.(8) and elementary properties of
the Fourier transform allows us to write

〈q2〉1 = − lim
b→0

(
1

b

d

db
b

d

db

)
φ1(b)

φ1(0)
, (23)

where the operator between brackets ( ) comes from a two-
dimensional Laplacian in cylindrical coordinate space. The
same procedure gives the mean-square width of σM (�q) as

〈q2〉M = − lim
b→0

(
1

b

d

db
b

d

db

)
�M (b)

�M (0)
, (24)
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where �M (0) = (1 − e−ν). Assume, for the sake of the
argument, that σ1(q) is a Gaussian,

σ1(q) = C exp[−q2/(2κ2)], (25)

where C is a suitable normalization and the parameter 1/κ is
the interaction range. For instance, if one discusses screened-
Coulomb interactions, then 1/κ is of the scale of an atomic
radius. Then one obtains σ tot

1 = 2πCκ2, 〈q2〉1 = 2κ2, and

φ1(b) = 2πCκ2 exp(−b2κ2/2). (26)

From Eqs. (13) and (24), one further obtains

�M (b) = exp[ν(e−b2κ2/2 − 1)] − exp[−ν], (27)

and

〈q2〉M = ν〈q2〉1

1 − exp(−ν)
. (28)

Since ν is large in general, the denominator is 	1. Conse-
quently, the multiple scattering has broadened the mean-square
width by a factor ν, as might be expected from a Brownian
motion in the transverse-momentum space. The multiplication
of 〈q2〉1 by ν also occurs if we start from a “polynomial
Gaussian distribution” (q/κ)2n exp[−q2/(2κ2)]. This growth
rate is very general and can be viewed as one more version
of the central limit theorem. As additional evidence, one finds
that if σ1(q) is of the functional form σ1(q) = C(q2 + κ2)−n

with an exponent n > 2, then 〈q2〉1 = κ2/(n − 2) and again
〈q2〉M = ν〈q2〉1/(1 − e−ν) 	 ν〈q2〉1.

In the following, we illustrate the broadening of the
cross-section distribution in the case of a screened Coulomb
scattering. We fit σ1 at small angles by a few terms of the sum

σ1c(q) =
∑
m>2

Cm(
q2 + κ2

m

)m , (29)

where m can be half-integers as well as integers, and Cm and
κm are fitting parameters. It follows that

σ tot
1c = π

∑
m

Cm

(m − 1)κ2(m−1)
. (30)

For definiteness, we take two terms with m = 5/2 and 4,
namely,

σ1c(q) = C5/2(
q2 + κ2

5/2

)5/2
+ C4(

q2 + κ2
2

)4 . (31)

Hence,

σ tot
1c = 2πC5/2

3κ3
5/2

+ πC4

3κ6
4

. (32)

Dividing both sides by σ tot
1c , we obtain

1 = 2πC5/2

3κ3
5/2σ

tot
1c

+ πC4

3κ6
4 σ tot

1c

≡ a5/2 + a4. (33)

Equation (33) shows that both a5/2 and a4 are dimensionless
numbers between 0 and 1. An advantage of using Eq. (29) is
that its Fourier transform gives the profile function φ1c in terms

of analytical functions which can be easily analyzed, i.e.,

φ1c(b) = 2πC5/2(1 + κ5/2b) exp(−κ5/2b)

3κ3
5/2

+ πC4b
3K3(κ4b)

24κ3
4

,

(34)

where K3 is the modified Bessel function of the second
kind. One verifies easily that φ1c(0) = 2πC5/2/(3κ3

5/2) +
πC4/(3κ6

4 ) = σ tot
1c . The “Coulomb” multistep profile then

reads

�Mc = exp

{
ν

[
a5/2(1 + κ5/2b)e−κ5/2b

+ a4b
3κ3

4

8
K3(κ4b) − 1

]}
− e−ν . (35)

When b → ∞, it is easy to verify that Eq. (34) induces
exponential decreases with ranges κ−1

5/2 and κ−1
4 . Numerical

integrals with such integrands converge well. The final integral
for the Coulomb cross section then reads

σMc(q) = 1

2πTρ

∫ ∞

0
dbbJ0(qb)�Mc(b). (36)

Let κ be an average between the two momenta κ5/2 and
κ4, which are both atomic scales. It is now convenient to
scale momenta and lengths as q = κQ and b = B/κ. The
dimensionless Q will be a few units or a few tens, if one
wants to describe scattering angles moderately larger than the
Coulomb peak. We also expect that the values of B contributing
to the integral

σMc(Q) = exp(−ν)

2πκ2Tρ

∫ ∞

0
dBBJ0(QB)

×
{

exp

[
νa5/2

(
1 + κ5/2

κ
B

)
e−κ5/2B/κ

+ νa4B
3κ3

4

8κ3
K3

(κ4

κ
B

)]
− 1

}
(37)

should be mainly between 0 and several units. In atomic units,
all parameters κ , κ5/2/κ , and κ4/κ are of order 1. It remains
to estimate the dimensionless magnitudes of νa5/2 and νa4/8.
From Eq. (33), a5/2 and a4 are moderate fractions of 1. It is
thus the large number ν that drives the integrand.

It is also convenient to write

σ1(q) = κ−4σ1(Q), φ1(b) = κ−2φ1(B), (38)

with σ1(Q) and φ1(B) being dimensionless. Because we work
with systems of atomic scale, we further set κ to be 1, meaning
that our primary scale is “atomic.” In this scale, all lengths and
momenta will, respectively, be given in units of atomic radius
and its inverse.

To show the shrinking of profiles by multiple scatterings, we
plot φ1c and �Mc in Fig. 1 as the “crosses” and solid curves
when σ1c = (Q2 + 1)−5/2, and, respectively, as the “circles”
and dashed curves when σ1c = (Q2 + 1)−4. As one can see,
the dashed and solid curves do decay faster than their respective
single-scattering partners. The Fourier transform of �Mc then
leads to the expected broadening of σMc, as shown in Fig. 2.
(For graphical convenience, we used ν = 4 in Figs. 1 and 2,
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B
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

 φ
1c

(B
),

   Φ
M

c(
B

)

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. Crosses: φ1c(B) for σ1c(Q) = (Q2 + 1)−5/2. Solid curve:
corresponding multistep �Mc(B) if ν = 4. Circles and dashed curve:
φ1c(B) and �Mc(B) (with ν = 4) for σ1c = (Q2 + 1)−4. All profiles
normalized to 1 at B = 0.

which is much smaller than physical ν but is demonstrative
enough.)

III. LOSS OF NUCLEAR INFORMATION AT SMALL
MOMENTUM TRANSFERS

In this section, we introduce a semirealistic model for σ1(Q)
which contains “nuclear” information. We will investigate (a)
changes of normalizations and not just shrinking or dilation
of shapes of σ (Q), and (b) how nuclear information may
become lost. We will, therefore, illustrate the blurring of
signal through the study of various relevant quantities, such as
PM,PMc, PMn, P

′
Mc, P

′
Mn. We will also use analytical models

to ensure that the blurring comes from physics and is not
a result of numerical imprecision. A good analytical model
must satisfy the following constraints: (i) positivity of the sum
of σ1c and σ1n, (ii) big contrasts between maxima and minima,
(iii) analyticity in both the momentum and the impact param-
eter representations, and (iv) significant differences between
the atomic and the nuclear scales for profiles.

Let

σ1c(Q) = (1 + Q2)−2(1 + Q2/100)−1. (39)

This is qualitatively realistic, because the factor (1 + Q2)−2

represents a screened Coulomb scattering. The additional, ar-
tificial factor (1 + Q2/100)−1 is here just for the convergence

     Q
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

σ 1
c(

Q
),

   σ
M

c(
Q

)
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. Crosses: σ1c(Q) = (Q2 + 1)−5/2. Solid curve: corre-
sponding σMc(Q) for ν = 4. Circles: σ1c(Q) = (Q2 + 1)−4. Dashed
curve: corresponding σMc(Q) for ν = 4. All cross sections normalized
to 1 at Q = 0.

of 〈Q2〉1c. We use the following semirealistic σ1n:

σ1n(Q) = e−α2Q2
5∑

m=1

amQ2m, (40)

with α2 = 1/50, a1 = −3.548 114 × 10−4, a2 = 1.428 840 ×
10−5, a3 = −1.347 430 × 10−7, a4 = 2.757 908 × 10−10 ,
and a5 = 6.172 781 × 10−13. Because the series starts with
Q2, it ensures σ1n(0) = 0. The quality of the model with
respect to the requirements (ii) and (iv) is evidenced by
Fig. 3.

Because it is allowed by the split of σ1 into a “Coulomb”
part (σ1c) and a “nuclear” part (σ1n), our σ1n can be positive or
negative, as long as σ1 remains positive. Our σ1n was fine tuned
to create four clear “nuclear” signals, namely, two maxima of
σ1 near Q = 8 and 18 and, as signatures of interferences, two
sharp minima at Q = 5 and 12. Furthermore, we adjusted
its parameters so that the maxima do not exceed ∼1% of the
forward peak of σ1c. Note also that our model σ1n has only two
maxima and, thus, carries no nuclear information for Q > 40.
This is designed to track whether the maxima, if they survive
the blurring of angular distribution by multiple scatterings,
would migrate toward larger values of Q. The log10 σ1 and
log10 σ1c of our toy model are shown as functions σ (Q) in
Fig. 3. It is trivial to deduce σ1n visually.

The corresponding profiles read, in closed forms,

φ1c(B) = 200 π

(−K0(B)

9801
+ K0(10 B)

9801
+ BK1(B)

198

)
, (41)
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   σ= σ1
   σ= σ1c

FIG. 3. Plots of log10 σ1 (solid curve) and log10 σ1c (dashed curve)
as functions of Q.

and

φ1n(B) = e
− B2

4α2

5∑
m=0

cmB2m, (42)

where c0 = 2.695 601, c1 = −2.026 049 × 102, c2 =
3.042 943 × 103, c3 = −1.512 999 × 104, c4 = 2.510 428 ×
104, and c5 = −9.247 000 × 103. These profile functions are
shown in Fig. 4. The width of φ1n is significantly smaller
than that of φ1c, as one should expect when comparing a
“nuclear” profile to an “atomic” one. A geometrical ratio
of widths might be ∼10−4 or even ∼10−5, but the model
ratio we choose, between ∼1/5 and ∼1/10, is sufficient for a
pedagogical study and much more convenient numerically.

This choice of “data” gives, after a numerical imple-
mentation of Eq. (14), the total multistep probability dis-
tributions shown in Fig. 5. The solid curve is the same as
that in Fig. 3, namely, log10 σ1. The dashed, linked-crosses,
and linked-circles curves represent log10 PM for ν = 4, 9,
and 16, respectively. The result is striking on two counts:
(i) the forward peak is more and more damped, the distri-
butions extending more and more toward larger momenta, and
(ii) the nuclear information, whether minima or maxima,
becomes rapidly blurred beyond recognition. Furthermore,
the broadening of distributions does not seem to push much
residual information toward larger momenta.

The broadening process is also confirmed by the behavior
of the component PMc of PM , shown in Fig. 6. In our
model, σ tot

1 	 5.7 and σ tot
1c 	 3.0. We chose a large nuclear

contribution, σ tot
1n 	 2.7, in order to emphasize nuclear effects.

However, at Q < 40, even this exaggerated nuclear informa-
tion did not survive multiple scatterings.
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FIG. 4. Plots of log10 φ1, log10 φ1n, and log10 φ1c as functions of B.

In Fig. 7, we show the various probability distributions
PMn(Q). We note again that multiple scatterings wash away
nuclear information. A similar feature is also seen in the P ′

Mn

given in Fig. 8.
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FIG. 5. Dependences on Q of log10 σ1 of single scattering and
log10 PM of multiple scattering when ν = 4, 9, and 16.
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FIG. 6. Plots of log10 σ1c(Q) and log10 PMc(Q) for ν = 4, 9 and 16.

Besides the damping and information loss which are evident
from Figs. 7 and 8, we may stress a feature of Fig. 8,
namely, the transformation of “negative cross sections” into
positive ones after multiple scattering. To create interferences,

Q
0 10 20 30 40 50

g 1
0 

P M
n(

Q
)

-4.6

-4.4

-4.2

-4.0
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   ν= 4
   ν= 9
   ν= 16

FIG. 7. Plots of log10 PMn(Q) for ν = 4, 9, and 16.
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FIG. 8. Plots of log10 |σ1n(Q)| for a nuclear signal, and probability
distribution log10 P ′

Mn(Q) when ν = 4, 9 and 16.

it was necessary, at the stage of making a model for σ1n, to
create negative values interfering with σ1c. As has already
been pointed out, this is allowed as long as σ1 remains
positive; there is a degree of freedom in modeling σ1n.
The solid curve in Fig. 8 shows log10 |σ1n|. One sees four
arches, the first and the tiny third ones meaning negative
values. Such “negative” arches disappear in the dashed curves
representing P ′

Mn. This disappearance justifies the use of
models where σ1n can be not everywhere positive as long
as σ1n + σ1c is everywhere positive, as was discussed after
Eq. (40).

An advantage of our use of special analytical forms for
the cross sections, Eqs. (39) and (40), is that such forms
induce analytical profiles, Eqs. (41) and (42), which in turn
allow analytical forms for the multistep profiles, Eqs. (13)
and (18)–(21). Values of 〈Q2〉 can then be easily obtained
from the use of Eq. (24). The rates of broadening as functions
of ν can also be readily calculated. Figure 9 shows how, at
values of ν smaller by several orders of magnitude than those
estimated from geometric cross sections, the square-widths
〈Q2〉 of PMn, PMc already increase linearly with ν. We have
also noted a similar behavior of the widths of P ′

Mn and
P ′

Mc.
In summary, the signature of nuclear information (diffrac-

tive oscillations in the differential cross section) in the region of
small momentum transfers is washed away by the broadening
of the angular distribution. This happens even with our model
that has exaggerated nuclear cross sections. In the next section,
we examine if there exist momentum-transfer regions where
the multiple scattering of the proton does not completely blur
nuclear signals.
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FIG. 9. Dependences on log10 ν of log10〈Q2〉 for PM (Q) (solid
curve), PMc(Q) (dashed curve), and PMn(Q) (dotted curve). Note
that the slopes 	1 when ν � 10.

IV. CONDITIONS FOR OBSERVING NUCLEAR
INFORMATION

Let r ≡ q1/2/qmin1 be the ratio of the half-width of the
Coulomb peak to the momentum transfer at which the first
minimum due to nuclear diffraction is observed for a thin
target. At high energies, both q1/2 and qmin1 occur at very small
angles. Consequently, r = θ1/2/θmin1 with the θ ’s being the
respective scattering angles corresponding to q1/2 and qmin1 .
From Eq. (28), it is reasonable to expect a rule, 〈q2〉M 	
ν〈q2〉1 	 νq2

1/2
(=νr2q2

min1
); hence, there is a critical value

νcrit 	 r−2 above which nuclear signals will be obliterated by
the broadening of the Coulomb peak. In other words, nuclear
signals can only be observed at q � qmin1 for ν > νcrit.

In Fig. 10, we show the elastic scattering differential cross
sections of protons scattered from a thin 208Pb target at
∼20 GeV, which we calculated by using the optical model
method of Ref. [14] with a screened Coulomb interaction.
The calculated cross sections exhibit the main characteristics
of high-energy proton-nucleus scattering, namely, a narrow
forward Coulomb peak and the diffractive oscillations at larger
angles. Here, the diffractive pattern constitutes the nuclear
signal. One notes that the first diffractive minimum lies at
about ∼6 mrad. We noted from our calculation that θ1/2 for
the Coulomb peak is of order ∼0.003 mrad. It is therefore
reasonable to assume that for high-energy proton scattering
from nuclei, r is of order ∼10−3 or less in general. At
most, one might consider r of order ∼10−2. Accordingly,
although the geometric size of a nucleus is typically ∼104–105

smaller than that of its atom, the range of nuclear information

  θc.m.  [mrad]
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FIG. 10. Differential cross sections of p-208Pb elastic scattering
at 20 GeV.

profiles at high scattering energies may be taken ∼102 to ∼103

smaller than the range of the screened atomic profile, and
possibly much smaller. While the model used in the previous
section where ∼0.1 < r < ∼0.2 is pedagogically justified, an
analysis with a smaller r is in order.

We first introduce a model in which r = 10−2; the profile
function φ1(B) is the sum of a “Coulomb” term,

φ1c(B) = BK1(B), (43)

and a “nuclear” term,

φ1n(B) = 4 × 10−6

1 + exp[800(B − 1/100)]
. (44)

The profile φ1c gives a bare Coulomb cross section of the
form σ1c(Q) ∝ (1 + Q2)−2, and the Woods-Saxon profile φ1n

makes, in practice, a window with range r = 1/100 indeed.
The coefficient 800 in its exponent creates a “smoothed”
Heaviside function. Both profiles are normalized so that
σ tot

1c = 1, and σ tot
1n /σ tot

1c = 4 × 10−6 except for a negligible
factor 1 + e−8. This cross-section ratio is quite compatible
with the r2 suggested by Fig. 10. Hence, the set of parameters
given in Eqs. (43) and (44) is more realistic than that used
in the previous section. The result for various angular cross
sections σM (Q; ν), compared with the single scattering σ1(Q),
is shown in Fig. 11. An inspection of the figure shows
that the Coulomb peak damps and spreads and the nuclear
signal fades when ν increases. The solid curve, representing
log10 σ1(Q), and the dashed curve, representing log10 σM (Q)
for ν = 2000, exhibit somewhat similar oscillations. The
dotted curve, corresponding to log10 σM for ν = 104, hardly
oscillates any more; i.e., nuclear signals are completely washed
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FIG. 11. Dependences on Q of log10 σ1 and of log10 σM for ν =
2000 and ν = 10 000. All with r = 10−2.

out. This confirms a loss of nuclear signal at low and moderate
momentum transfers when ν approaches νcrit ∼ r−2 = 104.

The νcrit ∼ r−2 rule is also seen in the previous section,
where the use of ∼0.1 < r < ∼0.2 induces the loss of nuclear
signal as early as ν > ∼10. To further verify this rule, we use
the same φ1c but with r = 0.5 × 10−2 in φ1n, namely,

φ1n(B) = 4 × 10−6

1 + exp[1600(B − 1/200)]
. (45)

The results are shown in Fig. 12. As we can see, the observation
of nuclear signals is much improved, which is in agreement
with the rule that r = 1/200 elevates νcrit to a higher value,
∼4 × 104.

As a last test of the νcrit ∼ r−2 rule, we keep φ1c(B) =
BK1(B) and let

φ1n(B) = 2 × 10−8

1 + exp[8000(B − 1/1000)]
, (46)

which is an obvious r = 1/1000 case. The results are shown in
Fig. 13, where it is clear that, as expected, νcrit occurs between
10−5 and 10−6.

Because ν = Tρσ tot
1 	 Tρσ tot

1c , the existence of a νcrit

induces a critical target thickness Tcrit such that the retrieval of
a nuclear signal is possible for target thickness T sufficiently
less than Tcrit; namely,

T < Tcrit 	 νcrit

ρσ tot
1c

. (47)

For p−208Pb elastic scattering at 20 GeV, σ tot
1c 	 6.7 ×

108 mb = 6.7 × 10−19 cm2. The density d and the atomic
weight A of lead are 11.3 g/cm3 and 208 g/mole, respec-
tively. Hence, ρ = (d/A)NAvog = 3.27 × 1022 cm−3, with the
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FIG. 12. Dependences on Q of log10 σ1 and of Y = log10 σM for
ν = 2000 and ν = 10 000. All with r = 0.5 × 10−2.

Avogadro number NAvog = 6.02 × 1023 [1/mole]. Because
from Fig. 10 it is likely that r ∼ 10−3 and our analysis indicates
that νcrit ∼ 106, then Eq. (47) gives Tcrit 	 46 cm. Hence, a
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FIG. 13. Dependences on Q of log10 σ1 and of log10 σM for ν =
105 and ν = 106. All with r = 10−3.
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TABLE I. Target thickness T corresponding to ν = 105 for
20-GeV protons.

Atom d [g/cm3] Z λ A [g/mole] ρ [1022 cm−3] T [cm]

Pb 11.3 82 1.000 208 3.27 4.6
Cu 8.9 29 0.250 64 8.39 7
Al 2.7 13 0.086 27 6.02 29
Mg 1.74 12 0.077 24 4.37 44
Be 1.85 4 0.018 9 12.38 67

nuclear signal can be retrieved at ν � 105, which corresponds
to T � 4.6 = 0.1Tcrit [cm]. In so far as Q = 1 corresponds
to θ ∼ 0.003 mrad, the survivor oscillation seen for ν = 105

in Fig. 13 between Q ∼ 6000 and Q ∼ 12000, compatible
with the expected period ∼2π/r , would demand experimental
measurements at angles of the order of a few dozen mrad at
most.

The proton-nucleus Coulomb cross section σ tot
1c is

∝ Z2R2
e ∼ Z4/3, where Z is the target charge and Re is the

root-mean-square radius of electric charge distribution in an
atom with Re ∼ a0/Z

1/3 and a0 being the first Bohr radius [15].
Hence, one can estimate σ tot

1c;pA for proton scattering from a
given nucleus A at 20 GeV by using σ tot

1c;pA ∼ λσ tot
1c; p-Pb with

the scaling factor λ = (82/Z)−4/3. Hence, for the same ν,
one has T (pA) = T (pPb)ρPb/(ρAλ). Results for a sample of
atomic nuclei at ν = 105 are given in Table I. Of course,
the price one pays in studying the nuclear signals that
survive the multiple-scattering broadening is that one has to
measure the angular distribution with good energy resolution
at large proton scattering angles. In the case of 20 GeV
incoming protons, the angles are about tens of mrad, where the
magnitudes of the cross sections are quite small. However, such
measurements should be feasible with the currently available
technology.

V. CONCLUSIONS

The main mathematical and physical statement proposed
by this work about multiple scattering consists in folding
probabilities rather than scattering amplitudes. This is justified
by the incoherence which is expected between the different
scatterers of a thick, noncrystalline target. Simultaneously, an
eikonal approximation, justified by the very high energy of
the beam, allows a familiar impact parameter representation
with profiles. Furthermore, small-momentum expansions [1]

are not employed in the formulation. As a consequence of
such initial statements, a Poisson process is found, leading to
an elementary formalism of convolutions and exponentiations
in a context of Fourier-Bessel transforms.

This Poisson process is nothing but a random walk in
transfer momentum space. The central limit theorem is at
work, and the details of nuclear oscillations and interferences
between Coulomb and nuclear scattering are blurred very fast
as soon as the parameter ν = Tρσ tot

1 , a measure of the number
of collisions, exceeds a critical value of order r−2. Here r is
the ratio of the range of the nuclear profile to that of the atomic
profile.

Below this critical value of ν, and at moderate and large
momentum transfers (at the cost of very small elastic cross
sections in the latter case), our conclusion is that some
nuclear information remains observable. Such information is
contained in oscillations of the multistep angular cross section
σM (Q) with periods ∼2π/r , oscillations that are similar to
those of the Bessel function, J1(rQ), which typically repre-
sents pure nuclear diffractive scattering. Our model analysis
shows that the characteristic distances between successive
cross-section maxima and minima in the angular distribution
remain essentially unchanged while each of these oscillations
dampens as ν increases.

From the point of view of retrieving nuclear signals
from protons traveling through a thick target, to which no
sufficient attention has been given in the literature, our work
is more of a general feasibility study than a specific numerical
evaluation. We have made use of analytical and semianalytical
models to bring out the basic features of the underlying
physics. We believe that the positive feasibility concluded
from this study will sustain tests in detailed numerical
applications.

One problem which has not been solved in the present
work, however, is to find an estimate of the ν dependence of
such periods ∼2π/r . Our numerical evidence suggests that
the dependence is not very strong, despite all the causes for a
broadening of the signal, but our models and calculations lack
the precision needed to tabulate such periods into functions
of ν. This effort is under consideration for an extension of the
present work.

In summary, below νcrit, which is of the order of 1/r2 with
r being the ratio of the range of the nuclear profile to the range
of the atomic profile, the nuclear signals can be retrieved from
proton scattering from a thick target of thickness T < Tcrit. We
suggest a conservative upper bound, namely, T � 0.1Tcrit for
practical considerations.
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