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Fission rate in multi-dimensional Langevin calculations
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Experimental data on nuclear dissipation have often been interpreted using one-dimensional model calculations
of the Langevin or Fokker-Planck type. In the present work, the influence of the dimensionality of the deformation
space on the time dependence of the fission process has been investigated in a systematic and quantitative way.
In particular, the dependence of the transient time and the stationary value of the fission rate on the number of
collective coordinates involved in Langevin calculations is investigated for the one-body and two-body dissipation
mechanisms. We show that the results of Langevin-type calculations change appreciably if the deformation space
is extended up to three dimensions.
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I. INTRODUCTION

The dynamical formulation of the fission process as the
passage over a saddle point from a “metastable” region (around
the nuclear ground state) to a “stable” region (corresponding
to the separated fission fragments) is the specific case of a
rather general problem appearing in many fields of statistical
mechanics and chemistry. One of the earliest mathematical
formulations of this kind of problem was given by Becker
and Döring [1] concerning the formation of drops in a
supersaturated vapor. The first to consider the dynamics of
nuclear fission was Kramers [2]. He based his consideration
on the Brownian motion in a potential well.

In all these studies, the problem was treated using only one
collective variable. Furthermore, only the asymptotic quasista-
tionary stage of the process was investigated. Later, important
progress has been made to overcome these restrictions. The
efforts were undertaken in two directions: on the one hand,
the dimensionality of the problem was extended. In 1956
Brinkmann [3] generalized Kramer’s work to n dimensions.
More elaborate studies on the statistical theory of the decay
of metastable states of a multi-dimensional system were
made later, e.g., by Landauer and Swanson [4], and Langer
[5,6]. Similar studies, directly dedicated to the nuclear-fission
problem were performed by Weidenmüller and Jing-Shang
[7,8], and Brink and Canto [9]. On the other hand, the time
behavior of the decay process was explicitly explored. Grangé,
Jun-Qing, and Weidenmüller [10] considered the transient
effects in nuclear fission, occurring during the relaxation of
the system to quasiequilibrium. Many other papers of these
and other authors followed, investigating this problem in more
detail.

All these studies were performed on the basis of the integral
form of the stochastic equation of the Fokker-Planck type.
These investigations remained rather schematic and approxi-
mate, mostly due to the limitations of the technical methods for
solving these equations. In the special problem of the statistical
decay of a metastable state in many dimensions, the studies
were essentially limited to quadratic approximations to the
multi-dimensional potential and to isotropic mass and friction
tensors, not depending on the collective coordinates. Under
these restrictions, the influence of the variation of the width

of the potential in the directions perpendicular to the decay
path along the decay path has been demonstrated, see [7] and
references therein.

An important technical step forward toward more realistic
calculations of the decay process was made by Abe, Grégoire,
and Delagrange [11], introducing the differential form of the
stochastic equation of the Langevin type. In the following,
this approach allowed to overcome the above-mentioned
restrictions. Thus, explicit calculations of individual trajecto-
ries on a complex multi-dimensional potential-energy surface
with realistic inertial and friction forces enabled studying
much more complex systems. For one specific case, Wada,
Carjan, and Abe [12,13] have calculated the fission decay
using Langevin equations in two dimensions. They came
to the conclusion that the transient time is not significantly
changed, while the quasistationary flux is enhanced by only
15% compared to the one-dimensional calculation. The same
result that the two-dimensional fission rates are slightly
larger than the one-dimensional ones was obtained in the
Langevin calculations made by Fröbrich and Tillack [14].
They also speculated that the inclusion of additional collective
coordinates would again influence the rate.

The Langevin calculations have recently been extended up
to three dimensions for specific studies on fission dynamics
by several authors [13,15,16]. However, dedicated studies on
the influence of the dimensionality of the dynamical model
on the calculated results are scarce up to now, and they have
been performed up to two dimensions only. The present work
applies the Langevin calculations in three dimensions to this
problem for the first time and investigates it in a systematic
and quantitative way.

Apart from the general understanding of the fission process,
the dimensionality of the model calculations is also of
importance for the interpretation of experimental observables.
By comparing experimental data with different theoretical
descriptions, one hopes to conclude on the validity of the
physics involved in the considered theoretical models. For this
purpose, however, one should be sure that technical restrictions
of the model calculations, such as the dimensionality of the
considered model space, do not have any significant influence
on the results.
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Although the specific conditions of our calculations and
thus our quantitative results apply to the problem of nuclear
fission, the importance of the present study is much more
general, because it shows the qualitative importance of
including all relevant collective variables for obtaining realistic
results for the decay of a metastable state in many dimensions.
These results have general importance, as in many areas of
physics, chemistry and biology one is dealing with transport
processes, which can be described using multi-dimensional
Langevin or Fokker-Planck equations.

II. DYNAMICAL MODEL

Experimental data on nuclear dissipation have often been
interpreted using one-dimensional Langevin models, where
only one parameter is used for the description of the possible
shapes of the fissioning nucleus. This is usually an elongation
parameter, which describes the evolution of the shape of the
nucleus from the spherical configuration up to the scission
configuration of touching fragments. Such one-dimensional
calculations simplify the theoretical treatment and reduce the
ensemble of possible shapes of the fissioning nucleus, since
they do not need large computational time and could be used
for the investigations of the prescission particle emission and

time characteristics of the fission process. However, almost
all the problems of collective nuclear dynamics are essentially
multi-dimensional. For example, for the correct description
of the experimentally observed mass-energy distribution of
fission fragments at least three independent shape parameters
are needed [15,16]: the elongation parameter, the parameter
which describes the appearance of the neck in the shape of the
nucleus, and the mass-asymmetry parameter. Therefore, such
an important characteristic as the fission rate R is investigated
in the present work using Langevin calculations with different
numbers of collective coordinates involved in the dynamical
consideration for the two most frequently used dissipation
mechanisms: one-body and two-body.

In the dynamical calculations we applied the well-known
{c, h, α} parametrization [17]. In cylindrical coordinates the
surface of the nucleus is given by

ρ2
s (z) =




(c2 − z2)

(
As + Bz2/c2 + αz

c

)
, B � 0;

(c2 − z2)

(
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c

)
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(1)

where z is the coordinate along the symmetry axis and ρs is
the radial coordinate of the nuclear surface. In Eq. (1) the
quantities B and As are defined by
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In Eqs. (1) and (2), c denotes the elongation parameter, the
parameter h describes the variation in the thickness of the
neck for a given elongation of the nucleus, and the parameter
of the mass asymmetry α determines the ratio of the volumes
of the future fission fragments.

The coupled Langevin equations have the form:

dqi

dt
= µijpj ,

dpi

dt
= −1

2
pjpk

∂µjk

∂qi

− ∂F

∂qi

− γijµjkpk + θij ξj (t),
(3)

where q is the vector of collective coordinates, p is the
vector of conjugate momenta, F (q) = V (q) − a(q)T 2 is the
Helmholtz free energy, V (q) is the potential energy, mij (q)
(‖µij‖ = ‖mij‖−1) is the tensor of inertia, γij (q) is the friction
tensor. The normalized random variable ξj (t) is assumed to
be a white noise. The strength of the random force θij is
given by

∑
θikθkj = T γij . The temperature of the “heat

bath” T has been determined by the Fermi-gas model formula
T = (Eint/a(q))1/2, where Eint is the internal excitation energy

of the nucleus, and a(q) is the level-density parameter, which
has been taken from the work of Ignatyuk et al. [18]. The
repeated indices in the equations above imply summation over
the collective coordinates.

As collective coordinates we have used the parameters q =
(q1, q2, q3), which are connected with the shape parameters
c, h, and α by q1 = c, q2 = (h + 3/2)/( 5

2c3 + 1−c
4 + 3/2),

and q3 = α/(As + B), if B � 0, or q3 = α/As , if B < 0. The
advantage of using the collective coordinates q = (q1, q2, q3)
instead of the (c, h, α) parameters is discussed in Refs. [16,19].

During a random walk along the Langevin trajectory in
space of the collective coordinates, the energy conservation
law has been used in the form E∗ = Eint + Ecoll + V .
Here E∗ is the total excitation energy of the nucleus, Ecoll =
0.5

∑
µijpipj is the kinetic energy of the collective degrees

of freedom. The inertia tensor was calculated by means
of the Werner-Wheeler approximation for incompressible
irrotational flow [20]. The potential energy of the nucleus
was calculated within the framework of a macroscopic model
with finite range of the nuclear forces [21]. In the present
analysis we have used one-body dissipation [22] based on
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the “wall” and “wall-plus-window” formulas, and two-body
dissipation [20] with the two-body friction constant ν0 = 2 ×
10−23 MeV s fm−3. In order to investigate only the influence
of the dimensionality of the model on the calculated results,
we carry out Langevin calculations with some simplifications.
We started modeling the fission process from the spherical
compound nucleus assuming that the intrinsic degrees of
freedom are thermalized. The calculations have been done for
zero angular momentum. The evaporation of the prescission
light particles was not considered in the present analysis.
Shell corrections have also been neglected. Of course, all
these effects have important influence on the fission process,
but in the present study we are particularly interested in the
importance of the dimensionality of problem, and, therefore,
we want to keep all other effects as simple as possible. The
fission rate was calculated as R(t) = −1/N (t)dN(t)/dt , where
N (t) is the number of trajectories which did not escape beyond
the saddle at time t . This procedure is similar to that used in
many previous studies [12–14] for calculations of fission rates.
Usually, R(t) is analyzed in terms of the stationary value Rst

and the transient time τtr . The transient time τtr , as defined
in Ref. [23], is the time needed for the R(t) to reach 90%
of the stationary value. The dynamical calculations have been
performed for the compound nucleus 248Cf at two excitation
energies E∗ = 30 MeV and 150 MeV. The potential energy
for the nucleus 248Cf is presented in Figs. 1 and 2. In Fig. 1 the
potential energy is presented in collective coordinates (q1, q2)
for symmetric fission. The potential energy in the collective
coordinates (q1, q3) is presented in Fig. 2 for the parameter h

equal to zero.
It is useful to introduce here the notion of a boundary of

the metastable region around the ground state in the space of
collective coordinates. We define this boundary as the water
divide in the multi-dimensional potential-energy landscape

FIG. 1. (Color online) The potential energy surface for the
compound nucleus 248Cf in the collective coordinates q1 and q2. The
dashed curve corresponds to the case of h = α = 0. The numbers
at the contour lines indicate the potential energy in MeV. The cross
corresponds to the spherical deformation. The solid curve corresponds
to the water divide, which separates the metastable region from the
stable region; for more details, see text.

FIG. 2. The potential energy surface for the compound nucleus
248Cf in the collective coordinates q1 and q3. The parameter h is
fixed and equal to zero. The numbers at the contour lines indicate the
potential energy in MeV. The solid curve corresponds to the water
divide, which separates the metastable region from the stable region.

[24]. It is a curve in the two-dimensional case and a surface
in the three-dimensional case. The saddle point, defined as the
lowest barrier dividing the metastable region from the stable
region, is a point on this water divide, and thus the water
divide is the most natural generalization of the saddle point to
the multi-dimensional case.

In order to find the water divide in the multi-dimensional
case, dynamical Langevin calculations have been performed
in the overdamped regime and without random force. In
these calculations the components of the friction tensor
were multiplied by a constant factor in such a way that
the reduced friction coefficient β = γ /m was larger than
50 × 1021 s−1 for all possible deformations in the space of
collective coordinates. Under such conditions, the motion
will be mainly determined by the potential and the friction
tensor, while the influence of the mass tensor can be neglected.
Moreover, by neglecting the random force, the motion will be
deterministic, and any initial deformation chosen on the grid
of collective coordinates will either end in the spherical shape
or in some scission configuration. Thus, one can determine for
every point in the space of collective coordinates whether it
belongs to the metastable region or the stable (scission) region,
and, as a result, to find the boundary (saddle deformations)
between them in the multi-dimensional case. Please note that
when determining the boundary of the quasibound region it is
important to take into account the friction tensor, as due to its
dependence on the collective coordinates the motion does not
follow the direction of the steepest descent.

III. RESULTS AND DISCUSSION

In the present analysis, one-dimensional, two-dimensional,
and three-dimensional Langevin calculations have been per-
formed. The one-dimensional Langevin calculations have
been carried out using only the elongation parameter c,
while the parameters h and α have been set to zero. Such
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FIG. 3. (Color online) The fission rate calculated for the nucleus
248Cf in the case of one-body dissipation for excitation energy E∗ =
30 MeV (a) and E∗ = 150 MeV (b). The solid, dashed, and dotted
curves correspond to the three-, two-, and one-dimensional Langevin
calculations, respectively.

calculations will approximately correspond to the bottom of
the fission valley and will follow the dashed line in Fig. 1.
The two-dimensional Langevin calculations have been per-
formed using the q1 and q2 collective coordinates, and the
parameter q3 has been set to zero. Such two-dimensional
Langevin calculations describe the symmetric fission. The
three-dimensional Langevin calculations have been performed
using the collective coordinates q1, q2, and q3. The results of
the calculations for the nucleus 248Cf are presented in Figs. 3
and 4 for the case of the one-body and two-body dissipation,
respectively.

One can see from these figures that the stationary value of
the fission rate Rst increases after introducing new collective
coordinates in the dynamical consideration. The stationary
value of the fission rate in the one-dimensional case R1d

st

is about 20% lower than in the two-dimensional R2d
st case

and about 50% lower as compared to the three-dimensional
R3d

st case, regardless of the excitation energy or the friction
mechanism. The change in the stationary value of the fission
rate when going from the one-dimensional to the multi-
dimensional description can be caused by both static and
dynamic characteristics of the fission process. Weidenmüller
and Jing-Shang have discussed in Ref. [7] the influence of
the geometry of the fission valley on the calculated value
of the stationary fission rate. They have shown that if the
fission valley gets wider as one approaches the saddle-point
configurations, the multi-dimensional stationary value of the

FIG. 4. (Color online) The same as in Fig. 3, but for the case of
two-body dissipation.

fission rate will increase as compared to the one-dimensional
value. The opposite is to expect if the fission valley gets
narrower when approaching the saddle-point configurations
[7]. Apart from these static arguments, in multi-dimensional
Langevin calculations the stationary value of the fission
width will also be influenced by the dependence of the
mass and friction tensors on the chosen collective variables.
The combination of all these effects leads to the differences
between the one- and multi-dimensional calculations seen in
Figs. 3 and 4.

On the other hand, our results show that the stationary
values of the fission rate are larger in the case of two-body
dissipation as compared to one-body dissipation. In fact, the
collective energy at saddle point deformations averaged over
Langevin trajectories 〈Ecoll〉 is lower in the case of one-body
dissipation than in the case of two-body friction. The 〈Ecoll〉 has
the following values: 〈E1d

coll〉 = 1.36 MeV, 〈E2d
coll〉 = 2.07 MeV,

and 〈E3d
coll〉 = 2.65 MeV in the calculations with one-body

friction. In the case of two-body dissipation the 〈Ecoll〉 has the
following values: 〈E1d

coll〉 = 1.46 MeV, 〈E2d
coll〉 = 2.58 MeV,

and 〈E3d
coll〉 = 3.6 MeV. The available phase space determined

from energy conservation does not depend on the dissipation
mechanism and is the same for the calculations with one-body
and two-body frictions. Nevertheless, as one can see from
the 〈Ecoll〉 values, the fissioning systems in the calculations
with two-body friction are more mobile compared to the
case of one-body viscosity and, as a result, populate larger
phase space at saddle-point deformations. This fact results in
larger values of the fission rate in the model calculations with
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two-body dissipation as compared to the calculations with
one-body dissipation.

From the results shown in Figs. 3 and 4 we can also
discuss the influence of the number of collective coordinates
involved in the Langevin calculations on the transient time.
When two-body dissipation is assumed, the transient time
shows a clear dependence on the dimensionality of the model
space. The lowest transient time is obtained in one-dimensional
calculations τ 1d

tr and the largest in three-dimensional calcula-
tions τ 3d

tr . In the one-dimensional case, the fissioning system
can oscillate only in fission direction, and the energy is
transferred only between the elongation degree of freedom
and the heath bath. Thus, the Langevin trajectory follows the
dashed line shown in Fig. 1. In multi-dimensional calculations,
the fissioning system has more freedom. During the random
walk in multi-dimensional space, the fissioning system can
significantly deviate from the one-dimensional Langevin
trajectory, and the energy can be transferred not only between
the elongation degree of freedom and the heat bath, but also
between the elongation variable and additional collective vari-
ables. Therefore, in average, the motion in the fission direction
could be slowed down as compared to the one-dimensional
case, and, consequently, the fissioning system would need
more time in order to reach the saddle-point configurations in
the multi-dimensional case than in the one-dimensional case.
This could be the reason why τtr in the multi-dimensional case
is larger than τ 1d

tr . In the calculations performed with one-body
dissipation, the sensitivity of the transient time τtr to the
dimensionality of the model space is still present but strongly
reduced. As discussed above, the fissioning systems in the
calculations with one-body friction are less mobile compared
to the case of two-body viscosity and, as a result, populate
a more restricted region in deformation space. Therefore,
the motion in multi-dimensional space deviates less from
the one-dimensional Langevin trajectory. This could result
in a lower sensitivity of τtr to the dimensionality of the
model space. However, this discussion could only provide
a few qualitative arguments. One should not forget that
the stationary value of the fission rate and the transient time
are also decisively determined by the complex dependence of
the mass and friction tensors on the collective coordinates.

One could raise the question whether is it sufficient
to consider three dimensions for a realistic description of
the fission process. This question is equivalent to the task
to divide the degrees of freedom in a limited number of
collective variables, which are explicitly treated, and a heat
bath, which represents all the other degrees of freedom.
According to the derivation of the Fokker-Planck or the
Langevin equations, this division should be performed on
the base of the time scale of the dynamics of the system.
The heat bath should contain only those degrees of freedom
which vary fast compared to the collective degree of freedom

we are interested in. Obviously, a one-dimensional calculation,
which treats dynamically only the elongation of the nucleus,
does not fulfill this requirement, because the time scales of
neck formation and mass-asymmetry are comparable with the
motion in fission direction. Langevin calculations previously
performed [15,16] have shown that for the correct description
of the experimentally observed mass-energy distribution of
fission fragments at least three independent shape parameters
are needed: the elongation parameter, the parameter which
describes the appearance of the neck in the shape of the
nucleus, and the mass-asymmetry parameter. Thus, we can
assume that in the present work the most relevant degrees
of freedom are included, and, thus, the results of the three-
dimensional calculations are much more realistic than the
results of the one- or two-dimensional analysis. At the end,
we would like to mention that some other authors [25–28]
have used five or six shape parameters for the description of
different features of the fission process. These additional shape
parameters could also be dynamically treated in the Langevin
calculations, and their possible influence on the time behavior
of the fission flux could be studied. This is beyond the scope
of the present work.

IV. CONCLUSIONS

Our three-dimensional Langevin calculations with realistic
potential and inertial forces as well as friction tensors given by
one-body and two-body dissipation, respectively, have shown
that the inclusion of three dimensions can have substantial
influence on the time behavior and on the quasistationary
value of the fission flux if compared to the results of a
one-dimensional model. We have also performed calculations
of the fission rate at the saddle point using the last-passage-
time concept [29], and we came to the same conclusions
concerning the influence of the model dimensionality on the
fission process. Our results are particularly important for
the conclusions about nuclear dissipation, deduced from the
comparison of experimental results with model calculations,
which are performed in restricted deformation space. One
may suppose that qualitatively the same conclusion is valid
for other problems in statistical physics and chemistry on
the decay of metastable states of multi-dimensional systems,
which might be revisited with the powerful modern tools of
Langevin calculations.
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