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Azimuthal angle dependence of Coulomb and nuclear interactions between two deformed nuclei
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The azimuthal angle (φ) variation of the Coulomb and nuclear heavy ion (HI) potentials is studied in the
framework of the double folding model, which is derived from realistic nuclear density distributions and a
nucleon-nucleon (NN ) interaction. The present calculation shows that the variation of HI potentials with the
azimuthal angle depends strongly on the range of the NN forces. For the long-range Coulomb force, the maximum
variation with φ is about 0.9%, and for HI potential derived from zero-range NN interaction the φ-variation can
reach up to 90.0%. Our calculations are compared with the recent φ-dependence of the HI potential derived from
proximity method. The present realistic φ-dependence calculations of the HI potential is completely different
from the results of the proximity calculations.
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The calculations of the nucleus-nucleus potential between
two deformed, oriented nuclei have been of much interest
[1–9]. The double folding model [2,4,10] plays a fundamental
role in deriving the heavy ion (HI) potential. For two deformed
density distributions, the calculation of the nucleus-nucleus
potential is a hard task due to the numerical computation of
a six-dimensional integral, which is very time consuming.
This problem is quite relevant because most nuclei have
permanent and/or vibrational deformations. Recently, many
authors have considered this problem to study the synthesis
of new and superheavy elements [4,5,7,8], since the collision
of deformed nuclei is a path to the far side of the proposed
island of superheavy nuclei [11]. For the collision between
either two spherical [12], or spherical-deformed nuclei [13],
the HI potential (including the Coulomb part) had been
derived microscopically by different methods. The double
folding model [2,4,10] is one of the successful methods
to derive the HI potential starting from a finite range
NN force. Moreover, this model is the only one used to
treat correctly the Coulomb potential between two heavy
ions.

For two deformed nuclei, the double folding model can
be simplified when their symmetry axes are coplanar [1,2].
For arbitrary orientations of the nuclei, the six-dimensional
integral of the double folding model is difficult to calculate
without making approximations. Due to this difficulty, many
authors considered different approximate methods to derive
both the nuclear and Coulomb HI potentials [5–7]. For
example, in Refs. [6,7] the pocket formula of the proximity
potential was used to study orientation dependence of the
HI potential. In another study [14], the zero-range NN force
was used to reduce the six-dimensional integration to three
dimensions. The Coulomb potential, in these recent studies,
was calculated from a simplified equation derived by Wong
[15], or by assuming the nucleus to be of uniform charge
distribution with sharp cutoff edge [5]. The two methods for
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calculating the Coulomb potential produce a large error in both
internal and surface regions [16].

Moreover, the azimuthal angle dependence of the HI
potential between the two deformed nuclei is neglected in most
cases (coplanar symmetry axes) or treated by approximate
methods [7]. This shows the need to study the heavy ion
potential for arbitrary orientation of the symmetry axes of
the two deformed nuclei using a realistic NN force. The
aim of the present work is to show the importance of the
φ dependence of the HI potential for arbitrary orientation
of the symmetry axes of two interacting deformed nuclei.
The method described in Ref. [4] is implemented, and it is
based on the multipole expansion of the deformed density
distribution,

ρ(r̄) =
∑
l,m

ρl(r)Ylm(θ, φ). (1)

For an axially symmetric nucleus, having reflection symme-
try across a plane normal to its axis of symmetry and passing
its center, the values of l in Eq. (1) are restricted to even values,
and the value of m is zero.

The multipole expansion has the advantage of reducing the
six-dimensional integral in the folding model, to the sum of
the products of three single dimensional integrals. Moreover,
the series converges rapidly and the contributions of higher
multipole terms become negligible. Assuming two unequal
deformed nuclei with their symmetry axes are noncoplanar,
the folding integral for the finite range NN force, VNN (s), is
given by

V (R, �̂P , �̂T ) =
∫

ρP (r1, �̂P )VNN (s)ρT (r2, �̂T )d r1d r2 ,

(2)
where R̄ is the separation vector joining the two center of
masses of the interacting nuclei, �̂P , (�̂T ) is the direction of
symmetry axis of projectile (target), and ρP (ρT ) denotes the
density distribution of the projectile (target), and the other
symbols are indicated in Fig. 1. Following Greiner et al. [2,4],
ρP and ρT are first expanded, using Eq. (1), then the Fourier
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FIG. 1. The coordinate system for the interacting deformed-
deformed nuclei.

transform of the finite range NN interaction VNN (s = R +
r1 − r2) is taken to separate the coupled coordinators we can
get

V (R, �̂P , �̂T ) = (4π )3
∑
λ1λ2λ

iλ1+λ−λ2 (2λ + 1)

(
λ λ1 λ2

0 0 0

)

×
∫

dkk2jλ(kR)ṼNN (k)AT
λ2

(k)AP
λ1

(k)

×
+λ1∑

m=−λ1

(−1)m
(

λ λ1 λ2

0 m −m

)

×Y ∗
λ1m

(�̂P )Yλ2m(�̂T ), (3)

where ṼNN (k) is the Fourier transform of the NN force given
by,

ṼNN (k) = 1

(2π )3

∫
dxe−ik.xVNN (x) (4)

and the quantities Aλ(k) are given by

Aλ(k) =
∫

drr2ρλ(r)jλ(kr) . (5)

Equation (3) is reduced to Eq. (17) in Ref. [2] for the case
of coplanar �̂1and�̂2 by replacing Yλm(β, φ) by

Yλm(β, 0) =
√

2λ + 1

4π
dλ

m0(β) .

In the present calculations, we use the well-known M3Y
effective NN force [2,17] in its form

V (s) =
[

7999
e−4s

4s
− 2134

e−2.5s

2.5s

]

− 276.0

(
1 − 0.005

EL

AP

)
δ(s) (6)

the first and the second major terms are the direct and exchange
contributions to the NN force . We choose the nuclear pair
238U + 238U as an example to study the azimuthal angle
dependence of both Coulomb and nuclear HI potentials for
the deformed-deformed the interacting pair. We study also,
the φ-dependence of the interaction barrier and its position
for 150Nd + 150Nd collision considered recently in Ref. [7].
It is assumed that this collision leads to the production of
superheavy nucleus with the atomic number z = 120 [18].

In the present calculations, the matter or charge density
distributions for the 238U nucleus are represented by the Fermi
shape

ρ(r) = ρ0

1 + e
r−R(θ )

a

, (7)

where cos θ = r̂ · �̂ and the radius R(θ ) is given by

R(θ ) = R0[1 + δ2Y20(θ ) + δ4Y40(θ )] . (8)

The values of the parameters R0 and a are taken from Ref. [19],
δ2 and δ4 are the quadrupole and hexadecapole deformation
parameters, respectively.

In the present work, we use the values δ2 = 0.331 and
δ4 = 0 or 0.087, the Coulomb potential Vc(R, �̂p, �̂T ),
the direct VD(R, �̂P , �̂T ), and zero-range exchange
Vex(R, �̂P , �̂T ) contributions of the 238U + 238U potential
are calculated for four orientations (βP , βT ) of the sym-
metry axes of the deformed nuclei. These orientations
are (30◦, 30◦), (60◦, 60◦), (90◦, 90◦), and (45◦, 135◦). Define
�̂i = (βi, φi) then, for each (βP , βT ) value, we consider the
azimuthal angle variation from φT = 00 to φT = 1800, and
φP = 00 also φ is set to represent φT .

Figures 2(a)–2(d) show the azimuthal angle variation of
the direct and exchange parts of the 238U + 238U nuclear HI
potential calculated at the two separation distances R = 12.0
and 15.0 fm. The figures show the potentials for four different
values of relative orientation angles (βP , βT ) and δ4 = 0.

Figures 2(a) and 2(b) show the direct term, while
Figs. 2(c) and 2(d) show the exchange term of the HI potential.
Figures 3(a)–3(d) are the same as Figs. 2(a)–2(d) except they
are calculated with the value of hexadecapole deformation
parameter δ4 = 0.087.

The present study shows that the φ-variation of the nucleus-
nucleus Coulomb interaction is small and has a maximum per-
centage of 0.9%, around the barrier region, for the orientation
angles (βP , βT ) ≡ (30◦, 30◦). For the same orientation angles
the change of φ from 0◦ to 180◦ (φ-variation range) increases
the Coulomb potential by 7.0 and 4.6 MeV at R = 12.0 and
14.0 fm, respectively. For (60◦, 60◦), VC increases by 6.6 MeV
and 4.0 MeV for the same φ-range, and the same values
of separation distance R. At R = 12.0 fm the φ variation
decreases the value of VC for the two orientations (90◦, 90◦)
and (45◦, 135◦) by 2.5 MeV and 9.0 MeV, respectively, and by
1.3 MeV and 6.1 MeV at R = 14.0 fm.

In contrast to the long-range Coulomb interaction, the
nuclear part of the HI potential calculated assuming zero
range exchange NN force has the strongest φ-variation at the
orientation angles (βP = βT = 600) as shown in Figs. 2(c) and
2(d). The φ-variation is stronger compared to the direct part of
the HI potential calculated using finite range NN force shown
in Figs. 2(a) and 2(b). As the separation distance R increases,
the percentage variation of Vex(R, βP , βT , φ) increases as
φ changes in its range. For example, Vex(R, 30◦, 30◦, φ)
becomes more attractive by 15%, 25%, and 36.8% at a
separation distance set of values R = 12.0, 14.0, and 17.0 fm,
respectively. For the direct HI potential these percentages
become 11.7%, 15.9%, and 27.7% for the same set of R values.
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FIG. 2. The azimuthal angle variation of the nuclear HI potential for the 238U + 238U pair considering the quadrupole deformation only.
(a) The direct part calculated at separation distance value R = 12.0 fm. (b) The direct part calculated at R = 15.0 fm. (c) The exchange part at
R = 12.0 fm. (d) The exchange part at R = 15.0 fm.

As R increases the percentage change of Vex(R, 60◦,
60◦, φ) becomes stronger and it reaches up to about 90% at
R = 17.0 fm.

Figures 3(a)–3(d) show the same quantities as Figs.
2(a)–2(d), but the calculation is based on the value of the
hexadecapole deformation parameter δ4 = 0.087 instead of
δ4 = 0.0 used in Figs. 2(a)–2(d). Comparing the corresponding
figures, one concludes that the presence of δ4 in both deformed
nuclei does not affect the behavior of direct and exchange
parts of the HI potential with the variation of azimuthal angle
φ. The presence of δ4 deformation enhances strongly the φ

dependence of the potential at large values of the separation
distance R. Table I presents the values of the Coulomb, direct,
and exchange contributions to the HI potential calculated at
four-different orientations and for two values of the separation
distance R for the case δ4 = 0.087. The first and second lines
for each orientation represent the value of the potential at
φ = 0◦ and φ = 180◦ or 90◦.

Figures 2, 3, and Table I show that, for separation distance
R �12.0fm the HI potentials are enhanced for the orientations
(30◦, 30◦) and (60◦, 60◦) as the azimuthal angle φ increases,
while for the orientation (45◦, 135◦) it is the other way around,
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TABLE I. The φ-variation of the Coulomb, direct, and exchange parts in the HI potential
(MeV) between the 238U + 238U interacting pair at four different sets of orientation angles.

β1 (deg) β2 (deg) φ (deg) R = 14 fm R = 17 fm

VC VD VEx VC VD VEx

30.0 30.0 0.0 905.4 −180.9 −266.7 738.4 −20.6 −15.5
180.0 910.0 −209.7 −332.0 740.0 −26.3 −21.2

60.0 60.0 0.0 860.2 −56.4 −48.9 711.7 −2.3 −0.96
180.0 864.2 −75.1 −77.2 713.3 −3.63 −1.8

90.0 90.0 0.0 842.6 −26.6 −18.5 700.9 −0.81 −0.39
90.0 841.3 −25.5 −18.2 700.4 −0.82 −0.40

45.0 135.0 0.0 887.0 −137.8 −185.0 726.6 −11.76 −7.75
180.0 880.9 −105.9 −122.8 724.0 −7.34 −4.04

the change in the HI interaction between the nuclear interacting
pair is depressed. This can be understood by purely geometrical
considerations concerning the overlap region between the two
nuclei for these orientations. For R�12.0 fm, the value of the
overlap integral,

∫
d rρP (r), �̂P )ρT (r + R, �̂T ) ,

increases as φ increases for the orientations (βP , βT ) =
(30◦, 30◦) and (60◦, 60◦), while it decreases for (45◦, 135◦).

The variation of the Coulomb and nuclear potentials near
the position of the Coulomb barrier is of great importance in
calculating the fusion [20] and fission cross sections [21]. Since
the fusion cross section (σf ) varies almost as the logarithmic
function containing the difference between the total energy
and the height of the Coulomb barrier [22], we expect that any
small variation of the values of the Coulomb barrier parameters
affects significantly σf . Recent calculations of σf for two
nuclei having permanent and/or vibrational deformations do
not include φ-dependence in the HI potential. Moreover, these
calculations include the effect of deformation of one or both
nuclei using too simplified methods [22]. This shows the
importance of studying the φ-dependence of the HI potential
using realistic calculations, which is the aim of the present
work.

In the field of producing superheavy elements, no fusion
experiments are made with both reaction partners as deformed
nuclei. Some authors considered this type of reaction to
study the azimuthal angle dependence of the Coulomb barrier

parameters for two deformed nuclei using simplified models.
For example, the authors in Ref. [7] considered the φ-variation
for the Coulomb barrier of the reaction 150Nd + 150Nd and
180Hf + 180Hf. They used the proximity method to derive
the nuclear part of the HI potential. The Coulomb part was
calculated using the approximate Wong’s formulaes [15]. They
found that the φ-dependence of identical and nonidentical
target-projectile combinations plays an important role in
determining the interacting barrier height and position for the
orientation (90◦, 90◦) of the two nuclei.

We compare the calculated results for the φ-dependence of
the nuclear part of the 238U + 238U potential with the same
quantity calculated for 150Nd + 150Nd using the proximity
method [7]. For βP = βT = 90◦ the orientation considered
in Ref. [7], the HI potentials are symmetric around φ = 90◦.
The nuclear potentials for the 238U + 238U pair vary by less
than 3.5% around the Coulomb barrier, when φ is changed
from 0◦−90◦, while the proximity potentials in Ref. [7] vary
by more than 18.0% at their minimum. The presence of δ4

deformation with positive value affects the values of both the
proximity and the folding potentials in the surface region of the
HI potential by more than 24%. The hexadecapole deformation
lowers the folding potentials, while it raises the potentials in
the proximity calculations presented in Ref. [7].

The effect of the azimuthal angle variation on the param-
eters of the physically significant Coulomb (fusion) barrier
for the 238U + 238U interacting pair is given in Table II. The
table shows the maximum percentage of the φ-variation of the
barrier height VB and its radius RB for different orientation

TABLE II. The maximum percentage variation of the Coulomb barrier height and its
position with the azimuthal angle at different orientations of the symmetry axes of the
238U + 238U interacting nuclei.

βP (deg) βT (deg) φ range (deg) δ2 = 0.331, δ4 = 0.0 δ2 = 0.331, δ4 = 0.087

RB (%) VB (%) RB (%) VB (%)

30 30 180 1.913 −1.450 3.927 −3.119
60 60 180 3.094 −2.414 2.623 −2.062
90 90 90 −0.369 0.065 0.289 −0.379
45 135 0–180 −3.126 2.683 −4.760 4.943
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FIG. 3. The azimuthal angle variation of the nuclear HI potential for the 238U + 238U pair considering the quadrupole and the hexadecapole
deformation with δ4 = 0.087. (a) The direct part calculated at separation distance value R = 12.0 fm. (b) The direct part calculated at
R = 15.0 fm. (c) The exchange part at R = 12.0 fm. (d) The exchange part at R = 15.0 fm.

angles of the symmetry axes of the two interacting nuclei. The
two cases δ4 = 0.0 and δ4 = 0.087 are presented in Table II.
The percentage changes in both VB and RB show that the
φ-change enhances strongly the fusion cross section for
the orientations (30◦, 30◦) and (60◦, 60◦), while it produced
opposite effect on fusion cross section for (45◦, 135◦). For
the orientation (90◦, 90◦) Table II shows a small variation
of RB, VB with the azimuthal angle, since this result is
completely different from that found in Ref. [7], we extend our
calculations of RB and VB derived from realistic M3Y-NN

force to one of the reactions considered in Ref. [7]. We

used for the 150Nd nucleus the same values of density and
deformation parameters considered in Ref. [7]. We calculated
the azimuthal angle variation of RB and VB at the orientation
(90◦, 90◦) for the three values of the hexadecapole deformation
parameters δ4 = 0.0, 0.107, and −0.107. Since the Nd-nucleus
has prolate quadrupole deformation, the three cases were
denoted by pp, p+p+, and p−p− collisions, respectively. For
the orientation (90◦, 90◦) the HI potential for the pp collision
calculated using M3Y-NN force predicts the value of RB

which gradually decreases by an amount 0.23% , while VB

gradually increases by 0.03% when φ increases from 0◦ to 90◦
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TABLE III. The values of the Coulomb barrier height and its position for the values of the azimuthal angle 0◦ and 90◦ for the
150Nd + 150Nd interacting nuclei.

βP (deg) βT (deg) δ2 = 0.243, δ4 = 0.0 δ2 = 0.243, δ4 = 0.107 δ2 = 0.243, δ4 = −0.107

φ (deg) RB (fm) VB (MeV) φ (deg) RB (fm) VB (MeV) φ (deg) RB (fm) VB (MeV)

90 90 0 13.00 367.60 0 13.19 359.78 0 12.91 371.67
90 90 90 12.97 367.70 90 13.20 359.44 90 12.77 375.09

as shown in table III. These smaller percentages are enhanced
to 1.09% and 0.9% for the p−p− collision.

For the p+p+ collision RB increases by 0.08% while VB

decreases by 0.1% for the φ-variation in the range 0−90◦.
These results are in correspondence with that obtained for
the 238U + 238U pair (the value of δ2 for 238U is greater by
36% compared with δ2 of 150Nd). The results of the proximity
method show a gradual variation of RB and VB with increasing
φ for the pp collision only. When δ4 is added the variation of
RB and VB with φ becomes oscillating.

Table III shows the values of VB and RB at the orientation
(90◦, 90◦) for pp, p+p+ and p−p− collisions.

We can summarize the results of our study on the variation
of the HI potential with the azimuthal angle in the following
points.

(i) The percentage variation of the HI potential when φ

changes in the range 0◦–180◦ depends on the values of
the deformation parameters and range of the NN force
used to derive the HI potential. Large and vanishing
ranges of the NN force produce a weak and strong
azimuthal angle variation of the HI potential. As the
values of deformation parameters increase, the φ varia-
tion of the HI potential increases. It is larger in case of

the 238U + 238U interaction compared with the Nd-Nd
potential because the quadrupole deformation parameter
has the values δ2 = 0.331 and 0.243 for U and Nd nuclei,
respectively.

(ii) The relative orientation of the two interacting nuclei
plays an important role in producing the φ variation of
the HI potential. This variation vanishes if βP and/or
βT have/has zero value. It is too small if (βP , βT ) =
(90◦, 90◦) and becomes stronger for the orientations
(30◦, 30◦), (60◦, 60◦).

(iii) φ-variation in the range of 0–180◦ enhances the HI
potentials for the orientations (30◦, 30◦) and (60◦, 60◦),
while it reduces the interactions for the orientations
(45◦, 135◦) and (90◦, 90◦).

(iv) The HI-potential derived from the folding model with
M3Y-NN force has different φ variation than that
derived from the the proximity approach [7].

(v) φ-variation affects appreciably the parameters of the
Coulomb barrier, which is a physically important quan-
tity in the field of heavy ion collision. It determines the
fusion cross section and is used in the superheavy nuclei
production field.
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