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Beam energy dependence of Coulomb-nuclear interference in the breakup of 11Be
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Within the post-form distorted wave Born approximation wherein pure Coulomb, pure nuclear and their
interference terms are treated consistently in a single setup we study the beam energy dependence of the
Coulomb-nuclear interference terms in the breakup of 11Be on a medium mass 44Ti target. Our results suggest
that the Coulomb-nuclear interference terms are dependent on the incident beam energy and can be as big as that
of the individual Coulomb or nuclear terms depending on the angle and energy of the breakup fragments. We also
calculate the relative energy spectra and one-neutron removal cross sections in the breakup of 11Be on a heavy
208Pb target at 69 MeV/nucleon for two different angular ranges of the projectile center of the mass scattering
angle and compare them with recently available experimental data.
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I. INTRODUCTION

Nuclei away from the valley of stability have opened a
new paradigm in nuclear physics. They are often extremely
unstable (especially those closer to the drip lines) and have
structure and properties which are quite often different from
stable isotopes. Many of them exhibit a halo structure in their
ground states in which loosely bound valence nucleon(s) has
(have) a large spatial extension with respect to the respective
core [1–4].

There have been several attempts, within a fully micro-
scopic approach, to understand the stability of these weakly
bound systems. A few of them, like different continuum shell
model approaches [5,6], including the shell model embedded
in the continuum [7,8], are formulated in the Hilbert space, i.e.,
they are based on the completeness of a single particle basis
consisting of bound orbits and a real continuum. A different
approach to the treatment of particle continuum is proposed in
the Gamow shell model [9], which is the multiconfigurational
shell model with a single particle basis given by the Berggren
ensemble [10] consisting of Gamow (or resonant) states and
the complex nonresonant continuum of scattering states. A
microscopic cluster study of neutron rich carbon isotopes has
also been performed with the generator coordinate method in
Ref. [11]. However, a lot more needs to be done before one gets
a more complete theoretical understanding of the underlying
processes.

Another, widely used, method in unraveling the structure
and properties of halo nuclei, is to use breakup reactions
featuring the exotic projectile. For reviews of this ever bur-
geoning field from an experimental and theoretical perspective
one is referred to Refs. [12] and [13], respectively. It is now
abundantly clear that pure Coulomb [14–20] or pure nuclear
[21–23] breakup calculations may not be fully sufficient to
describe all the details of the halo breakup data which have
been increasing rapidly both in quality and quantity [24–30].
In the majority of them both Coulomb and nuclear breakup
effects as well as their interference terms are likely to be
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significant and the neglect of the latter terms may not be
justified [31–34]. The importance of nuclear effects even in the
breakup of 8B in collisions with heavy ions has been discussed
in Ref. [35]. Thus, an important requirement in interpreting
the data obtained from the experiments done already or are
planned to be done in future is to have a theory which can take
care of the Coulomb and nuclear breakup effects as well as
their interference terms on an equal footing.

For breakup reactions of light stable nuclei, such a theory
has been developed [36] within the framework of post-
form distorted wave Born approximation (DWBA), which
successfully describes the corresponding data at low beam
energies. However, since it uses the simplifying approximation
of a zero-range interaction [37] between constituents of the
projectile, it is inapplicable to cases where the internal orbital
angular momentum of the projectile is different from zero.

Recently, we have presented a theory [38,39] to describe
the breakup reactions of one-nucleon halo nuclei within the
post-form DWBA (PFDWBA) framework, that consistently
includes both Coulomb and nuclear interactions between the
projectile fragments and the targets to all orders, but treats
the fragment-fragment interaction in first order. The Coulomb
and nuclear breakups along with their interference term are
treated within a single setup in this theory. The breakup
contributions from the entire continuum corresponding to
all the multipoles and the relative orbital angular momenta
between the valence nucleon and the core fragment are
included in this theory where finite range effects are treated by
a local momentum approximation (LMA) [40,41]. Full ground
state wave function of the projectile, of any angular momentum
structure, enters as an input to this theory.

The Coulomb-nuclear interference (CNI) terms have also
been calculated using the prior-form DWBA [42] and within
models [43,44] where the time evolution of the projectile
in coordinate space is described by solving the time depen-
dent Schrödinger equation, treating the projectile-target (both
Coulomb and nuclear) interaction as a time dependent external
perturbation. Recently, the dynamical eikonal method, which
unifies the semiclassical time dependent and eikonal method
and also takes into account interference effects has been used to
calculate realistic differential cross sections [45,46]. Coulomb
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and nuclear processes have also been treated consistently
on the same footing, in the continuum discretized coupled-
channels method [47–49] and also within an eikonal-like
framework, in Refs. [50,51]. Nevertheless, to the best of our
knowledge, the question of beam energy dependence of CNI
has not been studied within breakup models before. Thus there
is a need to address this question and investigate this new
physics aspect within existing breakup theories itself, in view
of several sophisticated experiments planned in the future.

In this paper, we investigate the beam energy dependence of
the Coulomb-nuclear interference terms in the breakup of 11Be
on a medium mass 44Ti target and also calculate the relative
energy spectra and one-neutron removal cross sections in the
breakup of 11Be on a heavy 208Pb target at 69 MeV/nucleon
for two different angular ranges of the projectile center of
the mass (c.m.) scattering angle. Our formalism is presented
in Sec. II. In Sec. III, we present and discuss the results of
our calculations for the breakup of 11Be on 44Ti and 208Pb
targets. Summary and conclusions of our work are presented in
Sec. IV.

II. FORMALISM

We consider the elastic breakup reaction, a+ t → b+c+ t ,
in which the projectile a (a = b + c) breaks up into fragments
b and c (both of which can be charged) in the Coulomb and
nuclear fields of a target t . The triple differential cross section
for this reaction is given by

d3σ

dEbd�bd�c

= 2π

h̄va

ρ(Eb,�b,�c)
∑
�m

|β�m|2, (1)

where va is the relative velocity of the projectile with respect
to the target, � is the orbital angular momentum for the relative
motion of b and c in the ground state of a, and ρ(Eb,�b,�c)
is the appropriate phase space factor (see, e.g., Ref. [18]). The
reduced transition amplitude, in Eq. (1), β�m is defined as

�̂β�m(kb, kc; ka) =
∫

dr1driχ
(−)∗
b (kb, r)χ (−)∗

c (kc, rc)

×Vbc(r1)u�(r1)Y �
m(r̂1)χ (+)

a (ka, ri),

(2)

with �̂ ≡ √
2� + 1. In Eq. (2), functions χi represent the

distorted waves for the relative motions of various particles
in their respective channels with appropriate boundary condi-
tions. The superscripts ( + ) and ( − ) represents outgoing and
ingoing wave boundary conditions, respectively. Arguments
of these functions contain the corresponding Jacobi momenta
and coordinates. Vbc(r1) represents the interaction between b

and c, and u�(r1) is the radial part of the corresponding wave
function in the ground state of a. The position vectors (Jacobi
coordinates) satisfy the relations (see also Fig. 1 of Ref. [18]):

r = ri − αr1, α = mc

mc + mb

, (3)

rc = γ r1 + δri , δ = mt

mb + mt

, γ = (1 − αδ), (4)

where mi (i = a, b, c, t) are the masses of various particles.
In, what follows, we shall recollect only those formulas which
are essential for our discussion. More details of the theory,
especially those regarding the evaluation of β�m, can be found
in Ref. [39].

The reduced amplitude, β�m [Eq. (2)], involves a six-
dimensional integral which makes its evaluation quite compli-
cated. The problem gets further aggravated due to the fact that
the integrand involves the product of three scattering waves
that exhibit an oscillatory behavior asymptotically. In order
to facilitate an easier computation of Eq. (2), we perform a
Taylor series expansion of the distorted waves of particles b

and c about ri and write

χ
(−)
b (kb, r) = e−iαKb.r1χ

(−)
b (kb, ri), (5)

χ (−)
c (kc, rc) = eiγ Kc.r1χ (−)

c (kc, δri). (6)

Employing the LMA [40,41], the magnitudes of momenta Kj

are taken as

Kj (R) =
√

(2mj/h̄
2)[Ej − Vj (R)], (7)

where mj (j = b, c) is the reduced mass of the j -t system, Ej

is the energy of particle j relative to the target in the center of
mass (c.m.) system, and Vj (R) is the potential between j and
t at a distance R. Finally, one obtains

�̂β�m = (4π )3

kakbkcδ
i−�Y �

m�
(Q̂)Z�(Q)

∑
LaLbLc

(i)La−Lb−Lc L̂bL̂c

×YLb

Lc
(k̂b, k̂c)〈Lb0Lc0|La0〉RLb,Lc,La

(ka, kb, ka),

(8)

where

YLb

Lc
(k̂b, k̂c) =

∑
M

( − )M〈LbMLc − M|La0〉YLb

M (k̂b)Y
L∗

c

M (k̂c),

(9)

Z�(Q) =
∫ ∞

0
r2

1 dr1j�(Qr1)u�(r1)Vbc(r1), (10)

RLb,Lc,La
=

∫ ∞

0

dri

ri

fLa
(ka, ri)fLb

(kb, ri)fLc
(kc, δri),

(11)

and Q = γ Kc − αKb. In Eq. (11), fLi
(i = a, b, c) are the

radial part of the partial wave (Li) expansion of distorted wave
χ

(±)
i , and is calculated by solving the Schrödinger equation

with proper optical potentials which includes both Coulomb
and nuclear terms. Generally, the maximum value of the
partial waves La,Lb, Lc must be very large in order to ensure
the convergence of the partial wave summations in Eq. (8).
However, for the case of one-neutron halo nuclei, one can
make use of the following method to include summations over
infinite number of partial waves. We write β�m as

β�m =
Lmax

i∑
Li=0

β̂�m(Li) +
∞∑

Li=Lmax
i

β̂�m(Li), (12)
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where β̂ is defined in the same way as Eq. (8) except for
the summation sign and Li corresponds to La,Lb, and Lc.
If the value of Lmax

i is chosen to be appropriately large, the
contribution of the nuclear field to the second term of Eq. (12)
can be neglected and we can write

∞∑
Li=Lmax

i

β̂�m(Li) ≈
∞∑

Li=0

β̂
Coul
�m (Li) −

Lmax
i∑

Li=0

β̂
Coul
�m (Li), (13)

where the first term on the right hand side, is the pure
Coulomb breakup amplitude which for the case where one
of the outgoing fragments is uncharged, can be expressed
analytically in terms of the bremsstrahlung integral (see
Ref. [18]). Therefore, only two terms, with reasonable upper
limits, are required to be evaluated by the partial wave
expansion in Eq. (12).

III. CALCULATIONS ON 11BE

A. Structure model and optical potentials

The wave function, u�(r), appearing in the structure term,
Z� [Eq. (10)], has been calculated by adopting a single particle
potential model in the same way as in Ref. [18,30]. The
ground state of 11Be was considered to be a predominantly
s-state with a 2s1/2 valence neutron coupled to the 0+ 10Be
core [10Be ⊗ 2s1/2ν] with a one-neutron separation energy
of 504 keV and a spectroscopic factor of 0.74 [52]. The
single particle wave function was constructed by assuming
the valence neutron-10Be interaction to be of Woods-Saxon
type whose depth was adjusted to reproduce the correspond-
ing value of the binding energy with fixed values of the
radius and diffuseness parameters (taken to be 1.236 fm and
0.62 fm, respectively). This gave a potential depth of
59.08 MeV, a root mean square (rms) radius for the valence
neutron of 7.07 fm, and a rms radius for 11Be of 2.98 fm
when the size of the 10Be core was taken to be 2.28 fm. The
neutron-target optical potentials used by us were extracted
from the global set of Bechhetti-Greenlees (see, e.g, [53]),
while those used for the 10Be-target ( [30,39]) system are
shown in Table I. Following [43], we have used the sum
of these two potentials for the 11Be-target channel. We
found that values of Lmax

i of 500 and 400 for Pb and Ti
targets, respectively, provided a very good convergence of the
corresponding partial wave expansion series [Eq. (8)]. The
local momentum wave vectors are evaluated at a distance,
R = 10 fm in all the cases, and their directions are taken to
be same as that of asymptotic momenta. More details on the
validity of this approximation can be found in the Appendix
of Ref. [39].

B. Neutron energy distribution

It had been observed earlier that the CNI terms were
dependent more on exclusive observables than on inclusive
ones mainly due to the fact that multiply integrated quantities
(theoretically) washed away the effect of interferences. Calcu-
lations of the double differential cross section (neutron energy

TABLE I. Optical potential parameters for the 10Be-target
interaction. Radii are calculated with the rj t

1/3 convention.

System Vr

(MeV)
rr

(fm)
ar

(fm)
Wi

(MeV)
ri

(fm)
ai

(fm)

10Be-44Ti 70 2.5 0.5 10.0 1.5 0.50
10Be-208Pb 50 1.45 0.8 57.9 1.45 0.8

distribution) for two forward neutron emission angles in the
breakup of 11Be on Au at the beam energy of 41 MeV/nucleon,
showed that the CNI terms were dependent on angles and
energies of the outgoing neutron [39]. Their magnitudes were
nearly equal to those of the nuclear breakup contributions
which led to a difference in the incoherent and coherent sums
of the Coulomb and nuclear contributions underlying thus the
importance of those terms. In this subsection we shall present
results of our calculations for the neutron energy distribution
for the breakup of 11Be on a medium mass target at various
beam energies and neutron emission angles (θn). In all these
cases the core emission angle (θ10Be) is integrated from 0◦ to
30◦.

In Fig. 1, we plot the neutron energy distribution for
the breakup of 11Be on 44Ti at the low beam energy of
20 MeV/nucleon, for θn = 1◦, 6◦, 11◦, and 16◦. The dashed and
dot-dashed lines represent the pure Coulomb and nuclear con-
tributions, respectively, while total contributions are shown by
solid lines. The plus signs and the inverted triangles represent
the magnitudes of the positive and negative interference terms,
respectively. At all neutron emission angles the Coulomb
breakup terms are more than the nuclear ones at this low beam
energy. We also see that the interferences at this beam energy
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FIG. 1. Neutron energy distribution for the breakup reaction 11Be
on 44Ti at the beam energy of 20 MeV/nucleon, for θn = 1◦, 6◦, 11◦,
and 16◦. The dashed and dot-dashed lines represent the pure Coulomb
and nuclear contributions, respectively, while total contributions are
shown by solid lines. The plus signs and the inverted triangles
represent the magnitudes of the positive and negative interference
terms, respectively.
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FIG. 2. Neutron energy distribution for the breakup reaction 11Be
on 44Ti at the beam energy of 30 MeV/nucleon, for θn = 1◦, 6◦, 11◦,
and 16◦. The dashed and dot-dashed lines represent the pure Coulomb
and nuclear contributions, respectively, while total contributions are
shown by solid lines. The plus signs and the inverted triangles
represent the magnitudes of the positive and negative interference
terms, respectively.

are constructive, in general, and that at the neutron angles of
1◦ and 11◦, in Figs. 1(a) and 1(c), respectively, the magnitude
of the interference terms are more than the nuclear terms for
nearly all energies of the outgoing neutron.

A similar calculation performed at a higher beam energy is
shown in Fig. 2, where we plot the neutron energy distribution
for the breakup of 11Be on 44Ti at the beam energy of
30 MeV/nucleon, for θn = 1◦, 6◦, 11◦, and 16◦. Pure Coulomb
and nuclear contributions are shown by dashed and dot-dashed
lines, respectively, while total contributions are shown by solid
lines. The plus signs and the inverted triangles represent the
magnitudes of the positive and negative interference terms,
respectively. At 30 MeV/nucleon, incident beam energy, we
see that the Coulomb terms are larger than the nuclear ones
at smaller neutron emission angles [Figs. 2(a)–2(c)], while
at larger angles the nuclear part begins to dominate. The
importance of the interference terms is highlighted in Fig. 2(a),
where we see that the destructive interference terms not only
cancel out the nuclear terms, but also reduces the Coulomb
terms so that the coherent total sum is less than the Coulomb
terms. At θn = 16◦ [Fig. 2(d)] we see that the destructive
CNI terms nearly cancel out the Coulomb terms, especially
from neutron energies of 15 MeV to 27 MeV, and the nuclear
terms are sole contributors at these energies.

In Fig. 3, we plot the neutron energy distribution for the
breakup of 11Be on 44Ti at the beam energy of 40 MeV/nucleon,
for θn = 1◦, 6◦, 11◦, and 16◦. The dashed and dot-dashed
lines represent the pure Coulomb and nuclear contributions,
respectively, while total contributions are shown by solid
lines. The plus signs and the inverted triangles represent
the magnitudes of the positive and negative interference
terms, respectively. We see that the Coulomb terms are larger
than the nuclear ones at smaller neutron emission angles
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FIG. 3. Neutron energy distribution for the breakup reaction 11Be
on 44Ti at the beam energy of 40 MeV/nucleon, for θn = 1◦, 6◦, 11◦,
and 16◦. The dashed and dot-dashed lines represent the pure Coulomb
and nuclear contributions, respectively, while total contributions are
shown by solid lines. The plus signs and the inverted triangles
represent the magnitudes of the positive and negative interference
terms, respectively.

[Figs. 3(a), 3(b)], while at larger angles the nuclear part
begins to dominate. The interference is generally constructive
at smaller neutron angles, often being larger or almost equal to
the individual nuclear terms (θn = 1◦, 6◦), while at θn = 11◦,
especially from neutron energies of 20 MeV to 35 MeV, the
destructive CNI terms nearly cancel out the Coulomb terms,
and the nuclear terms are sole contributors to the total cross
section.

Our results, thus, indicate that the CNI terms are not only
dependent on energies and angles of the outgoing fragments,
they are also dependent on the incident beam energy. It would
indeed be quite interesting if more exclusive cross section
measurements could be made at low beam energies, where the
effect of the CNI terms were found to be substantial, in a future
experiment.

C. Relative energy spectra

The relative energy spectrum of the fragments (neutron
and 10Be) emitted in the breakup of 11Be on 208Pb target at
the beam energy of 69 MeV/nucleon is shown in Fig. 4, for
different angular ranges of the projectile c.m. scattering angle
(θat ). The relative angle between the fragments (θn-10Be) has
been integrated from 0◦ to 180◦. The dashed and dot-dashed
lines represent the pure Coulomb and nuclear contributions,
respectively, while total coherent contributions are shown by
solid lines. The experimental data are from Ref. [30].

In the upper panel of Fig. 4, θat -integration has been done in
the range of 0◦–6◦. The pure Coulomb contributions dominate
the cross sections around the peak value, while at larger relative
energies the nuclear breakup is important. This was also
observed in Refs. [39,43] and was attributed to the different
energy dependence of the two contributions. In Ref. [39],
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TABLE II. Total one-neutron removal cross section, various contributions from pure Coulomb and pure
nuclear breakups, and their incoherent sum for 11Be breakup on 208Pb, at beam energy of 69 MeV/nucleon
for two different angular ranges of θat .

θat

(deg.)
Total
(b)

Pure Coulomb
(b)

Pure nuclear
(b)

Incoherent
sum (b)

Expt. [30] (b)

0◦–6◦ 1.534 1.191 0.367 1.558 1.790 ± 0.110(syst) ± 0.020(stat)
0◦–1.3◦ 0.489 0.484 0.005 0.489 –

however, the θat -integration was done from 0◦–40◦ mainly
to account for all nuclear contributions coming from small
impact parameters.

The Coulomb breakup contribution has a long range and
it shows a strong energy dependence. The number of virtual
photons increases for small excitation energies and hence the
cross sections rise sharply at low excitation energies. After a
certain value of this energy the cross sections decrease due
to setting in of the adiabatic cutoff. In contrast, the nuclear
breakup occurs when the projectile and the target nuclei
are close to each other. Its magnitude, which is determined
mostly by the geometrical conditions, has a weak dependence
on the relative energy of the outgoing fragments beyond a
certain minimum value. The coherent sum of the Coulomb
and nuclear contributions provides a good overall description
of the experimental data.

The lower panel of Fig. 4, shows the relative energy spectra
in which the θat -integration was done from 0◦–1.3◦. This is
well below the grazing angle (=3.8◦) for the reaction and
consequently the Coulomb contribution in this case dominates
over the nuclear part (which in fact is multiplied by a factor
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FIG. 4. Relative energy spectra for the breakup of 11Be on a 208Pb
target at 69 MeV/nucleon, incident beam energy, for different angular
ranges of θat . The dashed and dot-dashed lines represent the pure
Coulomb and nuclear breakup contributions, respectively, while total
contributions are shown by solid lines. In the upper panel, integration
over θat has been done in the range of 0◦–6◦, while in the lower panel
θat is integrated in the range of 0◦–1.3◦. Experimental data are from
Ref. [30]. For more details see the text.

of 10 to make it visible in the figure). Thus, the dashed and
solid lines in the lower panel of Fig. 4, almost coincide with
each other. This will also be reflected in the total one-neutron
removal cross section which we present in the next sub section.

D. Total one-neutron removal cross section

In Table II, we show the contributions of pure Coulomb
and pure nuclear breakup mechanisms to the total one-neutron
removal cross sections in the breakup of 11Be on 208Pb for
two different angular ranges of θat , at the beam energy of
69 MeV/nucleon. The incoherent sum shown in the penulti-
mate column of the table is obtained by simply adding the pure
Coulomb and pure nuclear cross sections.

For the breakup of 11Be on Pb in the θat -range of 0◦–6◦,
Coulomb breakup accounts for most (≈ 78%) of the total cross
section, while in the angular range of 0◦–1.3◦ (well below the
grazing angle) it accounts for almost all of the total cross
section.

The total one-neutron removal cross section on Pb does not
seem to be affected by the CNI terms. This is because the
CNI terms manifest themselves explicitly in more exclusive
measurements, like double differential cross sections than in
quantities like total cross sections.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the beam energy
dependence of the Coulomb-nuclear interference terms in the
breakup of 11Be on a medium mass 44Ti target and have
also calculated the relative energy spectra for the breakup
of 11Be on a heavy 208Pb target at 69 MeV/nucleon for two
different angular ranges of the projectile center of the mass
scattering angle. The calculations were performed within the
fully quantum mechanical framework of post-form DWBA,
where pure Coulomb, pure nuclear as well as their interference
terms were treated consistently within the same framework. In
this theory, both the Coulomb and nuclear interactions between
the projectile and the target nucleus were treated to all orders,
but the fragment-fragment interaction was treated in the first
order. The full ground state wave function of the projectile
corresponding to any orbital angular momentum structure
enters as an input to this theory.

The exact post-form DWBA breakup amplitude was sim-
plified with the LMA and the validity of the approximation
was verified by calculating several reaction observables in the
breakup of 11Be in the Coulomb and nuclear fields of several
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targets, in different mass ranges, in Refs. [38,39]. Recently,
there have been attempts to calculate the exact post-form
DWBA without the LMA, for pure Coulomb breakup, with
momentum space Coulomb wave functions [54]. While, this is
indeed an welcome step, its practical applicability to calculate
a wide variety of reaction observables is still an open question,
particularly because it is numerically very intensive and time
consuming. Thus the LMA still has practical applications,
in this respect, particularly because along with its ability
to factorise the Coulomb breakup amplitude it is also able
to treat Coulomb and nuclear breakup on a single footing.
Nevertheless, efforts are in progress [55] for the calculation of
the post-form DWBA breakup amplitude without the LMA in
a more analytic and less numerically intensive way than using
momentum space Coulomb wave functions.

We calculated the neutron energy distributions for the
breakup of 11Be on 44Ti at various beam energies and neutron
emission angles. At 20 MeV/nucleon, beam energy, the
Coulomb breakup accounted for more of the cross section
than nuclear breakup and the CNI terms were construc-
tive, in general. The importance of the CNI terms were
again highlighted by the calculation at the beam energy of
30 MeV/nucleon, where the CNI terms at low neutron emission
angles, not only cancel out the nuclear terms, but also reduces
the Coulomb terms so that the coherent total sum is less
than the Coulomb terms. At 40 MeV/nucleon, beam energy,
interference was generally constructive at smaller neutron
angles, often being larger or almost equal to the individual
nuclear terms (θn = 1◦, 6◦), while at θn = 11◦, especially from
neutron energies of 20 MeV to 35 MeV, the destructive CNI
terms nearly cancels out the Coulomb terms, and the nuclear
terms are sole contributers to the total cross section. Our
results, thus, indicate that the CNI terms are not only dependent
on energies and angles of the outgoing fragments, they are
also dependent on the incident beam energy. It would indeed
be quite interesting if in a future experiment exclusive cross

section measurements could be made at low beam energies
where the effect of the CNI terms were found to be substantial.

Calculations were also performed for the relative energy
spectrum of the fragments (neutron and 10Be) emitted in
the breakup of 11Be on 208Pb target at the beam energy of
69 MeV/nucleon, for different angular ranges of the projectile
c.m. scattering angle—0◦ to 6◦ and 0◦ to 1.3◦. In the former
angular range pure Coulomb contributions dominate the cross
sections around the peak value, while at larger relative energies
the nuclear breakup is important. In the latter range, which
is well below the grazing angle, for the reaction Coulomb
breakup dominates over the nuclear part.

The total one-neutron removal cross section was found
not to be affected by the CNI terms as they manifest
themselves explicitly in more exclusive measurements, like
double differential cross sections than in quantities like total
cross sections.

The full quantal theory of one-neutron halo breakup
reactions, applied in this paper, can also be used to describe
the (a, bγ ) reaction provided the inelastic breakup mode is
also calculated within this theory, which is expected to be
straightforward. Furthermore, the theoretical method outlined
in this paper rely on the nonrelativistic Schrödinger equation
which in our opinion should be viewed only as an adequate
starting point. There have been some attempts to use effective
field methods to study halo nuclei [56]. This is indeed a very
new field and would be quite interesting to pursue in view of
experiments of halo breakup at very high beam energies for
which data have been taken at GSI, Darmstadt.
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