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Pairing correlations and thermodynamical quantities in 96,97Mo
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The nuclear level densities of 96,97Mo are calculated in the framework of superconducting theory. The
parameters of nuclear level density are so chosen that the saddle point conditions are satisfied and the best
fit to the experimental data yields. Then, using these parameters the energy, the entropy and the spin cut-off factor
are calculated as a function of temperature. The curves show structures, reflecting the phase transition from a
correlated to an uncorrelated phase. The critical temperature for quenching of pairing correlations is found at
Tc ∼ 0.7–0.9 MeV.
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I. INTRODUCTION

In atomic nuclei many of thermodynamical quantities are
not measured directly in contrast with the case of supercon-
ducting metals. These properties are expected to manifest
themselves in various aspects of nuclear reactions. The nuclear
level density is the most characteristic quantity in this respect
as it can be obtained from nuclear reactions experiments.

Experimentally, level densities are extracted at low excita-
tion energies from counting discrete levels and from counting
resonances at the neutron binding energy. The Oslo group has
established a method to extract level densities at excitation
energies up to the neutron binding energy from measured γ

spectra [1–5]. This method has been recently applied to extract
level densities in 96Mo and 97Mo isotopes using pick up (3He,
αγ ) and inelastic scattering (3He, 3He′γ ) reactions on a 97Mo
target [6].

The two residual interactions in nuclear physics are short-
range or pairing [7,8] and long-range or quadrupole. The
energy gap in the spectra of even-even nuclei and odd-even
effect observed in the nuclear masses are manifestation of
pairing effect in nuclei. Pairing correlations significantly
influence all nuclear properties such as binding energy, β-
decay probability, collective modes, moment of inertia, and
level density [9].

In recent experimental and theoretical studies the S-shape of
the heat capacity curves is known as a signature of the pairing
transition from a strongly paired states at low temperature to
unpaired at higher temperature [10–16]. In order to specify
the characteristics of the temperature dependance of the
thermodynamic functions resulting from pair correlations, we
have studied the behavior of the energy, the entropy and
the spin cut-off parameter of level density—characterizing
the distribution of angular momentum of states. To compare
our theoretical results with the experimental data, we have
obtained the entropies of 96,97Mo nuclei from the heat capac-
ities extracted from experimental level densities of 96,97Mo
nuclei [17]. In Sec. II we carry out the BCS calculations. The
calculation procedures and the results are given in Sec. III.
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II. THEORY

The standard theory of pairing as applied to excited states
is based on the grand partition function obtained from the BCS
Hamiltonian [18–24]:

lnZ(α, β) = −β
∑

k

(εk − λ − Ek)

+ 2
∑

k

Ln[1 + exp( −βEk)] − β
�2

G
, (1)

where T = 1/β is the statistical temperature, εk is the energy
of single particle state, λ = α/β is the chemical potential,
Ek = [(εk − λ)2 + �2]1/2 − � is the quasiparticle energy, and
G is the pairing strength. The gap parameter � is defined by
the gap equation:

∑
k

1

Ek

tanh

(
1

2
βEk

)
= 2

G
. (2)

The quantities α and β are so chosen that the saddle point
conditions

N = ∂ lnZ
∂α

(3)

and

E = −∂ lnZ
∂β

(4)

are satisfied. N represents the nucleon number and E is the
energy of the system.

For a system of two kinds of fermions, namely N neutrons
and Z protons one makes use of the additive properties

E = En + Ep, (5)

S = Sn + Sp, (6)

lnZ(αn, αp, β) = lnZ(αn, β) + lnZ(αp, β). (7)

Once the partition function is known, the state density can
be expressed in terms of the grand partition function within
the saddle point approximation

ω(N,Z,E) = eS

(2π )3/2D1/2
, (8)
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where

S = lnZ − αnN − αpZ + βE (9)

is the entropy, and D is the determinant of 3×3 matrix defined
by the elements

dij = ∂2

∂xi∂xj

LnZ, (10)

where x ≡ (αn, αp, β) and second derivatives are evaluated at
the saddle point.

We can calculate the total level density for a system of N

neutrons and Z protons at excitation energy E∗,

ρ(N,Z,E∗) = ω(N,Z,E∗)

(2πσ 2)1/2 , (11)

where σ 2 which determines the width of angular momentum
distribution of states is referred to as the spin cut-off factor,

σ 2 = σ 2
p + σ 2

n (12)

with

σ 2
n = 1

2

∑
k

mn2
k sech2

(
1

2
βEn

k

)
, (13)

m′
ks are the magnetic quantum numbers and the same relation

holds for σ 2
p .

III. RESULTS AND DISCUSSION

In this section we shall present the results for 96Mo and
97Mo nuclei obtained using the BCS theory described in the
previous section. To take into account the effect of quadrupole-
quadrupole interaction, we used the deformed single particle
levels of Nilsson et al. [25]. The basic input for numerical
calculations is the ground state gap parameter, taken from
[26,27]. In order to calculate energy, we need to know E at
T = 0. So we put T = 0 and solve Eqs. (2) and (3) to find λ

and G for specified number of particles and �. Then, by setting
� = 0 and solving the same equations, the critical temperature
Tc and the corresponding chemical potential λc are evaluated.
Finally, using the obtained value of G the quantities λ(T ) and
�(T ) are evaluated for a given value of temperature. These
values are then used to compute the other quantities such as
the energy, the entropy, the spin cut-off factor, and the level
density. The results are not sensitive to the number of levels as
long as the adequate number is included so that the levels of
largest “k” have very small occupational probabilities.

The excitation energy of the nuclear system with tempera-
ture T is

E∗ = E(T ) − E(0), (14)

where E(0) is the ground state energy evaluated from the
obtained values of λ(0) and G. Also, E(T ) is the energy at
temperature T which is evaluated from the obtained values
of λ(T ) and �(T ). In effect the calculations are done for
each kind of particles and the total energy is calculated using
Eq. (5).
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FIG. 1. The experimental [6] and the calculated level density as a
function of excitation energy for the 96Mo nucleus. The deformation
parameter is taken to be β = 0.2.

The odd neutron in 97Mo nucleus has the effect of reducing
the gap parameter through blocking. We have taken into
account this by reducing the ground state for nuclear pairing.
For information on this procedure see [20,24].

The nuclear level density is evaluated from Eq. (11). The
initial values of �n and �p are adjusted to improved the fit
to the data. The resulting level densities are compared with
the experimental values. Figures 1 and 2 show the logarithm
of the level density as a function of excitation energy for
96Mo and 97Mo nuclei at deformation of β = 0.2. As can
be seen from the figures the overall agreement between the
experimental and theory with inclusion of pairing correlations
is very good. The role of pairing effect is not apparent in the
plots. To see the effect of pairing correlations, we investigate
the thermodynamical properties of nuclear system.

The caloric curve for 96Mo and 97Mo nuclei are plotted in
Fig. 3. The bump in the curves manifests the effect of pairing.
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FIG. 2. The experimental [6] and the calculated level density as a
function of excitation energy for the 97Mo nucleus. The deformation
parameter is taken to be β = 0.2.
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FIG. 3. Dependence of the excitation energy on temperature for
96,97Mo nuclei. The dotted line is the Fermi-gas values with he level
density parameter a = A/9.

The critical temperature for quenching of pair correlations
is found around Tc ≈ 0.7–0.9 MeV. Below the critical
temperature, the 97Mo nucleus has more excitation energy than
the 96Mo nucleus at the same temperature. But, with increasing
temperature the needed energy to heat the 96Mo nucleus to a
given temperature T is more. On the same figure the results
from the Fermi-gas model [28] are also shown for comparison.
The level density parameter is taken to be a = A/9, where A

is the mass number [24].
The entropy of the nuclear system is evaluated from Eq. (9)

at temperature T from the obtained values of λ(T ) and �(T )
for neutron system and proton system. Then the total entropy
is calculated from Eq. (6). The results are plotted for 96Mo
and 97Mo nuclei as a function of excited energy in Fig. 4. The
entropy of 97Mo nucleus is higher than of 96Mo nucleus due
to the effect of unpaired neutron in odd system. Examination
of the figure shows that the entropy difference between these
nuclei is about 2.5 for excitation energy above 9 MeV. This
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FIG. 4. The entropy as a function of excitation energy for 96,97Mo
nuclei.
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FIG. 5. The entropy versus temperature for 96,97Mo nuclei. The
dotted line is the Fermi-gas values with he level density parameter
a = A/9.

is comparable with the value found for the rare-earth nuclei
[29,30], but it is greater than the observed value of �S � 1
for deformed Mo isotopes [6]. The effect of pair-breaking
process and phase transition is apparent from Fig. 5, which
shows the variation of entropy versus temperature. The entropy
curves exhibit structures. At higher temperature the vanishing
of pairing interaction is apparent. The structural change in the
entropy curves can be interpreted as a signature of the transition
from strongly paired states at low temperature to unpaired at
higher temperature. The dashed line on the figure represents
the Fermi-gas values with the level density parameter a = A/9
[24]. Examination of Figs. 3 and 5 shows that above the critical
temperature the energy and the entropy are approximated by
the Bethe formulas, E = aT2 and S = 2aT , respectively.

As we have regarded the nuclear system as two distinct
systems, in Figs. 6 and 7 the contributions of the neutron
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FIG. 6. The individual contributions of the neutrons and protons
to the total entropy for the 96Mo nucleus. The arrows show the critical
temperatures for neutrons and protons at 0.69 MeV and 0.89 MeV,
respectively.
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FIG. 7. The individual contributions of the neutrons and protons
to the total entropy for the 97Mo nucleus. The arrows show the critical
temperatures for neutrons and protons at 0.66 MeV and 0.78 MeV,
respectively.

system and the proton system to the total entropy are shown.
The critical temperatures for neutron part and proton part are
T

n

c = 0.69 MeV and T
p

c = 0.89 MeV for the 96Mo nucleus and
T

n

c = 0.66 MeV and T
p

c = 0.78 MeV for the 97Mo nucleus.
The arrows on Figs. 6 and 7 indicate the critical temperatures.
The calculated critical temperatures are in good agreement
with the experimental values Tc ∼ 0.7–1.0 MeV [6] for Mo
isotopes.

The calculated entropies as well as the observed entropies
obtained from the relation CV = T ( ∂S

∂T
)V are plotted in

Figs. 8 and 9 for 96Mo and 97Mo nuclei. The experimental
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FIG. 8. The entropy as a function of temperature for the 96Mo
nucleus. The filled triangles are the calculated entropy, as in Fig. 5,
and the open circles are the entropy obtained from the heat capacities
extracted from the experimental level density [17]. The dashed and
dotted lines are the Fermi-gas values with the level density parameter
a = A/9 and a = A/11, respectively.
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FIG. 9. The entropy as a function of temperature for the 97Mo
nucleus. The open triangles are the calculated entropy, as in Fig. 5,
and the open circles are the entropy obtained from the heat capacities
extracted from the experimental level density [17]. The dashed and
dotted lines are the Fermi-gas values with the level density parameter
a = A/9 and a = A/10, respectively.

heat capacities are extracted from the measured level densities
as described in [6]. Both theoretical and experimental entropies
show structure, although the values at a given temperature are
different. The dashed and dotted lines on the figures denote
the Fermi-gas values.

Using Eqs. (12) and (13), the spin cut-off factor has been
calculated at temperature T . In Fig. 10 the spin cut-off factor
is plotted as a function of temperature for 96Mo and 97Mo
nuclei. Below the critical temperatures they show structures,
while with increasing temperature the vanishing of pairing
interaction is seen.

In summary, using the saddle-point approximation the
experimental level densities of 96Mo and 97Mo nuclei are
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FIG. 10. The spin cut-off factor versus temperature for 96,97Mo
nuclei.

064319-4



PAIRING CORRELATIONS AND THERMODYNAMICAL . . . PHYSICAL REVIEW C 75, 064319 (2007)

reproduced well. We have shown that the pairing correlations
can be well described by the Bardeen-Cooper-Schrieffer
theory of superconductivity. Also, by using this theory the
thermodynamical properties of nuclear pairing show structure,
reflecting the nuclear phase transition. The calculation of the
critical temperatures for quenching of the pairing transition
yields Tc ∼ 0.7–0.9 MeV for 96Mo and 97Mo nuclei. Very

good agreement between experimental and theoretical critical
temperatures is found.
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