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Classical and quantum properties of the semiregular arc inside the Casten triangle
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We investigate classical and quantum signatures of increased regularity in the Alhassid-Whelan semiregular
arc inside the symmetry triangle of the interacting boson model. A significant bunching/antibunching pattern of
quantum levels, similar to that observed along the O(6)-U(5) transition, is found in the 0+ energy spectrum and
related to a crossover of two specific families of classical regular orbits slightly above E = 0. We also discuss
the degeneracy of β and γ bandheads in a region close to the arc and the relation to regularity in the geometric
model.
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I. INTRODUCTION

The interacting boson model (IBM) of nuclear collective
motions, developed by Iachello and Arima [1] in the 1970’s,
displays a wide variety of interesting features. Apart from
being successful in the description of low-lying collective
states of even-even nuclei, it has also served as a useful “toy
model” to study various general phenomena, such as quantum
phase transitions [2–4] or order/chaos coexistence [5–16]. The
interplay between regular and chaotic behaviors, observable
on both the quantum and classical levels of the model, is
surely one of the most intriguing properties. It seems to be a
common feature of nuclear collective motions in general. The
present paper contributes to this subject, extending our recent
study [17,18] of fully regular dynamics in the IBM. Special
attention is payed to the semiregular region of Alhassid and
Whelan [8–10] lying within the parametric space of IBM.

The onset of chaos in a system is closely connected with the
breakdown of symmetries [19–21]. The IBM is known [1] to
possess three standard dynamical symmetries, namely, U(5),
O(6), and SU(3), and two additional ones, O(6) and SU(3),
following from gauge transformations [22]. They are related to
the possible decompositions of the spectrum generating group
U(6) into subgroup chains that contain the invariant-symmetry
group O(3) of physical rotations. An important consequence of
dynamical symmetries is the integrability of the corresponding
Hamiltonians, guaranteed by the complete set of constants of
motion provided by Casimir operators of respective subgroup
chains [23]. The system in such cases exhibits completely
regular dynamics.

Apart from the dynamical-symmetry limits, there exists
a unique integrable transition path between O(6) and U(5)
marked by conservation of the Casimir invariant of the
common subgroup O(5) [24]. Away from these integrable
regions, the IBM dynamics was expected to be chaotic until the
study in Ref. [8] revealed surprisingly high degree of regularity
along a particular path inside the model parameter space. This

path forms a bent curve in between the SU(3) and U(5) vertices
of the symmetry triangle and is called hereafter the “AW arc”.
Unlike the O(6)-U(5) path [15,17,18], the dynamics within
the AW arc is not completely regular, indicating the existence
of a kind of partial dynamical symmetry [25]. Interestingly,
evolutions of energy spectra along the two regular paths display
certain similarity, as we will show below.

Unknown nature of regularity along the AW arc stimulated
research of the IBM properties from various perspectives.
Originally, Alhassid and Whelan observed the dependence
of both short- and long-range spectral correlations together
with classical measures of chaos on the angular momentum
l and two control parameters η, χ that change the amount
of dynamical symmetries in the Hamiltonian. Significant rise
of regularity in the arc was found using both quantum and
classical measures [8–10]. Later, the analysis of wave function
entropies [26] revealed an increased localisation of energy
eigenstates in dynamical-symmetry bases within a region
coinciding with the AW arc. Recently, several real nuclei were
located very close to the arc, an approximate degeneracy of 0+

2
and 2+

2 states being pointed out as a characteristic feature of
nuclei in this region [27]. Also a close relative of the IBM—the
geometric collective model (GCM)—was found to show a
similar increase of classical regularity away from integrable
regimes [28–30].

The layout of this article is as follows. The IBM and its
classical limit are briefly described in Sec. II. In Sec. III we
demonstrate increased regularity of the dynamics within the
AW arc using the nearest neighbor spacing distribution of 0+
states and classical measures based on Poincaré sections [19]
and so-called alignment indices [31]. Section IV presents an
observation of strong level bunchings in the spectra of 0+
states along the arc, slightly above zero absolute energy. The
pattern shows great degree of similarity to the bunching found
in spectra along the O(6)-U(5) transition [17]. In Sec. V,
we search for related effects in the classical phase space,
exploiting the connection of level density with periodic orbits.
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In Sec. VI we apply the technique of intrinsic states to explain
the approximate degeneracy of 0+

2 and 2+
2 states close to

the arc. Section VII is devoted to the comparison of regular
dynamics within IBM and GCM. Finally, Sec. VIII brings a
summary and outlook.

II. HAMILTONIAN

The interacting boson model describes low-lying spectra of
even-even nuclei in terms of an ensemble of N bosons s and d

with angular momenta 0 and 2, respectively. Bilinear products
of creation and annihilation operators b

†
i bj , where i, j =

s, 1, . . . , 5 stand for the s-boson and the five components
of d-boson, form a set of U(6) generators. We limit our
investigation to the simplest version of the model, the IBM-1,
which does not distinguish neutron and proton types of bosons
(we use nevertheless the common abbreviation IBM). Instead
of the most general quantum Hamiltonian with all rotationally
invariant one- and two-body terms we consider a simplified
form

Ĥ = a

[
η

N
n̂d − 1 − η

N2
(Q̂χ · Q̂χ )

]
, (1)

with n̂d = (d† · d̃) denoting the d-boson number operator
and Q̂χ = [s†d̃ + d†s̃](2) + χ [d†d̃](2) the quadrupole opera-
tor. The scaling factor a sets an effective energy unit in
quantum spectra. In the figures below we use a numerical
value a = N/10 in arbitrary units, thus the quantum energy
is taken as an extensive quantity. Hamiltonian in Eq. (1)
depends on two dimensionless parameters η ∈ [0, 1] and
χ ∈ [−√

7/2,
√

7/2], that drive the system in between four
dynamical-symmetry limits: U(5) for (η, χ ) = (1, 0), O(6) for
(η, χ ) = (0, 0), SU(3) for (η, χ ) = (0,−√

7/2), and SU(3)
for (η, χ ) = (0,

√
7/2); the dynamical symmetry O(6) is not

present in the parameter plane (so-called extended Casten
triangle [32]).

The classical limit can be constructed by the method of
Hatch and Levit [33] using Glauber coherent states. We
have outlined the procedure in Ref. [18], where the special
case χ = 0 was studied for zero eigenvalue l(l + 1) of L2,
with the angular momentum defined as L = √

10[d†d̃](1). For
general χ and l = 0 the Hamiltonian—with the quadrupole
deformation parameters β, γ and their conjugate momenta
pβ, pγ as canonical coordinates—becomes

Hcl = 1

2
[η + 2(1 − η)β2] (β2 + T ) − 2 (1 − η)β2

− 2√
7
χ (1 − η)

√
1 − 1

2
(β2 + T )

× [(
p2

γ /β − βp2
β − β3) cos 3γ + 2pβpγ sin 3γ

]
− 4

7
χ2(1 − η)

[
1

8
(β2 + T )2 − 1

2
p2

γ

]
. (2)

Here, T ≡ p2
β + p2

γ /β2 stands for the usual kinetic energy. The
Hamiltonian (2) represents the “energy per boson”. Coordi-
nates and momenta are limited to intervals β ∈ [0,

√
2], pβ ∈

[0,
√

2], and pγ ∈ [0, 1] following from the boundedness of

Hamiltonian (1). Note that classical energy from Eq. (2) is
expressed in units of the numerical scaling parameter a, see
Eq. (1). To distinguish energies obtained from Eqs. (1) and (2),
we use hereafter symbols E and Ecl, respectively.

In Sec. VII, the classical IBM dynamics will be compared
with the dynamics of truncated geometric collective model
with Hamiltonian [28–30,34]

HGCM = 1

2K
T + Aβ2 + Bβ3cos3γ + Cβ4︸ ︷︷ ︸

VGCM

. (3)

In contrast to GCM, the classical IBM Hamiltonian (2) is
apparently not a sum of T and a potential V . The IBM potential

V (β, γ ) = 1

2
(5η − 4)β2 + (1 − η)

(
1 − 1

14
χ2

)
β4

− 2√
7
χ (1 − η)β3

√
1 − 1

2
β2 cos 3γ , (4)

obtained by setting pβ = pγ = 0 in Eq. (2), differs from VGCM

in Eq. (3) by the square-root factor. Variables β and γ can be
treated as polar coordinates of the corresponding Cartesian
variables x and y, thus

x = β cos γ , px = pβ cos γ − (pγ /β) sin γ ,

y = β sin γ , py = (pγ /β) cos γ + pβ sin γ ,
(5)

with px and py denoting the associated momenta. This notation
will be frequently used below.

Low-energy motions generated by potential (4) undergo
essential changes when the first-order shape-phase separa-
trices are crossed [2–4]. These are located at χ = 0, η <

0.8 (prolate-oblate ground-state transition) and η = (4 +
2χ2/7)/(5 + 2χ2/7) ≡ ηc (deformed-spherical transition). In
panel (b) of Fig. 1 we show a contour plot of the potential
for η = 0.5, χ = −0.91 in the plane x × y, while panel (a)
presents three sections in the plane y = 0 for the dynamical-
symmetry limits. It is worth noting that the value of potential
at β = 0 is always zero; for η < 0.8 it represents a local
maximum while for η > 0.8 it is a minimum (which becomes
global after ηc).

FIG. 1. Sections of potential (4) in the plane y = 0 for control
parameters corresponding to dynamical symmetries (panel a) and a
contourplot of the potential for η = 0.5 and χ = −0.91 (panel b).
Bohr coordinates β and γ are the radius and polar angle, respectively,
in the plane x × y. Energy unit is arbitrary.
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III. ALHASSID-WHELAN SEMIREGULAR ARC

A. Linear fit of the arc

Location of the highly regular region inside the Casten
triangle was determined in Ref. [9] by fitting the minimum
of the fraction of chaotic classical phase space volume by a
linear dependence. The other classical and quantum measures
of chaos (average maximum Lyapunov exponents, spectral
correlations, E2 strength distributions) showed very similar
dependence. The linear fit can be approximated by [26]

χreg(η) ≈ ±
[√

7 − 1

2
η −

√
7

2

]
. (6)

Note that the arc occurs symmetrically in both χ < 0 and
χ > 0 halves of the extended Casten triangle (since the halves
are dynamically equivalent, connected by a simple phase
transformation). In the following, we will mostly use the
convention with χ � 0.

B. Classical measures of regularity

While the results of Refs. [5–9] comprehensively reflect
the overall dependence of chaotic measures on the model
control parameters η and χ , some peculiar features of motions
related to the increase of regularity remain unaddressed. The
present paper offers a closer view on the classical and quantum
dynamics at zero angular momentum in the vicinity of the AW
arc. In the classical part, the limitation to l = 0 admits us
to use methods based on Poincaré sections [19] (since the
system becomes effectively two-dimensional), which provide
neat overall “snapshots” of the phase space at given energy
E and allow us to consider stability properties of individual
types of trajectories in a simple way. Let us note that Poincaré
sections associated with Hamiltonian (1) at lower energies
were for the first time studied in Ref. [10]. Here, we extend the
study also to higher energies. Several examples of Poincaré
sections at Ecl = 0 can be seen in Fig. 2, where a line crossing
the AW arc is followed at a fixed value of parameter η. The
numerical procedure is described in Sec. V A.

To quantify the degree of regularity of a given Poincaré
section, we determine the areal fraction f (P)

reg occupied by
regular trajectories as described in Refs. [28,30]. This method,
instead of evaluating the maximal Lyapounov exponent [6,9]
associated with each orbit, makes use of the fact that regular
orbits fill one-dimensional subsets of the section (topological
circles), whereas chaotic orbits fill the available phase space
ergodically [19]. The regular fraction is given as the ratio of
the area Sreg filled with regular trajectories to the total area Stot

of the accessible phase space section,

f (P)
reg = Sreg/Stot. (7)

A different and faster method we use to determine regularity
of the system is based on calculation of the so-called smaller
alignment index (SALI) [31] for individual trajectories, ran-
domly generated inside the whole accessible phase space. The
regularity is now given as the ratio of the number of regular
trajectories Nreg to the total number Ntot generated at a given

FIG. 2. Phase space portraits disclosed by Ecl = 0 Poincaré
sections at η = 0.5 and χ ∈ [0, −√

7/2]. Each panel contains ∼104

passages of 120 trajectories with Ecl = l = 0 and randomly generated
initial condition through the plane defined by setting y = 0. The
crossing of the AW arc can be noticed at χ ≈ −0.9.

values of control parameters and energy, hence

f (S)
reg = Nreg/Ntot. (8)

Both measures attain values freg ∈ [0, 1] and provide an
independent verification of increased regularity in the AW arc.

In Fig. 3, we present the dependence of regularity on
χ at η = 0.5 and Ecl = 0: both regular fractions decrease
monotonously from freg = 1 in the integrable regime χ = 0 to
values freg < 0.05 for χ ≈ −0.4. Then they rise again to reach
freg = 0.8 at χ = −0.91. Decreasing χ further, the fractions
drop to freg ≈ 0.3 with a slight increase at χ = −√

7/2.
In the more efficient SALI calculation, we chose a finer
step in χ , which discloses some minor peaks in the interval
χ ∈ [−0.8,−0.4]. In the region of η ≈ 0.5, these are however
negligible in comparison with the main regularity increase
around χ ≈ −0.9.

Poincaré sections in Fig. 2 corresponding to selected values
of χ along the same line show, that in the most chaotic
regions, χ ∈ [−0.8,−0.1], the phase space consists of a
complicated pattern of minor regular regions emerging from
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FIG. 3. Regularity of classical IBM for η = 0.5 and Ecl = 0 as a
function of χ determined by two methods: (i) the fraction of regular
area in the Poincaré section (solid line) and (ii) the fraction of regular
trajectories obtained by the SALI method (dashed line). The peak at
χ ≈ −0.9 corresponds to AW arc. Oscillations on the dashed curve
are caused by a finer step of the SALI evaluation.

the “background” of ergodic trajectories. On the other hand,
the peak of regularity at χ ≈ −0.9 gives rise to a remarkably
simple picture containing basically only four major regular
islands. These correspond to two families of regular orbits,
discussed further in Sec. V.

The degree of regularity is not uniform in energy and the
relative regularity of the arc is most significant just around
absolute energy Ecl = 0. This is illustrated in Fig. 4, where we
plot the regular fraction (8) for η = 0.5 and several values of
χ as a function of energy. Our observations conform with the
earlier results of Refs. [6–9]. The energy dependence will be
studied in more detail in Sec. V.

C. Quantum measures of regularity

To check the signatures of classical regularity in the quan-
tum spectrum, we fitted the Brody distribution of normalized
spacings S = (Ei+1 − Ei)/〈Ei+1 − Ei〉 between neighboring
eigenvalues in the unfolded spectrum of 0+ levels. The Brody

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

f r
eg

Ecl

 = -0.20
 = -0.45
 = -0.91
 = -1.20

FIG. 4. Energy dependences of regularity in classical IBM for
η = 0.5 at selected values of χ determined by the SALI method.
Energy unit is arbitrary.
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FIG. 5. The evolution of 0+ energy levels (panel b) and the
corresponding dependence of the Brody parameter ω on χ at η = 0.5
(panel a). The minimum of ω at χ ≈ −1 is connected with the
bunching of E ∈ [0, 1] levels. Energy unit is arbitrary. The boson
numbers in each panel differ only to make panel (b) more legible.

distribution has the form [35]

Pω(S) = NωSω exp(−αωS1+ω) , (9)

where ω is an adjustable parameter, αω = �( 2+ω
1+ω

)1+ω, and
Nω = (ω + 1)αω. It interpolates between Poisson distribution
(ω = 0) valid for generic integrable systems and Wigner
distribution (ω = 1) corresponding to chaotic systems [20,21].
The spectrum was obtained by numerical diagonalisation of
Hamiltonian (1) and the subsequent unfolding was performed
by methods described in Ref. [36].

In Fig. 5 we show values of the Brody parameter ω (panel a)
and the evolution of 0+ energies (panel b) as χ is varied at
η = 0.5. The dependence of ω(χ ) has again a clear minimum
ω ≈ 0.25 corresponding to a Poisson-like distribution (hence
quasiregular dynamics) at χ ≈ −1. Note that the nonzero value
of ω in the integrable region χ = 0 results from nongeneric
spectral fluctuations [9].

We can conclude that both classical and quantum measures
freg and ω show significant increase of regularity for values
close to curve Eq. (6) that predicts χreg ≈ 0.91 for η = 0.5.
However, it should be stressed again that the picture depends
very much on energy. Although the increase of regularity can
be clearly observed in energy-averaged measures [8,9], the
greatest contribution comes from the region around E ≈ 0 (cf.
Fig. 2 of Ref. [8]). If repeating the above classical analysis for
another energy value, the AW arc might remain unnoticed.
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IV. BUNCHING OF 0+ STATES

In this section, we study the evolution of energy spectra of
Hamiltonian (1) with variable η, following the path along the
AW arc. We try to trace out a pattern of multiple bunchings
and antibunchings of levels, noticeable already in Fig. 5(b) at
χ ≈ −0.9, and discuss its relation to a similar structure in the
O(6)-U(5) transition [17,18]. We claim that this pattern, for the
first time noticed in the analysis of unfolded spectra in Ref. [4]
and also reported in Ref. [37], constitutes the most distinctive
characteristic of the AW arc.

The pattern can be clearly observed when looking at
η-dependent spectral evolution along the path χreg(η), Eq. (6).
The relevant part of the 0+ spectrum for N = 40 bosons is plot-
ted in the middle panel [k = 3, see Eq. (10) below] of Fig. 6.
Note that in this subsection we use a numerical scaling factor
a = N/10 of quantum Hamiltonian (1), i.e., a = 4 energy
units for N = 40. As seen, the bunching pattern resides slightly
above E = 0; it starts at η ≈ 0.1, E ∈ [0.2, 0.6] and spans
roughly the whole region of deformed ground-state shapes
until it runs off the spectrum at η ≈ 0.8, E ∈ [−0.2, 0.2].

The question arises whether such bunchings may be
observed also in neighboring parameter regions. To find the
answer, we chose several paths “parallel” with the AW arc,
see Fig. 7, and look at the associated spectra in various panels

k = 1

k = 2

k = 3

k = 4

k = 5

E

η
 0.5  0.6  0.9 0.8

 0.4
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 0

−0.2

7.0 4.0 3.0 2.0 1.0 

−0.2
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 0.2
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−0.2
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 0.2
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−0.2

 0

 0.2

 0.4

−0.2

 0

 0.2

 0.4

FIG. 6. Evolutions of 0+ spectra for N = 40 [Hamiltonian (1)
with a = 4] along paths shown in Fig. 7. Energy unit is arbitrary.
A bunching pattern slightly above E = 0 is observed in the AW arc
(panel k = 3) and gradually disappears as the path deviates from the
arc (panels with k �= 3).
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-1.2 -0.8 -0.4  0

FIG. 7. A set of paths (10) “parallel” to the AW arc (6). The
paths are labeled by k = 0, 1, . . . , 5, with k = 0 corresponding to the
SU(3)-U(5) edge and k = 3 representing the arc (solid curve). Only
the χ � 0 half of the extended Casten triangle is shown.

of Fig. 6. The paths are labeled by integer k in the following
parametrization:

χk = ±
[
k

√
7 − 1

6
η −

√
7

2

]
, (10)

where k = 0 corresponds to the SU(3)-U(5) [or SU(3) − U(5)]
edge of the Casten triangle while k = 3 to the fit (6) of the arc.
Apparently, the bunching fades away as we depart from the arc.
Since, as mentioned in Sec. III, the regularity within the AW
arc for low spins is mostly connected with the region around
and just above zero absolute energy (cf. Fig. 4 above and
Fig. 2 of Ref. [8]), we anticipate that the bunching (present in
the same range) is intimately related to the source of regularity.

Another immediate question is whether the bunching
survives an increase of angular momentum. Figure 8 shows
that when increasing the angular momentum eigenvalue l, the
gaps in the spectrum become less pronounced due to repulsion
among increased numbers of levels. For low spins a tendency
to bunch is still observable in the same range of energies, but
the effect is practically gone for l � 8.

Figure 9 offers a comparison of the bunching pattern in
the AW arc (lower panel) with a similar pattern along the
integrable O(6)-U(5) transition [17,18,38] (upper panel). It
is clear that both structures exist at l = 0 in very close
(although not identical) energy domains, E ≈ 0, and exhibit
great deal of similarity. On the other hand, while in the
O(6)-U(5) transition the bunching involves real crossings of
levels with different seniority quantum numbers, all crossings
along the AW arc are presumably avoided (though to prove
this numerically is, in some cases, practically impossible). It
can be noticed that if proceeding along the bunching from
the right (η ≈ 0.8) to the left, the numbers of states involved
form a sequence 1, 2, 3, 4, 5, . . ., in the O(6)-U(5) case and
1, 1, 2, 2, 3, 3, . . ., in the AW case.

With increasing η, the center of the bunching in both
O(6)-U(5) and AW cases travels toward the kink of the
ground-state energy at η = ηc which separates the deformed
and spherical phases [2–4]. As shown recently [38], the E = 0
bunching along the O(6)-U(5) path demarcates the N → ∞
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FIG. 8. Washing out of the bunching pattern at χreg(η) (k = 3)
with increasing angular momentum l for N = 30. (Energy unit is
arbitrary.)

phase transition of excited states with zero seniority. It would
be interesting to learn whether the pattern in the AW arc has a

E

E

η

−0.4

−0.2
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 0.1  0.3  0.5  0.7  0.9

−0.4

−0.2

 0
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 0.4

FIG. 9. Comparison of the bunching of 0+ states in O(6)-U(5)
transition (upper panel) and along the AW arc (lower panel); both
spectra calculated for N = 40. (Energy unit is arbitrary.)

similar consequence (although seniority is not defined in this
case).

V. CLASSICAL EFFECTS

A. Numerical procedure

In the following, we discuss classical phase-space structures
arising from Hamiltonian (2) that uncover various types of
regular motions in different parts of the Casten triangle. We
focus in particular on classical motions within the AW arc.

To make a detailed image of the IBM phase space, a
sufficient number of trajectories must be launched, covering
the whole plane of the Poincaré section, and each of them
must be traced for sufficiently long time. In our calculations,
we generated 120 trajectories with random initial conditions
(satisfying the constraint l = 0) for every set of η, χ , and
Ecl. The classical equations of motions corresponding to
Hamiltonian (2) were solved numerically, using the fourth-
order Runge-Kutta method, and the calculation was stopped
after 3 × 104 passages of each trajectory through the x × px

plane with y = 0.
The method of evaluating the areal fraction f (P)

reg from Eq. (7)
was described in Ref. [30]. Finite resolution of the Poincaré
section division leads to some systematic errors which are
most significant when f (P)

reg ≈ 1 but do not exceed cca 5%. The
implementation of the SALI method (for details, see Ref. [31])
in the evaluation of f (S)

reg from Eq. (8) induces statistical errors
connected with the finite numbers of generated trajectories.
In our case (Ntot = 500 for each point of f (S)

reg ) the error is

estimated by the expression �freg/freg ≈ 0.04f
−1/2
reg .

The energy dependence of the degree of chaos at selected
values of η and χ is explored with a sample of ten equidistant
levels

Ei = Vmin + i

11
(Vlim − Vmin) , (11)

i = 1, . . . , 10, covering the whole energy range between the
global minimum Vmin = V (β = βmin) of the potential for given
η, χ and the value Vlim ≡ V (β = √

2), which represents the
uppermost energy for the classical motion to be finite (since
β = √

2 is the maximal physical value of the deformation
parameter). Remind that energies Ecl obtained from classical
Hamiltonian (2) are scale-free, i.e., given in units of a (in
contrast to quantum energies E analyzed in Sec. IV). We
point out two important intermediate energy values: (i) Energy
Esad < 0 of the saddle points between three degenerate global
β > 0 minima of potential (4) at γ = 0, 2π/3, and 4π/3.
Below Esad, the energetically accessible region in the plane
x × y consists of three separate areas surrounding the global
minima; at Ecl = Esad these areas touch and merge. (ii) The
energy Ecl = 0 coinciding with the local maximum V (β = 0).
For Ecl > 0 the accessible region in the x × y plane is a simply
connected area.

B. Poincaré sections

Poincaré sections corresponding to Ecl = E1, . . . , E10

from Eq. (11) were generated at 35 points lying on paths
χk , Eq. (10), with k = 0, 1, . . . , 5, 7 and η ∈ [0.3, 0.7]. The
results show a sensitive dependence of the dynamics on χ ,
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with particularly distinct structural changes of trajectories in
the vicinity of the AW arc (k = 3), for all values of η. On the
other hand, varying η for a fixed k affects the motions mostly
via shifting both energy limits Vmin and Vlim upward (thus
energies Ecl < 0 become unattainable for η > ηc ≈ 0.8), but
the shape of the main phase space structures far enough from
ηc remains visually intact.

A complete collection of Poincaré sections may be found
on our website [39]. Here we will illustrate the dependence
of the dynamics on χ at η = 0.5, by selecting three values
χk with k = 2, 3, 4, that represent the regions of |χ | >

|χreg|, χ = χreg, and |χ | < |χreg|, respectively. The corre-
sponding Poincaré sections are arranged in three columns of
Fig. 10. Rows from bottom to top correspond to increasing
energies from Eq. (11). Note that values of Ei differ for the
three columns (because the shape of potential depends on η

and χ ), but energy ranges below and above the above-specified
benchmarks Ecl = 0 and Esad can be easily recognized from
the topology of the respective section: While for Ecl < Esad (no
pass between three degenerate global minima) the crossings
form a single compact area around x ≈ βmin > 0, px = 0, for
Ecl > Esad we observe two separate areas of crossings (with
x > 0 and x < 0) that merge at Ecl = 0. For Ecl > 0, the
crossings fill in a single area around the origin.

Regular trajectories contributing to Poincaré sections in
Fig. 10 form islands of concentric “circles” enfolding some
simple periodic orbits in their centers. Examples are given in
Fig. 11. The central orbits represent elliptic fixed points of the
associated Poincaré mapping [19] and can be used to classify
the enveloping islands. We distinguish the following principal
families of orbits:

(i) Trajectories forming a regular island centered at a
point x > 0 and px = 0. These constitute a family of
“γ -vibrations” since the central orbit (see orbit 1 in both
panels of Fig. 11) oscillates with β ≈ βmin around the
potential minimum. (To avoid confusion we note that in
the present case angular momentum l = 0, which is in
contrast to the lowest γ -vibrational quantum state with
l = 2.)

(ii) Trajectories forming two symmetric regular islands
with central points at x > 0 and px > 0, px < 0 and
for Ecl > Esad also an additional island at x < 0 and
px = 0. These are mixed “βγ -vibrations” that for
Ecl < Esad oscillate around one potential minimum
[see both orbits 2 in panel (a) of Fig. 11] and for
Ecl > Esad migrate over the saddle points between the
pairs of neighboring minima [orbits 2a and 2b in panel
(b) of Fig. 11 connecting the γ = 2π/3 and 4π/3
minima; analogous orbits exist also for the other pairs
of minima].

We observe (cf. Figs. 4 and 10) that the degree of chaos
varies with χ most significantly at intermediate energies,
especially around Ecl ≈ 0 (cf. Sec. IV). At low energies,
Ecl < Esad, but also at very high energies, Ecl ≈ Vlim,
the dynamics is mostly regular—this being understood from
the prevailing harmonic and pure quartic character of collective
oscillations in the respective regimes [30]. In the following,

FIG. 10. Poincaré sections y = 0 for η = 0.5 and χk, k = 2, 3, 4
(columns) at energies Ecl = E1, . . . , E10 (rows). The middle column
corresponds to the AW arc. Notice that sections for Ecl < Esad are
expanded compared to those for Ecl � Esad.
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FIG. 11. Poincaré sections and the central periodic orbits corresponding to the principal regular islands in the vicinity of the AW arc.
In both panels η = 0.5. Panel (a) corresponds to Ecl = E4 < Esad, χ = χ2, panel (b) to Ecl = E7 > 0, χ = χ3 (cf. the respective sections of
Fig. 10). The dashed lines at y = 0 demarcate the plane of section and the arrows show the position of individual orbits in the Poincaré sections.

we describe features of motions characteristic for the three
regions with respect to the regular arc.

|χ | > |χreg| (k = 2 column of Fig. 10): The low-energy
behavior below Esad (E1, . . . , E4) is completely regular,
dominated by γ and βγ vibrations (types 1 and 2). The
Poincaré section at E5 reflects merging of the hitherto separate
accessible regions. The rims of the regular islands get chaotic
around E6, E7. Increasing the energy further, chaos prevails
destroying the regular family around the type 1 and only tiny
regular areas roughly in the previous position of the three
regular islands of type 2 are left. At the highest energies,
around E10, the regular islands of the type-2 vibrations spread
significantly, increasing freg to ≈ 0.5.

χ = χreg (k = 3 column of Fig. 10): The single island of
type-1 γ -vibrations present at the lowest energies (E1) splits in
its center into two smaller islands corresponding to vibrations
of type 2 (see panels E2, . . . , E5). Unlike in the previous case,
the γ -vibration now constitutes a hyperbolic fixed point [19].
Interestingly, it becomes elliptic again around Ecl ≈ 0 [(see
regular islands around x > 0, px = 0 in panels E6 and E7 of

Fig. 10 and panel (b) of Fig. 11] and subsequently “disappears”
in a sea of chaos at E8. Another distinctive fact is a crossover of
the 2a and 2b types of βγ -vibrations slightly above Ecl = 0 (see
E7): one of the outermost tori of mixed vibrations (with central
orbit of type 2b) disintegrates to produce a new island of regular
trajectories (type 2a), which with increasing energy “expels”
the original island of type 2b orbits toward the boundary of
the accessible region. At E9 and E10, a new family or regular
orbits appears: these circle around the whole accessible region
giving rise to two new islands. It is worth noting that the regular
islands corresponding to βγ -vibrations (types 2 or 2a, 2b) exist
in the whole energy range between E2 and E10 and that the
low-energy form of these trajectories (type 2) reminds strongly
the trajectories of the SU(3) limit.

|χ | < |χreg| (k = 4 column of Fig. 10): The process starts
in a similar way as for χ = χreg, with the γ -vibration
becoming hyperbolic around E3, but the enveloping “circles”
disintegrate into complicated Poincaré-Birkhoff chains of
alternating elliptic and hyperbolic fixed points [19] which
usher in strong chaos resident at higher energies, E4, . . . , E7.
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FIG. 12. The AW arc [Eq. (6), the dashed curve] and the locus
of degeneracy of β and γ bandheads [Sec. VI, the dotted curve]
inside the Casten triangle. The points mark the change of stability of
γ -vibrations (orbits of type 1 in Fig. 11) at Ecl = −|Vmin|/2 (crosses)
and at Ecl = 0 (asterisks), see Subsec. V B. Numerical errorbars are
smaller than the pointsize.

At the highest energies the regularity rises again; the Poincaré
section at E10 yields freg ≈ 0.8.

The scenarios described above hold for the whole region
η < 0.6. As already pointed out in Refs. [10,11], the vicinity
of AW arc can be recognized as a place where the γ -vibrations
(type-1 orbits) change their character from elliptic (|χ | >

|χreg|) to hyperbolic (|χ | < |χreg|) fixed points. Note that at
low energies (Ecl < 0), the change of stability of the central
γ -vibration is always accompanied by stability changes of the
outermost enveloping “circles” in Poincaré sections, which in
turn represent almost pure β-vibrations (for our choice of the
phase space section, y = 0, these do not represent fixed points).
The stability properties of β-vibrations are opposite to those of
γ -vibrations: they are stable in the region where γ -vibrations
are unstable and vice versa. This happens very close to χreg

on the SU(3)-U(5) side of the triangle. On the other hand, at
higher energies (Ecl ≈ 0), the γ -vibrations change stability
on the other side of χreg. This may be seen in Fig. 12, where
the stability changes at Ecl = −|Vmin|/2 and at Ecl = 0 are
marked by crosses and asterisks, respectively.

When approaching the phase transition, for 0.6 < η < 0.8,
the loci of Ecl < 0 and Ecl ≈ 0 stability changes discussed
above deviate from the curve χreg(η) from Eq. (6). In fact, the
linear fit of the regular arc becomes inaccurate in this region
and changes in classical dynamics follow rather the curve
χdeg(η) of the β- and γ -bandhead degeneracy (dot-dashed
curve in the Fig. 12), which will be discussed further in Sec. VI.

As a final remark we point out that crossing of the SU(3)-
U(5) edge of the Casten triangle, in contrast to crossing of
the AW arc, does not bring about any significant change in
dynamics.

C. Periodic orbits

In this subsection, we will discuss a possible relation
of stability changes in classical dynamics (as described in
Sec. V B) to the E ≈ 0 bunching pattern in quantum spectra
(Sec. IV). In particular, we focus on the crossover between the

two types of βγ -vibrations (orbits 2a and 2b in Fig. 11) and
on the temporal resurrection of γ -vibrations (orbit 1 therein),
both these phenomena taking place in the relevant energy and
parameter domains (cf. panels E6 and E7 of Fig. 10).

The influence of classical dynamics on quantized energy
spectra is described in the framework of semiclassical periodic
orbit theory [19–21]. The oscillating part ρosc(E) of the
quantum level density can be be expressed via so-called trace
formulas, which depend on properties of classical periodic
trajectories and have the following generic form:

ρosc(E) = 1

πh̄

∑
p

∞∑
r=1

rTp

Ap

cos

[
rSp(E)

h̄
− rµp

π

2

]
. (12)

The sum is running over all primitive orbits p with period
Tp together with their multiple retracings r = 1, 2, 3, . . .. The
argument of the cosine is determined by the action

Sp(E) =
∮

�p · d �q =
∫ Tp

0
�p · �̇qdt (13)

along the primitive orbit and the number of caustics µp

(Maslow index) encountered there. Inverse amplitude Ap

reflects the stability properties of the orbit and depends on
the nature of dynamics. The explicit form of Ap is known only
for completely regular or chaotic systems, respectively, given
by the Berry-Tabor formula for contributions of tori [40] and
Gutzwiller formula for contributions of isolated orbits [41].

The level bunching described in Sec. IV constitutes a
significant fluctuation in level density. We may therefore
expect that it is connected, through Eq. (12), with changes
in properties of classical periodic orbits. In Sec. V B, the
increased regularity of l = 0 motions in the AW arc was
shown to be basically due to regular trajectories surrounding
the vibrations of types 1 and 2 (see Fig. 11). Although we
are not able to perform the semiclassical calculation of the
level density for a mixed regular/chaotic system such as the
IBM (the formula is not known), we will show that stability
intervals of the above types of motions and crossover energies
are strongly correlated with the bunching pattern.

For this purpose, we calculated actions (13) of orbits from
Fig. 11 using a numerical approximation Sp = ∑

(px�x +
py�y) in variables (5), where the sum runs over all calculated
points until the orbit closes. The energy dependences of
cos Sp for the three types of orbits are presented in Fig. 13
for χ = χreg and η = 0.35 (panel a), η = 0.5 (panel b), and
η = 0.65 (panel c). Individual curves end at the values of
energy, where the respective trajectories turn unstable and the
surrounding regular islands disappear. The classical energy Ecl

from Hamiltonian (2) is related to quantum energy E scaled
by a = N/10 via E = 4Ecl (for N = 40, see Figs. 6 and 9).
The energy interval where the bunching of quantum spectrum
resides for the given value of η is demarcated by the shaded
area in the respective panel of Fig. 13.

As we observe, the upper edge of the energy gap demarcat-
ing the bunching pattern coincides almost precisely with the
endpoint of 2b orbits, while the crossover energy of 2a and 2b

orbits takes place within the gap. This is so for all selected
values of η (panels a–c of Fig. 13). It also turns out that both
orbits 2a and 2b match their periods just above the crossover
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(a)

(b)

(c)

FIG. 13. Oscillating contributions to the state density calculated
for the central periodic orbits from Fig. 11 at χ = χreg and η = 0.35
(a), 0.5 (b), 0.65 (c). Maslow index µp = 4 for all orbits makes no
change of the cosine. Grey zones indicate the regions corresponding
to the bunching of quantum levels. (Energy unit is arbitrary.)

energy, within the shaded area. The stability changes of type-1
orbits are also correlated with the bunching, although in this
case the energy match does not behave in a systematic way.

These findings provide a strong support to the hypothesis
that the quantum bunching pattern discussed in Sec. IV is
closely connected with the stability changes of the above
orbits, in particular with the crossover between 2a and 2b

vibrations. Whether this is just an interplay of accidents or a
deeper effect resulting from internal symmetries of the system
remains an open question.

VI. β AND γ BANDHEAD DEGENERACY

In attempts to fit nuclear spectra with the simplified
Hamiltonian (1), an approximate degeneracy of 0+

2 and 2+
2

states (belonging to so-called β and γ bands, respectively)
was found to be a useful tool for identification of nuclei close
to the AW arc [27]. Here we estimate the locus of the 0+

2 -2+
2

degeneracy region in the Casten triangle analytically, by means
of the intrinsic-state formalism [42]. It will turn out that the
curve χdeg(η) expressing the locus lies indeed very close to the
AW arc χreg(η).

In the intrinsic-state formalism, the unprojected wave
functions for the ground-state band, β-band, and γ -band are

up to a combinatorial factor given by

|K = 0, gs〉 ∝ �
†N

0 |0〉 , |K = 0, β〉 ∝ �
†
β�

†N−1
0 |0〉,

(14)
|K = 2, γ 〉 ∝ �†

γ �
†N−1
0 |0〉

with

�
†
0 = 1√

1 + β2
[s† + βd

†
0], �

†
β = 1√

1 + β2
[−βs† + d

†
0]

(15)

�†
γ = 1√

2
[d†

2 + d
†
−2].

The deformation parameter β is determined by minimizing the
ground state energy

Eg.s. = 〈K =0, g.s.|H |K =0, g.s.〉 (16)

while the excitation energies of the β and γ bandheads
consequently follow from

E∗
β = 〈K =0, β|H |K =0, β〉 − Eg.s., (17)

E∗
γ = 〈K =2, γ |H |K =2, γ 〉 − Eg.s.. (18)

The minimization of the ground-state energy (16) and equality
of expressions (17) and (18) lead—after taking the N →
∞ limit—to two simultaneous equations in η, χ , and β.
Elimination of β gives the dependence χdeg(η), which is shown
in Fig. 12 together with the linear fit χreg(η) of the AW arc,
Eq. (6).

We see in Fig. 12 that both curves χdeg(η) and χreg(η)
are relatively close to each other for η < 0.7. The agreement
even slightly improves if we compare χdeg(η) directly with the
points in Fig. 13 of Ref. [9] without the fit (6). As η approaches
0.8 both curves diverge. Indeed, since at η = ηc ≈ 0.8 the
spherical configuration of the ground state is reached, the
notion of β and γ bands looses its sense. Note, however,
that the whole spherical region with η > ηc behaves rather
regularly and the concept of the semiregular arc is not well
defined here. Notably, both loci of classical-orbit changes
discussed in Sec. V apparently follow the χdeg(η) curve instead
of χreg(η).

Note that the present procedure equating the bandhead
energies of the β and γ vibrational bands differs somewhat
from that of Ref. [27] where energies of the 0+

2 and 2+
2 states are

compared. Namely, the rotational energy shifts up the position
of the 2+

2 state from the γ bandhead energy. For the near rotor
nuclei discussed in Ref. [27] this does not make a substantial
difference as the rotational energy is small as compared to the
excitation energy of the γ bandhead. In some cases inspected
in Ref. [27], the 2+

2 state even belongs to the β-band, then
however γ -band is still close to the β-band. For the near
vibrator nuclei, the comparison is less straightforward. Here,
however, the comment of the previous paragraph applies.

A rotational L · L term can remove the degeneracy of states
of different spins but does not change eigenfunctions and the
extent of regularity. Then a link of the regular region to the
2+

2 -0+
2 degeneracy may somewhat be hidden. On the other

hand, the L · L term shifts also the relative position of the β

and γ bands. This shift is, however, of the order of 1/N as
compared to the effect of all other two-body terms of the
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FIG. 14. Regularity f (S)
reg at Ecl = 0 as a function of B̄ =

B/
√|AC| and B̄(η, χ ) in the GCM and IBM, respectively, deter-

mined by the SALI method.

general IBM Hamiltonian. Of course, the latter deficiency
of the L · L term could be balanced by coefficient ∼N of
that term. Then the unprojected version of the intrinsic-state
formalism ceases to be valid and the angular momentum
projection should be considered [43].

VII. RELATION TO GEOMETRIC MODEL

Recent analyses [28–30] of the classical GCM displayed
an unexpectedly complicated dependence of chaoticity on the
control parameters and energy. It is certainly interesting to find
out whether at least some of the distinctive features of GCM
phase space can be “mapped” onto the more realistic IBM. We
are going to set focus on the energy Ecl ≈ 0, connected with
the most dramatic changes of regularity in the GCM as well
as in the IBM case.

We start with an expansion of the square root in the IBM
Hamiltonian (2), which up to first order in (β2 + T )/2 gives

H ′
cl = 1

2K ′ T + A′β2 + B ′β3 cos 3γ + C ′β4

+ B ′

4

(
2pβpγ + p2

γ /β − βp2
β

)
(β2 + T − 4) sin 3γ

− B ′

4
(β3T cos 3γ +β5)+D′β2T +E′

(
1

2
p2

γ − 1

8
T 2

)
≡ H ′

GCM + H ′
res. (19)

We may immediately identify the GCM-like Hamiltonian
(3) in the first line. The residual terms H ′

res in the next
two lines contain a correction ∝ β5 in the potential and a
collection of rather complicated kinetic terms. The coefficients
A′, . . . , E′ are functions of η, χ : A′, B ′, C ′ being equal to re-
spective factors in Eq. (4), while K ′ = 1/η,D′ = (1 − η)(1 −
χ2/7), E′ = 4χ2(1 − η)/7. The expansion (19) is justified
only for small amplitude vibrations around an equilibrium
deformation satisfying β2

0 � 1, which is for Ecl ≈ 0 fulfilled
in a region near to the phase transition, η ∈ [0.7, 0.8]. It needs
to be stressed that even in this region H ′

res contains kinetic
terms of the same order as T . One therefore cannot expect a

FIG. 15. Comparison of Ecl = 0 Poincaré sections y = 0 in the
IBM at η = 0.75 (lefthand column) and GCM (righthand column) at
the most pronounced minima and maxima of freg(B̄) from Fig. 14.

perfect match with the GCM results. Nevertheless, as shown
below, the similarity is appreciable.
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To obtain a mapping between IBM and GCM parameters,
we use scaling properties of the classical GCM Hamiltonian,
see Ref. [30]. In this way, H ′

GCM is transformed so that
only the coefficient B̄ in front of the term ∝ β3 remains
variable while Ā = −C̄ = −1 are fixed. The expression for the
rescaled control parameter then reads B̄(η, χ ) = B ′/

√|A′C ′|.
This provides the desired correspondence (η, χ ) ↔ B̄ for
small-amplitude vibrations (wrong scaling of the noninvariant
part H ′

res may then be neglected).
In Sec. III we saw that in the “middle” of the Casten triangle

(η = 0.5, cf. Fig. 3) the zero-energy dependence of freg on χ

in the IBM has the only well pronounced peak at the AW
arc, quite in contrast with the corresponding fine structured
freg(B̄) dependence in GCM [28] at Ecl = 0 (see the inset of
Fig. 14). However, as we approach the deformed-to-spherical
phase transition, some significant peaks of regularity develop
in the region between χ = 0 and the AW arc. As the validity of
approximation (19) improves in this part of the Casten triangle,
the freg dependences start to resemble that of the GCM, see
Fig. 14.

The similarity is evident also from the Poincaré sections
shown in Fig. 15, where the lefthand and righthand columns
correspond to the IBM and GCM, respectively. The adjacent
pairs of sections belonging to the most pronounced maxima
and minima of freg in the GCM and IBM at η = 0.75 are
visually almost identical (here we use χ > 0 to be consistent
with the choice B > 0 of Refs. [28,30]). The differences must
be attributed to the residual part H ′

res of Hamiltonian (19),
which is not obviously small.

We can conclude that the GCM peak of regularity at
B̄ ≈ 0.6 is closely related to the AW arc in the region η ∈
[0.7, 0.8]. Note, however, that the most regular IBM Poincaré
section, observed at |χ | = 0.52 (associated with the GCM
section at B̄ = 0.62), is already deviated from the linear fit
(6) of the AW arc, which predicts |χreg| = 0.71 for η = 0.75.
This is in agreement with results of Secs. V B and VI (see
Fig. 12).

VIII. SUMMARY AND OUTLOOK

In this paper, we studied quantum and classical effects
associated with a partial increase of regularity in nuclear
collective dynamics away from integrable regimes. This
increase seems to be a common feature of both the inter-
acting boson model and the geometric model, but so far
lacks unambiguous theoretical evidence. Below we list our
most important findings together with the questions they
induce:

(i) The increase of regularity, localized mainly in the
absolute-energy region around E ≈ 0, coincides with
the “macroscopic” bunching of the IBM quantum
states, most clearly observed in the 0+ spectrum. This
bunching is visually similar to that observed in the O(6)-
U(5) transition (see Fig. 9 and Ref. [17]), but cannot
have the same origin (monodromy [18,38]) as there
is no local potential maximum with the corresponding
energy. More sophisticated concepts, like generalized

forms of monodromy [44] or Hamiltonian fixed points
[45] may turn relevant in future studies. Since the
O(6)-U(5) bunching was recently related to excited-
state quantum phase transitions [38], the question rises
whether the present bunching induces analogous effects
in the SU(3)-U(5) case.

(ii) At the classical level, the bunching pattern seems to be
related to changes in stability of some specific orbits.
In particular, we disclosed the crossover between orbits
of types 2a and 2b from Fig. 11 and equalizing of
their periods taking place in the relevant energy and
parameter domains, see Fig. 13.

(iii) Proximity of the AW arc to the locus of 0+
2 -2+

2
degeneracy, previously noticed in Ref. [27], was related
to the the degeneracy of β and γ bandheads. It remains
unclear whether it is accidental or systematic. The ex-
change of stability of low-energy γ -vibrations [type-1
orbits from Fig. 11(a)] and β-vibrations was found to be
correlated with the locus of degeneracy (see Fig. 12). It
is known that no ground-state phase transition occurs in
between γ -soft and γ -rigid sides of the Casten triangle,
but the present observations suggest that a kind of sharp
change of low-energy collective modes appears very
close to the AW arc.

(iv) The relation of the AW arc to the increase of regularity
observed at Ecl ≈ 0 in the geometric model [28] was
demonstrated in the region η ∈ [0.7, 0.8], i.e., close
to the deformed-to-spherical transition. Even in this
region, however, the IBM corrections to the GCM
kinetic energy cannot be fully neglected and lead to
some rescaling of the fine structure of freg in parameter
B̄ (see Fig. 14).

Note that findings summarized under (iii) and (iv) indicate
that the semiregular arc is in fact well defined only on the
deformed side of the Casten triangle [a kind of partial SU(3)
dynamical symmetry being a potential explanation] and that
close to the phase transition it deviates significantly from the
linear fit (6).

We hope that results presented in this paper will help
to eventually disclose microscopic origins of regularity in
nuclear collective dynamics. This is an important funda-
mental task in itself, but in view of the recent revival
of interest in statistical analyses of nuclear 0+ spectra
[46] it may also turn relevant from the experimentalists’
viewpoint.
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