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Scission configurations and their implication in fission-fragment angular momenta
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The generation of sizable angular momenta in fragments formed in low-energy nuclear fission is described
microscopically within the general quantum-mechanical framework of orientation pumping due to the Heisenberg
uncertainty principle. Within this framework, we make use of the results of Skyrme-Hartree-Fock plus BCS-
pairing calculations of fragment deformabilities to deduce a distribution of fission-fragment spins as a function of
the fragment total excitation energy. We consider a fragmentation corresponding to a pair of deformed fragments
and for which fission data are available. The properties of the scission configurations determine to a large
extent the fission-fragment spins. This is why we pay particular attention to quantitatively defining the scission
configurations and to studying the various implications of such a specific choice. A fair qualitative agreement
with data is demonstrated and discussed within the limits of the simple scission-configuration model used here.
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I. INTRODUCTION

Fission fragments resulting from the fission at low energy
(neutron or light charged particle induced fission) or even
zero energy (as in spontaneous fission) end up with angular
momenta widely distributed in a range going from typically a
few to about 10h̄. This result was obtained long ago and further
confirmed in a variety of different experimental situations (for
reviews and comprehensive references see, e.g., Refs. [1–3]).
It was first evidenced by the observation of prompt γ -ray
emission by the fragments, where “prompt” here means
much before the β decay of the neutron-rich nuclear species
produced in the fission of the heavy nuclei under consideration
(actinide or beyond). However, the current wisdom is that this
γ emission should take place much after the deexcitation by
prompt-neutron emission carrying out most of the fragment
excitation energy and very little of their angular momenta.

Various theoretical attempts to describe the generation of
angular momenta in fission fragments have dwelled on the
concept of an excitation at scission of some collective modes
capable of producing angular momenta. The rather elusive
character of such a specific scission point renders this type of
approach as somewhat contingent upon specific assumptions
regarding the collective dynamics at this stage of the fission
process. The point of this paper is to examine in detail
how far basic quantum-mechanical concepts can provide an
explanation for most of the experimental facts related to the
fission-fragment angular momenta at low excitation energy. In
doing so, to be specific, we will at some point have to rely
also on a well-defined dynamical assumption for the fission
process at scission.

The paper is organized as follows. After a review in Sec. II
of the relevant experimental data and, in Sec. III, of the
existing theoretical descriptions, we will present in Sec. IV
the framework of our approach. Then, Sec. V addresses the
concept of scission and provides a quantitative definition.
We also specify our model assumptions for the description

of the scission configurations. In Sec. VI, we describe how
the retained mechanism of angular-momentum generation
(proposed by two of us a few years ago [4], briefly reviewed
and developed below) has been implemented to calculate
the average angular momentum of fission fragments as a
function of their total excitation energy. The results obtained
for one fragmentation in the 252Cf spontaneous fission, namely,
106Mo+146Ba, are reported and discussed in Sec. VII. The main
conclusions of this study are drawn in Sec. VIII.

II. BRIEF SURVEY OF EXPERIMENTAL FINDINGS

The first relevant measurements in, e.g., 252Cf spontaneous
fission [5,6] yielded a multiplicity per fission of ten photons
having a total energy of 8.6 MeV on average. Later, measure-
ments of angular correlations between the fission fragments
and the γ rays (see, e.g., the thermal-neutron fission results of
Ref. [7]) exhibited an anisotropy consistent with E2 radiation
emitted by nuclei rotating with a rotation axis perpendicular
to the fragment direction. The γ -emission times are indeed
found roughly consistent (see Ref. [8]) with multipolarities
being mostly of a dipole and quadrupole character.

The picture which emerged from these global results [9]
was that of a γ deexcitation performed by emitting first
some statistical E1 γ rays until one reaches the yrast line
region. Then this dipole emission would be followed by mostly
stretched E2 γ rays corresponding to transitions within some
collective rotational bands in axially deformed fragments. One
would get an idea of the spin (in units of h̄) of each fragment
by multiplying the measured γ multiplicity by a factor slightly
below 2 (taking into account the mostly E2 character of the
γ rays as exhibited by angular correlation data except for a few
E1 transitions) and dividing the result by 2 (equally sharing
in this crude approach the γ multiplicity between the two
fragments). This would lead in 252Cf spontaneous fission to
average fragment angular momenta in the 8h̄ range.
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However, the average energy released by such γ rays
has clearly indicated some competition between neutron and
γ emissions, If all opportunities to deexcite fragments by
neutron emission are taken into account, one would be left with
an average total γ energy of the order of the neutron separation
energy. For such neutron-rich nuclei, this γ energy would be
closer to 5 MeV than to the roughly 8.5 MeV observed for
252Cf.

This competition between the emission of neutrons and
γ rays constitutes a first difficulty for the theoretical descrip-
tion of the fragment γ deexcitation, since the observed γ rays
do not generally come entirely from the same nucleus. There
are, as a matter of fact, some further difficulties in inferring
the fragment spins from the data which are mainly related to
the wide distribution of γ -emitting nuclear states, even upon
fixing their specific nucleonic numbers (N and Z). Indeed,
because of the dynamics of the fission process itself (from
saddle to scission) as well as the possible prompt-neutron
emission processes, one has to deal with a broad distribution
of spin and excitation energy before the γ emission, which is
rather poorly known.

At this point, it is important to underscore a genuine source
of ambiguity in interpreting dynamically the results obtained
from fission-fragment spin data. This ambiguity arises from
the difference between the identity of the γ -emitting nuclei
(the secondary fragments) and the nuclei produced at scission
(the primary ones). Viewed as the interplay between nuclear
and Coulomb forces, the dynamics of fission is concerned,
before and beyond the scission points, mostly with the primary
fragments. Therefore, one faces the extreme difficulty of
sorting the various “primary” components out of the γ spectra
corresponding to “secondary” emission. This encompasses
two different problems. The first one is, as we have seen,
that some γ rays are emitted before the last neutron. Therefore
some γ rays attributed to a secondary fragment do not originate
from that fragment. One may, at first, consider that this problem
does not impair our understanding of the deexcitation, since
the first (dipole) γ rays are statistical in nature and thus
not influenced significantly by the particular structure of the
emitting nucleus. The second problem is by far more serious.
For a given primary fragmentation, the distribution of the
number of emitted neutrons may be quite large, reflecting the
broad character of the excitation energy distribution, as already
mentioned. One might then wish to pinpoint the excitation
energy, for example, by selecting data corresponding to a
given total kinetic energy bin. Yet, this would not guarantee
an unambiguous determination of the primary fragmentation
because the total excitation energy is not uniquely shared
between the two fragments, resulting in a distribution or
possible energies for each, in addition to the above-advocated
neutron-γ competition.1 As a result, it is impossible to
perform a one-to-one correspondence between the secondary
γ emission and theoretical scission configurations. It is thus
very important to note that any experimental data on primary

1The authors are indebted to Pr. Friedrich Gönnenwein for patient
clarifying remarks on these matters.

configurations are not, in fact, free from various stringent
model assumptions.

This is the case in the pioneering works attempting to
deduce fragment spins from the relative yields of isomeric
states in the fragments reached in the fission process. In such
approaches, one assumes first for each fragment a theoretical
initial Gaussian spin distribution parametrized so as to take into
account the fragment moment of inertiaJ and a temperature T

(both being boldly assumed to represent the wide distribution
of deformations and excitation energies of a given fragment).
These factors are in fact appearing through their product,
usually called B2, in the width of the spin distribution. This
product is proportional to the expectation value of the square of
the angular momentum in the considered fragment. Through
a combined neutron-γ deexcitation model (similar to what
Huizenga and Vandenbosch [10] had proposed) one fits the
parameter B2 so as to have the right ratio of spin populations
corresponding to the measured isomeric yield.

Shortly after the beginning of these studies, Wilhelmy and
collaborators [11] proposed to replace the input of isomeric
ratios by those yielded by the intensity of γ rays in ground-state
rotational bands (for even-even nuclei). Such basic ideas were
utilized later, taking advantage of the advent over the last two
decades of so-called 4πγ multidetector arrays. A first kind of
such data corresponds to set-ups of high efficiency but poor en-
ergy resolution (the fragment identification, at least their mass
split, being obtained through coincidence measurements with
fragment detectors). An example of such results may be found
in Ref. [12]. The second category of γ multidetector array data
has been obtained from high-resolution Germanium detectors
as EUROBALL or GAMMASPHERE. For an illustration of
such an approach, one may refer to Ref. [13] for the 252Cf
spontaneous fission using the GAMMASPHERE array in a
preliminary stage with 36 Germanium detectors. By analyzing
double-coincidence γ spectra, Ter-Akopian and collaborators
were able to provide fission yields [14–16] and deduce from
the identification of low-lying decay γ cascades the angular
momenta of fission fragments [13] for two different splittings
(Mo-Ba and Zr-Ce). The fragment spins were obtained after a
secondary-to-primary unfolding process using basically the
same model assumptions as given above. The authors of
Ref. [13] found that as the number of emitted neutrons ν̄

increases from zero to about 6, the fragment spins rise in the
two studied cases from an initial value of about 2h̄ to values
in the 4–8h̄ range (depending on the specific element).

Note that the first results obtained with the isomeric ratios
(see Ref. [2] for references) were at variance with the data
deduced from the average γ multiplicity (see, e.g., Ref. [17]).
The latter exhibit a sawtooth pattern as a function of the mass of
the fragments, reminiscent of what is observed for the average
neutron multiplicity (as in, e.g., Ref. [18]) which was not
borne out by the data in the former technique. An analysis of
some γ -multiplicity data with the deexcitation code used for
the isomeric yield data also found no sawtooth behavior [11].
More recently, some refined γ -multiplicity measurements [12]
exhibited no (or merely a very attenuated) sawtooth pattern.

One can also mention some specific problems met in the
above approaches when relating relevant raw γ data to the
spin of the fission fragments. First of all, the assumption of a
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single spin distribution may be considered as highly dubious
even when used to reach averaged quantities, since it overlooks
the fact that one has to consider wide (and possibly made of
many components) distributions of configurations and energies
experienced at this stage of the fission process even for a given
fragmentation. To illustrate this, we may recall the experimen-
tal example of bimodal fission for the same fragmentation (in
that case symmetrical) presented in Ref. [19]. Next, we may
also question the use of a unique distribution of initial spins in
the particular context of fragment isomeric states. Indeed, these
isomers are of quasiparticle nature, and the corresponding
potential-energy landscapes might be vastly different between
various such complicated single-particle configurations. This
is similar to the old problem encountered in the fission-barrier
description (for axially symmetrical deformations) under the
name of specialization energy [20] which may vary with
the approximately conserved usual quantum number K (see,
e.g., Ref. [21]). Moreover, we should add that the rotational
properties of such quasiparticle isomers are not, by any means,
guaranteed to be similar to those of ground states which exhibit
a much simpler single-particle structure. The latter is due,
in particular, to the different amount of pairing correlations
present in ground and isomeric states. A theoretical description
of the spins of these fission-fragment isomers should thus
require a specific handling of these particular configurations,
which will not be attempted here.

Recent experimental results at the Institut Laue Langevin
(ILL) Lohengrin mass spectrometer facility [22] are worth
mentioning in this context. They exhibit the relative pop-
ulation, as a function of the total kinetic energy, of two
isomeric states (10+, 2.723 MeV, 3.7 µs, and 7−, 1.925 MeV,
28 µs) of 132Te yielded by the neutron-induced fission of the
240Pu compound nucleus. Gönnenwein and collaborators [22]
draw attention to data pertaining to the so-called cold (i.e.,
in the absence of any intrinsic excitation) deformed fission,
where “deformed” means here that the sum of fragment
deformation energies reaches its maximum. The observed
drop in the population of high-spin states while nearing
this cold deformed fission region is clearly at variance with
any explanation involving a correlation between spins and
deformations. This seems to be a clean-cut example of a
mechanism of angular-momentum generation that cannot be
explained by the theoretical approach in its present state, as
developed below, which relies on collective rotational motion
(see the concluding discussion of Sec. III).

Two other considerations should also be made before
concluding this survey of experimental approaches of the
fission-fragment spin problem. First, the angular momentum
of a fragment is modified when a neutron and/or a statistical
γ ray is emitted. Calculations using statistical evaporation
codes have shown that on average the spin of the emitting
nucleus is modified by 0.5h̄ per emitted neutron and 0.3h̄ per
emitted statistical γ ray [23]. The second consideration deals
with the torque exerted by the Coulomb force on each fragment
in so far as its symmetry axis is not oriented along the fission
axis. This had been already advocated by Strutinsky [24] and
Hoffman [7] to account for the totality of the angular momenta
of the fragments when rotationally set in motion from rest.
The effect of such torques when applied after scission, i.e., on

nuclei already set in rotational motion, is evaluated to be small,
about or less than 1h̄ per fragment [23] (see in particular the
estimates of Refs. [25,26]).

These rather long introductory remarks were necessary to
put into proper perspective the actual challenge that existing
data are presenting to our theoretical approach. Let us draw
some conclusions from them. For a certain number of emitted
neutrons (close to its average value), because of the various
particle emission processes at work and the post-scission
interaction, it would be very hazardous to infer from such data
the spin of fission fragments at scission with an accuracy better
than about 2h̄. Our efforts should thus only intend to reproduce
orders of magnitude and trends of the fragment spins, for
example, as a function of the total excitation (or kinetic) energy
or as a function of the fragmentation. Moreover, we must
clearly state that we have only discussed above, and will only
attempt to describe below, low-energy or even zero-energy
(i.e., spontaneous) fission where the total angular momentum
in the laboratory system is low (if not exactly vanishing, as in
the case of the spontaneous fission of an even-even nucleus).
Some preliminary studies of a possible way to release this
restriction have been presented in Ref. [27].

III. PREVIOUS THEORETICAL DESCRIPTIONS OF
FISSION-FRAGMENT ANGULAR MOMENTA

The most widely considered theoretical explanation of the
angular momenta of fission fragments relies on the thermal
excitation of collective angular-momentum-carrying modes.
Nix and Swiatecki [28] were the first to consider the normal
collective modes yielding angular momenta perpendicular to
the fission axis (see Ref. [29] for an illuminating discussion of
the angular-momentum-bearing modes). The latter specifica-
tion is consistent with the assumption of axial symmetry. One
should then exclude modes that cannot be quantally excited
due to the symmetry assumption, namely, the global axial
rotation and twisting modes. One is left with the so-called
bending and wriggling modes. The first one consists of two
opposite rotations of two touching or overlapping spheroidal
fragments around an axis perpendicular to the plane formed
by their axes of symmetry (here, “opposite” means that one
fragment rotates clockwise of an angle θ while the other rotates
counter-clockwise by the same angle). In the wriggling mode,
the two spheroidal fragments rotate in the same direction
around an axis perpendicular to the same plane as defined
above, while the global system counter-rotates in such a way
as to yield a vanishing total angular momentum, if so desired.
A simple quantal Hamiltonian allowing these modes is defined
by

H =
2∑

i=1

Ti + V. (1)

The first term involves a sum over the rotational kinetic energy
Ti of the fragment i, expressed in terms of the corresponding
moment of inertia Bi as

Ti = − h̄2

2Bi

[
1

sin θi

∂

∂θi

(
sin θi

∂

∂θi

)
+ 1

sin2 θi

∂2

∂φi
2

]
, (2)
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whereas the lowest order approximation of the potential V

associated with the restoring forces takes the form

V = C1 sin2θ1 + C2 sin2θ2 − D sin θ1 sin θ2 cos(ϕ1 − ϕ2),

(3)

with the notations of Ref. [25]. Rasmussen and collaborators
[30] were the first to solve the corresponding quantum-
mechanical problem, though it was for the special case in
which only one of the fragments is deformed. Zielinska-Pfabe
and Dietrich [25] yielded solutions in the most general case
where both fragments may be deformed; these solutions are
still being utilized [26].

The collective-model foundations of such an approach are
to be found in what has been developed by and around the
Frankfurt group as the so-called nuclear molecule model of
Ref. [31], or by Volkov and collaborators (see, e.g., Ref. [32])
within the so-called dinuclear system (DNS) model. While
initially developed in the context of heavy-ion collisions,
these approaches have been applied to low-energy fission
(see, e.g., Refs. [33,34]). The version most generally used to
describe fission considers two fragments described by axially
symmetrical quadrupole sharp-edged density distributions,
which are assumed to always remain approximately attached
at two of their poles. This imposes in particular that the vector
R joining the two centers of mass and the two fragment axes
(Si) of symmetry are coplanar. Since obviously,this touching-
pole condition cannot be satisfied exactly for nonvanishing
values of the angle between R and S1, the validity of this
approach is limited to very small values of this angle (and thus
similarly for the angle between R and S2, since the two polar
lengths of the fragment density distributions have the same
order of magnitude). It clearly implies, in addition, that the
center-of-mass distance R (i.e., the norm of R) varies with the
above-considered angle in a correlated fashion.

As noted in the seminal reference [31], the most complete
collective-model description of such a diquadrupole system
would involve the consideration of 13 dynamical variables.
From them, one should single out one of paramount impor-
tance, namely, the internuclear distance, defined by the value
of R for instance. In the calculations of Refs. [33,34], as well
actually as for the Hamiltonian considered in Eqs. (1)–(3),
the variable R is assumed to be approximately or exactly
frozen. In its most naive interpretation, this would rely on
a hypothetical pocket in the potential-energy surface (PES)
of the total system. The existence of such local minima in the
fission valleys of the PES is not at all grounded on any available
purely microscopic calculations (see, e.g., Refs. [35–37]). The
references made, for instance, in Ref. [34] to such pockets
found in Refs. [38,39] are of course totally misleading, because
they refer in practice to adiabatic fusion valleys which are,
in general, irrelevant to the fission process. This academic
reference to a molecular equilibrium distance is in practice at
variance with the actually used touching-poles approximation,
which clearly fixes a distance without connection with the
alleged one.

It is probably more physical to assume, in a Born-
Oppenheimer fashion, that the relevant degrees of freedom
for the spin generation mechanism are fast with respect to the

one associated with the “elongation” degree of freedom R,
as claimed in Ref. [26]. This imposes, in turn, quite drastic
constraints on the collective dynamics. As we will see, our
interpretation of this mechanism as an orientation pumping
involves, instead, the single-particle motion of nucleons in an
instantaneous mean potential which could more easily meet the
above adiabaticity criterion. Beyond this approximate or exact
freezing of the R variable, the addition of the above-detailed
geometrical restrictions dramatically reduces the number of
variables to only one.

A detailed discussion of these numerous simplifying as-
sumptions is beyond the scope of this paper. We simply would
like to remark that the touching-pole ansatz corresponds in
effect to an approximately vanishing tip distance at scission
in the language of Ref. [40]. This is contradictory to the
outcome of most definitions of the scission points (as, e.g.,
in Refs. [36,40] or the present paper). Moreover, there is no
indication in Ref. [34], for instance, that the values of R yielded
in the advocated DNS calculations (of the type in Ref. [38])
are consistent with these vanishing tip distances.

Next, we will briefly discuss the results of previous
theoretical approaches.

The pioneering work of Zielinska-Pfabe and Dietrich [25]
ignores the dynamics of the R variable as in the above-
discussed nuclear molecule and DNS calculations, yet allows
the full angular dynamics (dealing with the three relevant
angles involved in the problem) and does consider a finite
angle-dependent tip distance. The moments of inertia are mi-
croscopically calculated through the Inglis-Belyaev cranking
formula that includes pairing correlations. The results repro-
duce the global structure of the fragment angular momenta as a
function of the fragment mass, namely, the data from Ref. [41]
which exhibit a sawtooth structure (not found, however, in the
later data of Ref. [12], as already mentioned). They yield also
the correct order of magnitude for these angular momenta upon
setting a temperature for the fragments of about 2–3 MeV. This
approach, however, meets with at least three difficulties. First
of all, to account for the average-spin values, one has to resort
to the above-mentioned temperatures which are somewhat
too high, at least for reasonable collective phonon energies
as given in Ref. [25], assuming the thermalization of the
collective degrees of freedom. Second, the Zielinska-Pfabe-
Dietrich approach is unable to provide any description of
the above-quoted dependence of the angular momenta on the
excitation energy [13] defined as the fraction of the fission Q

value that does not end up in the total fragment kinetic energy.
This is so because this method does not explore the fragment
deformation space by constraining on various total kinetic or
excitation energies. Finally, this approach is inconsistent with
the observed similarities between angular γ -ray distributions
of binary and ternary fissions [42], while the latter should
clearly perturb the bending mode excitation with respect to
what is expected in binary fission.

The work of Ref. [26] presents itself as belonging to
the nuclear molecule approach. Actually, it deals with the
Hamiltonian of Ref. [25], which includes only the angles
between each of the two fragment symmetry axes and R. Upon
considering the fragment-fragment interaction up to second-
order terms in the angles only, they obtain a Hamiltonian of
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a quantum rotor whose eigensolutions are well known. The
fragment angular momenta are trivially deduced from the
energies stored in the bending modes E

(b)
i . In this calculation,

the fragment interdistance is frozen to a value that does not
come out of a molecular calculation but is linked to the total
bending energy E(b) = E

(b)
1 + E

(b)
2 , thus varying with E(b).

Since this energy has some bearing on the excitation energy,
the authors of Ref. [26] found out, through some rather crude
assumptions on the deformation energies, that in their model
the fragment shapes do vary very much with E(b). However, the
bending mass parameters are calculated from experimentally
deduced moments of inertia of each fragment, thus for yet
another set of deformations corresponding to the fragment
ground states. For the same reasons as in Ref. [25], this
approach cannot attempt to reproduce the observed variation
of the angular momenta with the total excitation energy.

The DNS approach of Shneidman et al. [34] corresponds,
as already discussed, to a single angle dynamics. These
authors describe the excitation energy dependence of the
fragment angular momenta from a thermal excitation of the
considered single bending mode. The specific way, with
respect to the pairing correlations treatment, in which the
inertia parameter introduced in this Hamiltonian is evaluated
is of paramount importance. Indeed, it clearly determines
the realistic character, or not, of the resulting bending mode
frequency, which in turn yields the angular momentum for a
definite excitation energy (or temperature). In that respect, the
retained choice of the fragment interdistance is not without
consequence, since the frequency is an increasing function
of R. This is why the results of this approach could not
allow going beyond an approximate reproduction of the trend
in the data of Ref. [13]. The agreement that they obtained
yields temperatures which are significantly lower than those
in Ref. [25], which is consistent with the fact that the bending
frequencies of the latter are significantly lower than theirs.

IV. THEORETICAL FRAMEWORK

The above presentation clearly indicates that a realistic
modeling of the fission-fragment spins, taking into account
in a microscopic way all the relevant collective variables
at scission, is still waited for. This is why we do not
address the issue of a specific collective description of the
nuclear dynamics at scission but rather investigate whether
quantum-mechanical arguments could explain a priori the bulk
of the fission-fragment spins. Our work here will examine
microscopically and in closer detail what had been previously
proposed and discussed in general terms in Refs. [4,27].
The central result is that in most cases, the bulk of the
fission-fragment spins is due to quantal fluctuations rather
than to thermal fluctuations. In fact, there is more to angular
momentum than a mere rotation of a spatial distribution of
matter, as experienced in so-called magnetic rotations [43] or
intrinsic vortical modes [44], for instance. Here, we make
use of the Heisenberg uncertainty principle as applied to
systems whose orientation is somewhat fixed. Since some
angular information is known, one gets a quantal distribution
of the canonically conjugated variable, hence a finite average

angular momentum. It is in that sense that one may say that
the orientation “pumps” angular momentum [4].

Let us elaborate briefly on the general meaning of this
mechanism. In the quantum mechanics of rotationally invariant
systems, it is a well known fact that the spatial distribution
of physical states may be viewed (see Ref. [45]) as a
weighted average of intrinsic states which may correspond
to a deformed distribution of matter. This is no longer the
case in spatially polarized systems (e.g., a nucleus embedded
in a crystalline site where an electrical quadrupole field is
present). There, the physical states are deformed and do
correspond to a combination of states which have definite
angular momenta. This situation is encountered precisely in
our Hartree-Fock-BCS calculations under constraint on the
quadrupole moment. When describing, e.g., nuclear equi-
librium deformation properties, the resulting wave functions
cannot stand as physical approximations of the ground states.
For even-even nuclei, for instance, one may think of projecting
a 0+ component out of them. But in polarized systems, on
the contrary, the intrinsic states may be arguably thought of
as representing physical states. In the present context, near
scission, we picture, by mere assumption, the two nascent or
just separated fragments as aligned, without dwelling too much
here on the mechanism to achieve that, and we claim that our
calculated Hartree-Fock-BCS wave functions are reasonable
approximations of the fragment wave functions.

The mechanism of orientation pumping may be illustrated
in the model case example of a quantum rotor embedded in a
polarizing field whose Hamiltonian is written as [46]

H = − h̄2

2µ

1

sin θ

d

dθ

(
sin θ

d

dθ

)
+ C

2
sin2θ, (4)

where µ and C denote the inertia and rigidity parameters,
respectively. When the polarizing field is strong (C � 1 in
units of h̄2/µ), we reach the small angle limit in which H takes
the form

H ≈ − h̄2

2µ

1

θ

d

dθ

(
θ

d

dθ

)
+ C

2
θ2. (5)

As derived in Appendix A, the corresponding ground-state
wave function 	0 is exactly given by

	0(θ ) = N0 e
− θ2

2θ2
0 . (6)

where θ0 is written, in terms of the inertia and rigidity
parameters, as

θ0 =
√

h̄(µC)−1/4, (7)

and N0 is a normalization factor. Since C � 1, we have
θ0 � 1. We may then expand 	0(θ ) onto good angular-
momentum wave functions Y 0


 (θ ) (spherical harmonics) taking
into account the axial symmetry of 	0 as

	0(θ ) =
∞∑


=0

a
Y
0

 (θ ). (8)
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It is found (see Appendix A) that the expansion coefficients a


take the form, in the limit θ0 � 1,

a
 ≈ θ0

√
2
 + 1 e− θ2

0
2 
(
+1). (9)

This yields a finite expectation value of the square of the

angular-momentum operator L̂
2

〈	0|L̂2|	0〉 ≈ 1

θ2
0

, (10)

hence the large average value 
̄ ≈ 1/θ0. This is an example
of angular-momentum pumping for such a system constrained
to move in a restricted angular domain. Note that our one-
dimensional orientation-pumping model Hamiltonian (5) is a
special case of a quantum rotor for which we consider the
lowest mode having m = 0 (see Appendix A).

Let us come back now to our fission context. We assume that
the wave function � of a scission configuration, defined in the
next section, is reasonably well described as a product of two
separated wave functions, typically as two BCS wave functions
�i (i = 1, 2). To obtain the angular-momentum value arising
from the orientation pumping alone, we discard any other
source of fragment angular momentum. We therefore consider
the case of spontaneous fission of an even-even nucleus in
two fragments whose relative orbital momentum is vanishing.
The relative motion of the two fragments is thus in an s state,
noted �rel. Since the most probable fragments formed in the
fission of actinides have axially symmetric shapes in their
ground states, the whole system—hence each fragment—is
assumed to possess axial symmetry with the symmetry axis
aligned in the fission direction. Upon projecting �i on good
angular-momentum (I,M) states denoted by 	i(I,M), with
expansion coefficients a

(i)
I ,

�i(Mi) =
∑

I

a
(i)
I 	i(I,Mi), (11)

and coupling them to a total zero angular momentum (con-
served throughout the spontaneous-fission process), we obtain
[4]

� = δM1,−M2�rel

∑
I,M

(−1)M1+M

2I + 1
a

(1)
I a

(2)
I

×	1(I,M)	2(I,−M). (12)

The expectation value 〈Ĵ2
i 〉 of the square of the angular

momentum operator of each fragment Ĵ
2
i in the global state

� is then given by

〈
Ĵ

2
i

〉
= 〈�|Ĵ2

i |�〉
〈�|�〉 = 〈J 2〉, (13)

where

〈J 2〉 =
∑

I

I (I+1)
2I+1

∣∣∣a(1)
I

∣∣∣2 ∣∣∣a(1)
I

∣∣∣2

∑
I

1
2I+1

∣∣∣a(1)
I

∣∣∣2 ∣∣∣a(1)
I

∣∣∣2 . (14)

As expected for angular-momentum conservation reasons, 〈Ĵ2
i 〉

is independent of i. This is an exact orientation-pumping result
for the fission-fragment spins. In passing, it may be noted that
contrary to an erroneous statement in Ref. [34], the treatment
of Ref. [4] deals with states that are clearly eigenstates of
the angular momentum, since they result from the explicit
application of a projector on a global zero-spin state [see
Eq. (1) of Ref. [4]]. Nevertheless, a caveat should be made
here. When we refer to “exact” calculations, we mean as far as
the treatment of the various angular-momentum components
of the fragment wave functions are concerned. However, in
the case of strong shape fluctuations (such as soft vibrations
around some minimum, in particular, of a spherical shape),
this treatment would clearly break down.

With the restriction to the case of no shape fluctuations,
going any further with such a general formalism would require
us to perform the above-mentioned projection calculations,
which is beyond the scope of the present work. Therefore, we
resort to using an approximation for the expansion coefficients
a

(i)
I . More precisely, we assume that both fragments are rigidly

deformed and approximate a
(i)
I by the expression given in

Eq. (9) for a strongly constrained quantum rotor. In doing so,
we interpret from Eq. (10) the θ2

0 parameter as the inverse of the

intrinsic expectation value 〈J 2
i 〉intr of the Ĵ

2
i operator evaluated

for the wave function �i of the fragment i. Therefore, we have

∣∣∣a(i)
I

∣∣∣2
= 2(2I + 1)〈

J 2
i

〉
intr

exp

(
−I (I + 1)〈

J 2
i

〉
intr

)
. (15)

Finally, in the large quantum number limit reached when
〈J 2

i 〉intr � 1, Eq. (14) becomes

〈J 2〉 =
(

1〈
J 2

1

〉
intr

+ 1〈
J 2

2

〉
intr

)−1

. (16)

As a result, if one fragment is spherical, then Eq. (16) yields
vanishing fragment spins. However, we clearly reach then the
limits of application of the so-called exact orientation-pumping
description.

To conclude this section, let us clearly point out the various
levels of assumptions that may be considered in an orientation-
pumping theoretical framework.

First, we assume that the system at scission may be
represented by a wave function, in other words that we still
deal with a pure case (no temperature). Then we proceed by
prescribing the separability of the total wave function in three
parts |�〉 = |�1〉⊗|�2〉⊗|�rel〉, where |�i〉 denotes the wave
function of the fragment i and |�rel〉 describes the relative
motion.

Then we may further assume that there is no relative angular
momentum and that the fragment wave functions may be
approximated by BCS vacuum wave functions. This excludes
at this stage any shape fluctuations (vibrations, configuration
mixing, etc.), the description of quasiparticle excitations,
hence most of the isomers which are seen in actual fission,
and the effects resulting from nonvanishing relative angular
motion. From angular-momentum conservation arguments, the
two latter points are in fact connected.
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The last level of approximation is actually the one at
which we stand in this paper. We perform an approximate
projection assuming a pure-rotor character of the projected
energies together with less restrictive side assumptions. With-
out specific modifications, this clearly excludes any possibility
of providing a fair description of fragments that are spherical
in their ground states.

Consequently, in the limits of this paper, we can only treat
even-even fragmentations where the fragments are somewhat
rigidly deformed and not in quasiparticle isomeric states. Of
course, to compare our results with existing data, we will
have to compromise the rigid-deformation condition to deal
here with fragmentation in the 252Cf spontaneous fission for
which experimental data are available. Any failure in a fair
description of the data could not be necessarily attributed to the
orientation pumping itself, which after all follows from basic
laws of quantum mechanics for spatially polarized objects, but
to any of the above-listed approximations.

V. SCISSION CONFIGURATIONS

Whatever model is used to evaluate the fission-fragment
angular momenta, one has to define the scission configuration.
This is the subject of this section.

A. Definition of scission

In the course of a fission process, we may single out
the particular time at which the nuclear density in the neck
region between the nascent fragments may be considered as
vanishing. In an independent-particle approximation or for
a correlated system considering the canonical basis states
(diagonalizing the one-body density matrix ρ̂), after such a
time we would ideally expect that the wave function of any
nucleon spreads over only one fragment. Therefore, after this
event of separation, a given nucleon should then belong to
only one fragment, and the dynamics of nucleons in one
of the fragments F1 become independent of their nuclear
interactions with nucleons in the other fragment F2. The
dynamics of nucleons in F1 would be therefore governed only
by the internal interactions and the external Coulomb potential
created by F2 and decreasing with time. This particular point
in the fission process is called the scission point.

In practice, however, in Hartree-Fock, Hartree-Fock-BCS,
or Hartree-Fock-Bogoliubov (HFB) calculations, the individ-
ual wave functions are well defined, but there is of course
no guarantee that they will belong totally to either fragment,
whose particle numbers, moreover, are merely defined by
constraining the relevant expectation values. Nevertheless,
the one-body density function ρ(r), i.e., the diagonal matrix
element in r of ρ̂, is well defined as a whole, and its separation
into two pieces corresponding to the fission fragments may
be judged from purely geometrical arguments. This is actually
one of the criteria that Goutte and collaborators retained to
define scission in their HFB calculations [36].

Instead, we choose to rely on a dynamical criterion.
Assuming that we are able to define nascent or separated
fragments, we should try to analyze the forces acting between

the two fragments. To this end, in a fashion suited to
the quantal character of the problem, we must consider an
average over the many nucleon-nucleon interactions. Within
an approximate many-body treatment, we may evaluate the
potential-energy surface from an effective nucleon-nucleon
interaction for a relevant set of collective dynamical variables.
In a simple version of that program, we may rather use a
phenomenological interaction potential, such as the Yukawa-
plus-exponential (YPE) potential proposed by Krappe, Nix,
and Sierk [47]. From the knowledge of this potential energy, we
might derive forces upon taking their derivatives with respect
to a collective deformation variable that varies in time much
slower than the other variables. A natural scission criterion
would then be expressed in terms of the ratio of the resulting
nuclear FN and Coulomb FC forces as

|FN |
|FC | = η, (17)

where |F| denotes the norm of the vector F and η takes a
small value considered as a free parameter. However, a clear
separation of the time scales involved in the motion is far
from being guaranteed a priori. In view of this and to handle
a simple determination of the scission point, we replace the
forces in the above ratio with the corresponding nuclear EN

and Coulomb EC interaction energies:

∣∣∣∣EN

EC

∣∣∣∣ = η. (18)

With this prescription, the scission point occurs whenever the
above ratio becomes lower than a critical value of the constant
η. Here η should be regarded as a model parameter of which the
lack of prediction reflects the elusive character of the scission
concept.

B. Semimicroscopic description of scission configurations

We now come to the description of the configurations of
a fissioning nucleus at scission. Since we are interested in
spontaneous fission, the initial state of this nucleus is its
ground state, with energy EGS. Assuming that this nucleus
is an isolated system undergoing fission by tunneling, its total
energy Etot is conserved.

After tunneling through the fission barrier, the nucleus
appears at points called here exit points exhibiting configu-
rations with a highly pronounced neck. We consider that a
fissioning nucleus can only reach scission configurations that
lie beyond (with respect to a global elongation variable) the
exit points and, of course, whose energies are less than or equal
to the ground-state energy. To the scission criterion given by
Eq. (18), we therefore have to add the following condition:

Esc � EGS, (19)

where Esc denotes the scission-configuration energy. The
scission configurations obeying the relations (18) and (19)
correspond to well-separated fragments. We are thus able to
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decompose the energy of the whole system at scission as

Esc = EC + EN +
2∑

i=1

E
(sc)
i . (20)

In the last term of Eq. (20), E
(sc)
i represents the self-energy

of the nucleons belonging to the partner i of the scission
configuration.

In all microscopic studies of potential-energy surfaces, the
potential part of Hamiltonian Ĥ of the fissioning nucleus is
taken as an effective phenomenological two-body interaction
(usually of Skyrme or Gogny type). Although the expectation
value of Ĥ can in principle be calculated at any point of the
energy surface, it is difficult to extract the four contributions
of the right-hand side of Eq. (20) because this requires one to
disentangle the self-energies E

(sc)
i and the interaction energies

EN and EC . This is quite difficult and partly ambiguous a priori
because the Hamiltonian, as a whole, is a nonlocal operator.
Furthermore, to compute the fragment self-energies, one
has to unfold the local densities entering the energy-density
functional into sums of two sets of densities localized each
fragment (with some overlap in the neck). This has been done
in the case of two spherical nuclei with the Skyrme interaction
by Pomorski and Dietrich [48], who showed that the resulting
interaction potential is similar to the YPE potential. For that
reason and because we do not expect that the conclusions
drawn from the final results should significantly depend on
the refinement in the calculation of EN , we have decided in
the present exploratory study to follow a semimicroscopic
approach.

We describe a scission configuration as two axially sym-
metric fragments with a common symmetry axis and neglect
the mutual Coulomb polarization effect on each fragment.
Since the ground-state shapes of the considered nuclei (in
the mass region A ≈ 110 to A ≈ 140) do not exhibit any
energetically significant octupole distortions [49], we further
assume left-right reflection symmetry for each of them. In
this context, a scission configuration may thus be reasonably
well characterized by three shape degrees of freedom: the
center-of-mass distance Dc.m. and the elongation of each
fragment, expressed as the axial quadrupole moment Q(i)

20 given
by

Q
(i)
20 =

∫
Fi

d3rρ(r)(2z2 − x2 − y2). (21)

In the above expression ρ(r) denotes the total nuclear density
(neutron and proton contributions), and the integration is
performed over the nuclear volume of fragment Fi . The
fragment energy Ei is therefore assumed to depend only
on Q

(i)
20 and is calculated separately for each fragment in

the Skyrme-Hartree-Fock-BCS approach previously applied to
studies involving very large deformations [50–52]. As for the
nuclear interaction energy between the two fragments, it has
been approximated by its value taken for equivalent coaxial
spheroids using the YPE potential (with the parameters of
Ref. [53]). By “equivalent spheroids” we mean those having
the same elongation Q

(i)
20 and root-mean-square radii R(i)

r.m.s
as the actual fragments. Similarly, the Coulomb interaction

energy has been calculated for the equivalent spheroids using
the exact analytical expression of Ref. [54] (see Appendix
B). Given the scission conditions (18) and (19), the center-
of-mass distance can be considered as a function of Q

(1)
20

and Q
(2)
20 . The space of scission configurations is therefore

two-dimensional and restricted to certain regions, because the
condition expressed in Eq. (19) limits the variations of Q

(1)
20

and Q
(2)
20 .

Finally, it is worth mentioning that the above modeling of
scission configurations is formally similar to the one sketched
in Ref. [55]. An important difference, however, lies in the way
Dc.m. is treated (or equivalently, the tip distance d). In the
present model, the condition in Eq. (18) leads to a distribution
of Dc.m. values, hence a distribution of tip distances, whereas
the work of Ref. [55] considered a fixed d value.

VI. PUMPING OF FISSION-FRAGMENT ANGULAR
MOMENTUM AS A FUNCTION OF FRAGMENT

TOTAL EXCITATION ENERGY

In the above-described orientation-pumping mechanism,
both fragments have the same spin Jf defined by

Jf (Jf + 1) = 〈J 2〉, (22)

where 〈J 2〉 is calculated within the approximation of
Eq. (16). As mentioned in the previous section, we neglect the
polarization effect on each fragment, so we use the BCS wave
function of the isolated nucleus i to compute the expectation

value of the Ĵ
2

operator and obtain 〈J 2〉(i)
intr as a function of

Q
(i)
20.
To calculate Jf as a function of the fragment total excitation

energy (TXE), we need to establish the expression of TXE in
terms of known quantities. For this purpose, we recall that we
deal here with the spontaneous fission of an isolated nucleus
initially in its ground state. We can express its conserved
energy Etot at three different stages of the fission process:

(i) In the initial state, the fissioning nucleus energy is
simply

Etot = EGS. (23)

(ii) At scission, we have

Etot = Esc + Efree, (24)

which defines the available energy at scission, called
“free energy” in Ref. [40] and noted here Efree

(iii) At the end of the acceleration phase of the primary frag-
ments (assuming thus no prescission or near-scission
neutron emission), Etot takes the form

Etot = Q +
2∑

i=1

E
(GS)
i , (25)

where Q is the energy released by the fission reaction
and E

(GS)
i the ground-state energy of the fragment i.
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Defining the fragment deformation energy E
(i)
def at scission

with respect to its ground-state value by

E
(i)
def = E

(sc)
i − E

(GS)
i (26)

and using the fact that the nuclear interaction energy EN is
negligible according to the scission criterion of Eq. (18), we
can write the energy released by the fission reaction in the
following two different ways:

Q = EC + Efree +
2∑

i=1

E
(i)
def (27)

or

Q = TKE + TXE, (28)

where TKE denotes the total kinetic energy of the fission
fragments.

The available energy at scission Efree is assumed to be
shared between a collective kinetic component EK and an
intrinsic excitation component Eintr. The kinetic contribution
is the so-called prescission kinetic energy acquired by the
fragments during their descent from saddle to scission. The
intrinsic excitation contribution is an energy shared among
the noncollective degrees of freedom. It results from the
dissipation of part of the gain of potential energy (Efree) during
the descent from saddle to scission. We can thus write

Efree = EK + Eintr. (29)

From Eqs. (27) and (28), it is clear that the expressions of
TKE and TXE in terms of EC,E

(i)
def, and Efree are not uniquely

determined. The physical reason for this is the existence
of a distribution for TKE and TXE even when Q is fixed.
Here, we assume that the Coulomb interaction energy is
totally converted into kinetic energy and that the fragment
deformation energies contribute only to TXE. As for the
two components of Efree, they are shared according to their
definition; hence we obtain the following expressions for TKE
and TXE:

TKE = EC + EK, (30)

TXE =
2∑

i=1

E
(i)
def + Eintr. (31)

To describe the splitting of Efree according to Eq. (29), we
introduce a parameter f defined by EK = fEfree, so the
expressions of TKE and TXE finally read

TKE = EC + fEfree, (32)

TXE =
2∑

i=1

E
(i)
def + (1 − f )Efree. (33)

Out of the three-dimensional (3D) collective space
(Dc.m.,Q

(1)
20 ,Q

(2)
20 ), upon defining the scission configurations

associated with a given TXE value by Eqs. (18) and (33), we
define a subspace of dimension 1 comprised of an infinite
number of such configurations. In general, this subspace forms
in the 3D space a skew curve (as opposed to a plane curve)

CTXE, which can be parametrized by a curvilinear abscissa s

as explained in Appendix C. However, as will be discussed in
Sec. VII B, the surface representing the function
Dc.m.(Q

(1)
20 ,Q

(2)
20 ) appears to be single valued, very smooth,

and as a matter of fact rather well approximated by a plane in
the region of interest. This is why we will represent, in the
following, the curve CTXE by its projection on the (Q(1)

20 ,Q
(2)
20 )

plane and, accordingly, discuss the variations of TXE at
scission as a function of Q

(1)
20 and Q

(2)
20 .

To define specifically the curvilinear abscissa s, we need
to redefine our choice of collective variables so as to ensure
their consistency (same units, comparable range of variations).
More importantly, we need to choose a metric in the resulting
3D space. Without undertaking definite mechanical studies
implying the relevant potential energy and inertia parameters,
it is impossible to avoid making rather arbitrary choices for
both the definition of the collective variables and the associated
metric. The three collective variables which we consider are
the three components of the total quadrupole moment Q

(tot)
20 ,

namely, Q
(1)
20 ,Q

(2)
20 , and QD , where the latter is defined by

QD = Q
(tot)
20 − Q

(1)
20 − Q

(2)
20 = 2A1A2

A1 + A2
D2

c.m.. (34)

In Eq. (34), Ai denotes the nucleon number of fragment i.
As for the metric, we find it appropriate not to single out one
dynamical variable over the others and thus adopt the Cartesian
metric

ds2 = (
dQ(1)

20

)2 + (
dQ(2)

20

)2 + (dQD)2. (35)

The practical issues related to the calculation of the curvilinear
abscissa s are detailed in Appendix C.

The distribution over the scission configurations should
result from a relevant quantal calculation for the collective
dynamics. To mock it up in this exploratory study, we assume
a weight of the form

w = e−Esc/�. (36)

It is important to note that even though the simulation of
the spreading among scission configurations seems to refer
to the approach of Wilkins and collaborators [56], it is
different in spirit, because we have invoked here not a thermal
distribution but rather a purely quantal fluctuation. The latter
yields a Gaussian distribution in the curvilinear abscissa s

when, at a given TXE, Esc varies quadratically with s around
its minimum. However, this clearly holds only when the
collective-energy parameter � is smaller than or comparable to
the maximum energy range (over its local equilibrium value)
in which a harmonic approximation is substantiated. In the
physical situations discussed below, this will not be always
the case as discussed in the next sections together with an
assessment of a suitable range for the numerical values of �.

The above-defined probability distribution enables us to
average Jf over the solutions of Eqs. (18), (24), and (33) for
a fixed TXE value by a curvilinear integration on the contour
CTXE

Jf = 1

N

∫
CTXE

dsJf

(
Q

(1)
20 (s),Q(2)

20 (s)
)
w(s), (37)
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with the normalization factor N

N =
∫
CTXE

ds w(s). (38)

In practice, as discussed in Appendix C, we discretized the
(Q(1)

20 ,Q
(2)
20 ) space and checked that the final results are not

significantly sensitive to the mesh size.

VII. RESULTS AND DISCUSSION

As mentioned earlier, the main objective of this study
is to calculate the average fragment spin Jf as a function
of the fragment total excitation energy TXE. In the process
of constructing this curve, we start with a presentation of
the different ingredients that contribute to it, so as to help
understand the final result.
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FIG. 5. Contour maps of TXE
at scission from 0 to 35 MeV
for 106Mo+146Ba scission config-
urations obtained with the YPE
nuclear potential for two different
η values and three different values
of f . Dots indicate the location on
each level contour of the scission
configuration having the lowest
value of the potential energy Esc

defined by Eq. (20).

A. Hartree-Fock calculations of fragment properties

As already discussed, we retain here the 106Mo+146Ba
fragmentation. In the following, the index or superscript i = 1
denotes the light fragment (106Mo), whereas i = 2 corresponds
to the heavy fragment (146Ba). We start by computing the
deformation energy curves for both fragments within the
constrained Hartree-Fock-BCS approach. As in Ref. [50], we
use the Skyrme SkM∗ effective interaction in the mean-field
channel and the seniority force in the pairing channel. The
strength of the seniority force has been adjusted for neutrons
and protons so as to reproduce the experimental odd-even
mass differences (see, e.g., Ref. [57] for a discussion of such
a determination). In view of the arguments of Ref. [58], a
three-point formula is used for each charge state q and each

fragment i. The pairing matrix elements V (i)
q are given in

terms of the constants G(i)
q entering the description of pairing

correlations by

V (i)
q = G(i)

q

11 + N
(i)
q

, (39)

where N (i)
q denotes the number of particles of type q in

the fragment i. The corresponding values of G(i)
q obtained

here for 106Mo and 146Ba are given in Table I for an active
pairing window comprised of all levels up to 6 MeV above
the chemical potential. In addition, according to the method
and notations of Ref. [59], a smooth cutoff with a diffuseness
parameter µ = 0.2 MeV was used.
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TABLE I. Neutron (Gn) and proton (Gp)
pairing strengths of 106Mo and 146Ba used in
Eq. (39) to calculate the pairing matrix elements
and adjusted to the experimental odd-even mass
difference from a three-point formula.

Nucleus Gn (MeV) Gp (MeV)

106Mo 16.2 15.6
146Ba 14.3 16.2

We expand our single-particle states in a cylindrical
harmonic-oscillator basis that includes 17 major shells. This
basis size is large enough to ensure that the deformation
energy depends weakly on the basis parameters b and q (with
the notation of Ref. [60]). An approximate optimization of
b and q, according to the method proposed in Ref. [60], is
therefore appropriate, all the more so because the nuclear
shapes depart moderately from spheroids in the deformation
range considered here. The obtained potential energy of

deformation, calculated with respect to the ground-state value
(corresponding to the lowest minimum) and upon assuming
axially symmetric shapes, is represented in Fig. 1 for 106Mo
and 146Ba as a function of the axial quadrupole moment
Q20.

The deformation-energy curves of the two nuclei exhibit
different patterns. The lighter nucleus has two local min-
ima at finite deformations, one oblate and one prolate, the
latter being the lowest. The ground-state deformation of
106Mo is therefore prolate, with Q20 ≈ 10 b. In contrast,
the deformation-energy curve of 146Ba merely exhibits a
shallow, prolate minimum. Consequently, we may conclude
that the retained fragmentation does not fully meet the
rigidly deformed requirement which would allow us to apply
Eq. (16) near the fragment equilibrium deformations. As stated
already, we have to compromise the validity range of our
present simple formula Eq. (16) with the existence of relevant
data.

For each deformation point actually calculated along the
deformation-energy curves, we also calculate the expectation

value of the Ĵ
2

operator in the associated BCS state |	i〉

 140

 160

 180

 200

 220

 240

 0  10  20  30  40  50  60

S
ci

ss
io

n-
co

nf
ig

ur
at

io
n 

en
er

gy
 E

sc
 (

M
eV

)

Curvilinear abscissa s (b)

η=0.1%   f=0.0

5
7
9
11
13
15

 140

 160

 180

 200

 220

 240

 0  10  20  30  40  50  60

S
ci

ss
io

n-
co

nf
ig

ur
at

io
n 

en
er

gy
 E

sc
 (

M
eV

)

Curvilinear abscissa s (b)

η=0.5%   f=0.0

3
5
7
9
11
13

 140

 160

 180

 200

 220

 240

 0  10  20  30  40  50  60  70

S
ci

ss
io

n-
co

nf
ig

ur
at

io
n 

en
er

gy
 E

sc
 (

M
eV

)

Curvilinear abscissa s (b)

η=0.1%   f=0.5

5
7
9
11
13
15

 140

 160

 180

 200

 220

 240

 0  10  20  30  40  50  60

S
ci

ss
io

n-
co

nf
ig

ur
at

io
n 

en
er

gy
 E

sc
 (

M
eV

)

Curvilinear abscissa s (b)

η=0.5%   f=0.5

3
5
7
9
11
13

 140

 160

 180

 200

 220

 240

 0  20  40  60  80  100  120

S
ci

ss
io

n-
co

nf
ig

ur
at

io
n 

en
er

gy
 E

sc
 (

M
eV

)

Curvilinear abscissa s (b)

η=0.1%   f=1.0

1
3
5
7
9
11

 140

 160

 180

 200

 220

 240

 0  10  20  30  40  50  60  70  80  90

S
ci

ss
io

n-
co

nf
ig

ur
at

io
n 

en
er

gy
 E

sc
 (

M
eV

)

Curvilinear abscissa s (b)

η=0.5%   f=1.0

1
3
5
7
9
11

FIG. 6. Variation of the
scission-configuration energy Esc

along the various TXE contours
(whose values are indicated in
MeV in the legend) for the six
combinations of η and f values.
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FIG. 7. Same as Fig. 6, but for the quadrupole moment of the light fragment Q
(1)
20 .

(normalized to unity) as in Ref. [61], that is,

〈J 2〉(i)
intr = 〈	i |Ĵ2|	i〉

= 2
∑

k

′
〈k|ĵ2 − ĵ

2
z |k〉v2

k

− 2
∑
k,l

′
|〈kĵ+|l〉|2(v2

kv
2
l + ukvkulvl

)
−

∑
k,l

′′|〈k|ĵ+|l〉|2(v2
kv

2
l + ukvkulvl

)
, (40)

where |k〉, |l〉 are single-particle states, |k〉, |l〉 are their time-
reversed respective partners, and vk, uk the associated BCS
factors with the usual notations. The sums

∑′
in Eq. (40) run

over the single-particle states having a positive eigenvalue �

of ĵ z, whereas the sum
∑′′

involves only the states having
� = 1/2. The variation of 〈J 2〉intr with Q20 is shown in Fig. 2
for both fragments.

As expected, 〈J 2〉intr increases as the fragments deform.
Note that it varies almost quadratically with |Q(i)

20| around 0.

B. Variation of scission properties along TXE contours

For a given scission configuration, the fission-fragment
spin Jf is computed from Eqs. (22) and (16). It is therefore
a function of the fragment deformations Q

(1)
20 and Q

(2)
20 . The

level contours of Jf in the (Q(1)
20 ,Q

(2)
20 ) plane are displayed in

Fig. 3.
As expected, Jf vanishes along the Q

(1)
20 and Q

(2)
20 axes.

Indeed, when at least one nucleus is spherical, the correspond-
ing intrinsic expectation value 〈J 2〉intr vanishes and so does
〈J 2〉 from Eq. (16), hence Jf = 0 from Eq. (22). Moreover,
the approximate quadratic variation of 〈J 2〉intr with Q

(i)
20 noted

earlier explains the 1/(Q(1)
20 )2 behavior of the level contours

observed in Fig. 3, especially close to the origin.
As discussed in Sec. VI, the calculation of Jf as a function

of TXE requires one to average Jf over an infinite number
of scission configurations with the probability distribution w

given by Eq. (36). In the rest of this subsection, we present
the variation of relevant fragment properties along the TXE
contours CTXE.

In principle, we should consider these contours in the
3D space spanned by Q

(1)
20 ,Q

(2)
20 , and Dc.m.. However, a
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FIG. 8. Same as Fig. 6, but for the quadrupole moment of the heavy fragment Q
(2)
20 .

two-dimensional (2D) representation turns out to be sufficient
here. Indeed, from the scission condition given by Eq. (18),
we can express Dc.m. as a function of the fragment quadrupole
moments, and as can be seen in Fig. 4, the contours of constant
values of Dc.m. as a function of the fragment deformations
are almost straight lines parallel to each other. The surface
representing the function Dc.m.(Q

(1)
20 ,Q

(2)
20 ) is therefore approx-

imately a plane, especially in the ranges Q
(1)
20 � −10 and

Q
(2)
20 � −20 b, which happen to correspond to the relevant

regions of scission configurations (see next paragraph). We
can therefore discuss the features of any contour CTXE and the
variation of quantities along this contour from the projection
of CTXE on the (Q(1)

20 ,Q
(2)
20 ) plane.

The pattern of the TXE contours in the (Q(1)
20 ,Q

(2)
20 )

plane explicitly depends on the actual values of η (ratio of
nuclear and Coulomb interaction energies) and f (fraction of
available energy at scission that goes into fragment kinetic
energy). In this study, we retain two values of η based on
the following qualitative arguments. On the one hand, the
scission configurations selected by Eq. (18) must be such that

the particle transfer between both fragments ceased, which
corresponds to a vanishing neck radius. This imposes an upper
limit on η. On the other hand, given the uncertainties on the
Coulomb and nuclear interaction energies approximated as
mentioned above, it is safer to discard η values leading to very
small nuclear interaction energies (below, say, 0.5 MeV or so).
We therefore retain the values 0.1% and 0.5% for η. As for f ,
we choose three values: the lower limit 0, the upper limit 1,
and an intermediate value 0.5.

For the six combinations of η and f values, the lines of
constant total excitation energy in the (Q(1)

20 ,Q
(2)
20 ) plane are

displayed in Fig. 5. We first notice a strong similarity between
the contour diagrams for the same value of f and different
values of η. This can be explained as follows. From Eq. (33),
upon using Eq. (27) valid for small values of η, like the ones
considered here, we deduce that

TXE = f

2∑
i=1

E
(i)
def

(
Q

(i)
20

) + (1 − f )
[
Q − EC

(
Q

(1)
20 ,

Q
(2)
20 ,Dc.m.

(
Q

(1)
20 ,Q

(2)
20

))]
, (41)
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FIG. 9. Same as Fig. 6, but for the available energy at scission Efree.

where Dc.m. varies slowly with η for fixed values of Q
(i)
20. Thus

the contour diagram of TXE at a given value of f depends
very little on η. The only visible pattern difference between
contours in the left and right columns of Fig. 5 corresponding
to the same f value is the deformation region covered by the
scission configurations that Eq. (19) allows. To this difference
should be added a shift in the values of TXE labeling the level
contours, coming from a shift in EC weakly dependent on
the fragment deformations and induced by the difference in η

values. This argument becomes exact when f = 1, since in
that case, the total excitation energy of the fragments reduces
to the sum of their deformation energies. In contrast, TXE
strongly depends on f and varies from E

(1)
def +E

(2)
def for f = 1 to

E
(1)
def +E

(2)
def +Efree for f = 0. In the latter case, we can actually

write TXE as Q − EC , the nuclear interaction energy being
neglected. Therefore, the total excitation energy is simply the
opposite of the Coulomb interaction energy, up to a constant,
which is the Q value of the spontaneous-fission reaction.

Finally, it is important to notice that some of the TXE
contours are incomplete for two reasons. On the one hand the
ends of the contours closer to the bottom left corner of the

(Q(1)
20 ,Q

(2)
20 ) box form a line separating the “excluded region,”

where no scission configurations are found, from the “scission
region.” On the other hand, some contours are interrupted
because of the upper limits of the light- and heavy-fragment
deformation ranges.

Our aim is to yield the variation of Jf as a function
of TXE, thus combining the information given in Figs. 3
and 5. Considering one particular value of TXE means that
we consider all points on an iso-TXE curve (as the curves
corresponding to given values of TXE, η, and f in Fig. 5).
Of course, all the points on such a curve are not on an equal
footing.

For any such point, the energy at scission Esc given by
Eq. (20) defines the probability of reaching this point during
the fission process. As stated at the end of the previous section,
we mock up the distribution of quantal shape fluctuations by
a Gaussian law in the single effective deformation variable s

of Eq. (35), which is a sound approximation only in the case
of a single well-defined minimum of Esc. In many instances,
this is hardly the case, as exemplified in Fig. 6, giving Esc as
a function of s for various η, f, and TXE values.
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FIG. 10. Same as Fig. 6, but for the expectation value of Ĵ
2

of the light fragment 〈J 2
1 〉intr.

The width of this distribution is assumed to be fixed
once and for all. The maximum of the probability (or the
minimum of Esc) is noted on the iso-TXE curves by a dot.
For f �= 0, above some critical value of TXE, the retained
2D deformation space is not large enough to accommodate
very large prolate deformations of the heavy fragment which
would be needed to reach the minimum of Esc. As a result,
in these cases, we omit the corresponding high values of TXE
in the discussion of the results on the fission-fragment spins
below.

Table II gives the maximal value of TXE for which the
corresponding contour CTXE is considered as complete, i.e.,
for which the ends are “physical” or for which the above
probability distribution at the ends is so small that the integral
of Eq. (37) is not affected by the missing part of CTXE.

Let us now discuss the location in the (Q(1)
20 ,Q

(2)
20 ) plane

of the most probable scission configuration (indicated by a
dot) as a function of TXE for the different values of η and f .
To do so we note that, using Eq. (41) and neglecting EN in
Eq. (20), the scission-configuration energy Esc for a fixed TXE
value varies with the curvilinear abscissa s along the iso-TXE

contour as

Esc(s) =




1

1 − f

2∑
i=1

E
(i)
def

(
Q

(i)
20(s)

) + EGS − TXE

1 − f
if f �=1,

EC

(
Q

(1)
20 (s), Q

(2)
20 (s),Dc.m.(s)

)
+ TXE +

2∑
i=1

E
(GS)
i

(
Q

(i)
20(s)

)
if f =1.

(42)

TABLE II. Maximal value of TXE (in MeV)
for which the contour CTXE is considered as
complete, for the six combinations of η and f

values.

TXEmax

f = 0 f = 0.5 f = 1
η = 0.1% 35 29 17

η = 0.5% 23 23 17
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FIG. 11. Same as Fig. 10, but for the heavy fragment.

When f �= 1, the most probable scission configuration
therefore corresponds to the value of s that minimizes the
total fragment deformation energy within the respective ranges
Q1(TXE) and Q2(TXE) of Q

(1)
20 and Q

(2)
20 that generate the

iso-TXE contour. For given η, f, and TXE values, let us denote
the abscissa of the minimum of Esc(s) by s0, as exhibited in
Fig. 6. The coordinates in the (Q(1)

20 ,Q
(2)
20 ) plane of the

dot marking the most probable scission configuration on
the corresponding TXE contour are therefore Q

(1)
20 (s0) and

Q
(2)
20 (s0) and can be read in Figs. 7 and 8 representing

the variations of the light- and heavy-fragment quadrupole
moments, respectively, as functions of s for the six pairs of η

and f values.
A striking feature of the variation of the dot locations in the

(Q(1)
20 ,Q

(2)
20 ) plane is a sudden jump from Q

(1)
20 ≈ −5,Q

(2)
20 ≈

11 b to Q
(1)
20 ≈ 8,Q

(2)
20 ≈ −5 b for η = 0.1% and f �= 1.

This is explained by the transition from the low-s minimum
corresponding to an oblate light fragment and prolate heavy
fragment to the deeper, large-s minimum corresponding to
the opposite situation (see Figs. 7 and 8). The reason for
this behavior is to be found in the softness of the heavy

fragment and the existence of two local minima along the
light-fragment deformation-energy curve. To illustrate this,
let us take the example of the contour map obtained with
η = 0.1% and f = 0.5 (middle panel of the left column of
Fig. 5). The deformation energy of the heavy fragment
E

(2)
def varies slowly in the ranges Q2(TXE) associated with

TXE values lower than about 10 MeV. Therefore, the
location of the most probable scission configuration is
virtually only determined by the light-fragment deforma-
tion Q

(1)
20 that minimizes E

(1)
def in the range Q1(TXE).

For TXE � 10 MeV, the iso-TXE curves are confined
in a rectangle such that Q

(1)
20 <q1, where q1 ≈ 7 b

is the light-fragment quadrupole moment lying between the
two local minima of the 106Mo deformation-energy curve
(q(obl)

1 on the oblate side and q
(prol)
1 on the prolate side), and

for which the deformation energy equals that of the oblate
minimum: E

(1)
def(q1) = E

(1)
def(q

(obl)
1 ). As a result, for TXE �

10 MeV, the most probable scission configuration corresponds
to the point of CTXE whose abscissa is Q

(1)
20 = q

(obl)
1 . Between

TXE = 11 and TXE = 15 MeV, a similar situation on the
prolate side of the light-fragment deformation-energy curve
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FIG. 12. Same as Fig. 6, but for the scission configuration probability w with � = 1 MeV.

gives the same pattern for the sequence of dots on TXE
contours with an approximately constant abscissa Q

(1)
20 ≈

q
(prol)
1 . Above TXE = 16 MeV, the actual deformations

minimizing the sum E
(1)
def + E

(2)
def result from a subtle balance

between the energy costs arising from letting the fragments
depart from their lowest energy configurations among all those
allowed for the considered value of TXE.

To close this subsection, let us focus on two other properties
varying along the TXE contours, namely, the available energy
at scission Efree plotted in Fig. 9 and the angular-momentum

content (fragment expectation value of Ĵ
2
) represented in

Figs. 10 and 11 for the different values of η and f .
From Eqs. (24) and (23) we can deduce that Efree(s) is

related to Esc(s) in a very simple way;

Efree(s) = −Esc(s) + EGS. (43)

This relation reflects the meaning of Efree: the lower the
scission configuration lies with respect to the ground state
of the fissioning nucleus, the more energy is available to the
fragments, shared in kinetic energy EK or intrinsic energy
Eintr. An interesting feature of the curves of Efree(s) is the
increasing maximum value reached for successive TXE values

when f �= 1. In contrast, when f = 1, the maximum of the
curves is virtually independent of TXE. This feature, combined
with the location of the most probable scission configuration
on a given TXE contour, will be used to explain the variation
of the average available energy with TXE in the next
subsection.

As for the variations of 〈Ĵ2〉(i) with s, the patterns of
the corresponding curves differ significantly for the light

and heavy fragments. However, for both fragments, 〈Ĵ2〉(i)(s)
vanishes at the same value of Q

(i)
20 for 9 � TXE �

17 MeV when f �= 1. Moreover, the variation of 〈Ĵ2〉(2)(s) for
different TXE values does not change much when going from
f = 0 to f = 0.5 (for both values of η). In contrast, a smooth
dispersion of the curves is observed for the light fragment
when increasing f from 0 to 1: the maximum of each curve
increases with TXE more and more as f increases. Finally,

a common feature of the 〈Ĵ2〉(i)(s) curves corresponding to a
given TXE value for both fragments is that they reach higher
values when f = 1, regardless of the value of η. We therefore
expect higher average (taken over s) values of Jf for f = 1
than for f �= 1, as will be discussed in the end of the next
subsection.
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FIG. 13. Same as Fig. 12, but with � = 15 MeV.

C. Average values

Upon leaning on the scission-point properties presented
and discussed earlier, we can now focus on their average
at given values of TXE. Figures 12 and 13 display, for the
two considered values of the collective-energy parameter �

(1 and 15 MeV), the distribution in s on selected constant-TXE
contours for each pair of η and f values. For the sake of clarity,
these distributions have all been scaled so that the highest
probability is normalized to unity. Let us discuss first the results
obtained with � = 1 MeV and η = 0.1%. For f = 0, we
observe a smooth shift of the probability distributions toward
higher values of s upon increasing TXE. This reflects the
pattern of the scission-configuration energy curve Esc(s) as
a function of TXE shown in Fig. 6. In a similar way, for
f = 0.5, the sudden shift of the peak of the distribution from
low s values to larger ones when increasing TXE from 9 to
13 MeV results from the behavior of Esc. This is correlated
with a transition in the most probable configuration from an
oblate deformation of the light fragment to a prolate one, as
seen in Fig. 5. For f = 1 the same phenomenon occurs at
a much lower value of TXE (between 1 and 5 MeV). The
smoother behavior of Esc for η = 0.5, visible in Fig. 6, mirrors

itself in a smoother transition toward larger s values of the
probability distributions in Fig. 12.

As seen in Fig. 13, the probability distribution functions
obtained with � = 15 MeV are rather spread out over large
ranges of s values, with the noticeable exception of the curves
obtained with the lowest TXE value for each set of η and
f values. This exception is consistent with the fact that the
region of the (Q(1)

20 ,Q
(2)
20 ) plane available at these values of

TXE is very limited. This may be easily understood again
upon inspecting the behavior of Esc in Fig. 6. Indeed, at the
scale of a zero-point energy of the order of 1 MeV, the scission-
configuration distribution is sensitive to shallow local minima,
which is obviously not the case at an energy scale of 15 MeV.

Now, we have to decide which distribution width � is
the most appropriate to our particular problem. The key
to answering this question is related to the validity of the
Born-Oppenheimer approximation [62] which is at the root
of our description of scission points. In other words, we
must make sure that �, which represents a typical collective
energy Ecoll in a mode involving the variable s, yields a
characteristic time T for this motion that is fast with respect
to, e.g., a characteristic time Tf for the descent from saddle
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to scission. In a harmonic case boldly invoked here for the
sake of definiteness, T would represent the period and Ecoll

the phonon energy, quantities which are related by

T (s) = 4.1 × 10−21

Ecoll(MeV)
. (44)

If we retain for the characteristic fission time Tf = 10−21 s
(see, e.g., Ref. [63]), then

Ecoll � 4 MeV. (45)

Since Ecoll is associated with twice the zero-point motion
energy, we are led, in this harmonic approximation, to impose
that

� � 2 MeV. (46)

This entails that in the following, we will mostly discuss the
averaged results with � = 15 MeV. The value of � = 1 MeV
retained in Ref. [56] could be deemed as somewhat reasonable
if it represented a temperature (essentially for the collective
modes). However, the existence of an underlying equilibrium
is to be justified, in particular because the authors of Ref. [56]
define their scission points much earlier in the fission process
than we do (for the values of η which we have retained). Indeed,
they define the scission point for a fixed tip distance of 1.4 fm
where the rupture of the neck has not yet occurred, in view of
the nuclear diffuseness. For a pure Fermi density distribution
with the diffuseness parameter of Ref. [64], we obtain 21% of
the equilibrium nuclear matter density at half the considered
tip distance. With such a simply connected nuclear shape, it
is likely that the elongation and fragment deformation modes
are still strongly coupled dynamically and not thermally. We
therefore stand by our interpretation of � as depicting quantal
fluctuations, for which the value � = 15 MeV seems thus
more appropriate than � = 1 MeV.

Before discussing in the next subsection the values of the
fission-fragment angular momenta resulting, at a given TXE
value, from the average over s of all scission configurations
(with � = 15 MeV), we need to comment on some other aver-
age properties of the scission points. This leads us to describing
in a broader way the scission-point properties obtained within
our model assumptions. Clearly, this information would be
relevant to studies whose scopes are much more extended than
the mere description of fission-fragment spins.

The first quantities discussed here are the free (Efree) and
deformation (Edef = E

(1)
def +E

(2)
def) energies. At a given point in

the (Q(1)
20 ,Q

(2)
20 ) plane, they do not depend, obviously, on f or

�. Nevertheless, their average value at a given TXE does. As
for the dependence on f , it comes from the integration contour
CTXE in a very similar way as that encountered in Eq. (35). The
results are displayed in Fig. 14 for Efree and Fig. 15 for Edef .
When going from η = 0.5% to η = 0.1%, the global trends of
both curves (as functions of TXE) are almost conserved. Since
changing the value of η in this way moves the scission point
away from the saddle point in the fission process, it is easy to
understand why the values of Efree increase. Their dependence
on TXE results from the averaging process and is difficult to
trace back to any simple dynamical source. For f = 0, the
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FIG. 14. Available energy at scission Efree as a function of the
fragment total excitation energy TXE for η = 0.1% and η = 0.5%.
Results are shown for � = 15 MeV only.
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of the fragments Edef .
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FIG. 16. Same as Fig. 14, but for the center-of-mass distance Dc.m. and the tip distance d .

variation of Edef is correlated to the one of Efree, since in that
case their sum equals TXE. In the other limiting case (f = 1),
TXE is exactly equal to Edef .

Let us now discuss the compactness of the fissioning system
at scission through the variation of two important quantities in
this respect, namely, the center-of-mass distance Dc.m. and the
tip distance d. As shown in Fig. 16, the former varies much
more with TXE than the latter. Indeed, the steady increase of
average Dc.m. with TXE is rather closely connected with the
decrease in TKE whose largest part is the mutual Coulomb
energy roughly varying as 1/Dc.m. (see next paragraph for a
more detailed discussion). On the other hand, the tip distance
shows a consistent but small decrease as TXE gets larger. It is
difficult to come up with a simple explanation for this, because
one has to disentangle the balancing effects (upon increasing
TXE) of a consistent drift of average shapes in both fragments
and an increase of Dc.m. under the constraints of fixed values
of TXE and η.

The last important average scission-point quantity is the
variation of TKE with the center-of-mass distance displayed
in Fig. 17. In the f = 0 case, where there is no prescission
component coming from Efree, the fragment total kinetic
energy is simply equal to the Coulomb mutual energy at
scission, and it is interesting to compare it with what would
result from a pure monopole-monopole interaction of the
Z1Z2/Dc.m. type. As seen in Fig. 17, there is a slight variation
which can be readily connected with the next term in the
multipole-multipole expansion of the Coulomb interaction.
Indeed, for instance in the η = 0.1% case, as Dc.m. increases,
i.e., as TXE gets larger, one goes from an oblate-oblate average
configuration toward a spherical-prolate one, passing through

a region of oblate-prolate shapes. Therefore, one experiences a
transition from configurations yielding a negative quadrupole
correction to the monopole Coulomb interaction to configura-
tions allowing a positive correction, passing through a region
of a vanishing quadrupole contribution. For other values of
f (0.5 and 1), the connection between Dc.m. and TKE is less
clear, but the general trends are quite similar.

D. Fission-fragment angular momenta

We come finally to the results of fission-fragment angular
momenta. For each considered TXE value, they were obtained
by averaging Jf over the scission configurations lying on the
corresponding path CTXE. In this way, we obtain the curves
Jf (TXE) displayed in Fig. 18 with η = 0.1% and η = 0.5%.

Before comparing these results with experimental data, we
want to comment on the variation of Jf with TXE. First
of all, in the f = 1 case, the curves Jf (TXE) are found
to be somewhat dependent on the specific value of η. The
total fragment excitation energy reduces here to the total
deformation energy of the fragments Edef whose functional
dependence on Q

(1)
20 and Q

(1)
20 is independent of η. As can be

seen in Figs. 8, 9, and 13, both the integration contours and the
averaging weights are similar for η = 0.1% and η = 0.5%.

Next, let us compare for both values of η the relative
position of the Jf (TXE) curves associated with different values
of f . As f gets larger, the increase of Jf becomes faster. This
is to be correlated with the results presented in Fig. 14 showing
that for both values of η, the deformation energy Edef increases
more rapidly as f gets larger. Of course, in general, a rise in
the deformation energies does not mean that the deformation

064313-21



L. BONNEAU, P. QUENTIN, AND I. N. MIKHAILOV PHYSICAL REVIEW C 75, 064313 (2007)

 170

 180

 190

 200

 210

 220

 15  16  17  18  19  20  21

T
K

E
 (

M
eV

)

Average center-of-mass distance −Dc.m. (fm)

η=0.1%   f=0.0   Θ=15.0 MeV

TKE
ECoul

 170

 180

 190

 200

 210

 220

 15  16  17  18  19  20  21

T
K

E
 (

M
eV

)

Average center-of-mass distance −Dc.m. (fm)

η=0.1%   f=0.5   Θ=15.0 MeV

TKE
ECoul

 170

 180

 190

 200

 210

 220

 15  16  17  18  19  20  21

T
K

E
 (

M
eV

)

Average center-of-mass distance −Dc.m. (fm)

η=0.1%   f=1.0   Θ=15.0 MeV

TKE
ECoul

 170

 180

 190

 200

 210

 220

 15  16  17  18  19  20  21

T
K

E
 (

M
eV

)

Average center-of-mass distance −Dc.m. (fm)

η=0.5%   f=0.0   Θ=15.0 MeV

TKE
ECoul

 170

 180

 190

 200

 210

 220

 15  16  17  18  19  20  21

T
K

E
 (

M
eV

)

Average center-of-mass distance −Dc.m. (fm)

η=0.5%   f=0.5   Θ=15.0 MeV

TKE
ECoul

 170

 180

 190

 200

 210

 220

 15  16  17  18  19  20  21

T
K

E
 (

M
eV

)

Average center-of-mass distance −Dc.m. (fm)

η=0.5%   f=1.0   Θ=15.0 MeV

TKE
ECoul

FIG. 17. Variation of total kinetic energy of the fragments TKE as a function of the average center-of-mass distance Dc.m. for the six
combinations of η and f values.

increases. But owing to the rather shallow character of the
local equilibrium wells evidenced in the PES displayed in
Fig. 1, one may infer that above a few MeV, the increase in
Edef implies that the deformations, hence the resulting spins,
do increase.

Moreover, for all considered values of parameters η and f ,
with the collective-energy parameter � = 15 MeV, we observe
the overall trend that over the whole span of TXE values
presented in Fig. 18, the fragment spin Jf is an increasing
function of TXE. Nevertheless, we note as an exception a
well-marked dip at low TXE values (typically below 5 MeV).
Let us explain these facts in the representative case where
η = 0.1% and f = 0.5 (dashed curve in the upper panel of
Fig. 18). As TXE gets higher, we can see in Fig. 5, taking as a
guide to the eye the dots indicating the deformation points
of lowest Esc value, that the fragments are initially fairly
deformed, hence there is a finite, sizable value of Jf . Then
between 5 and 6 MeV, one crosses the spherical point of the
heavy fragment, while the light fragment keeps a constant
oblate deformation. This explains the very low value of Jf

between 5 and 6 MeV. For TXE increasing up to 8 MeV,
the light fragment keeps its oblate deformation, but the heavy
fragment becomes more and more deformed (prolate), which
leads to the increase of the spin between 6 and 8 MeV. Between
11 and 15 MeV, the most probable configuration implies
a prolate light fragment, with a fairly constant quadrupole
moment of about 10 b, while the heavy-fragment quadrupole
moment gradually increases from about −5 to 10 b. In this
excitation-energy range, the average spin varies in the same
way as between 4 and 8 MeV. Finally, beyond 15 MeV, the
heavy fragment becomes more and more prolate-deformed
(actually both fragments between 16 and 21 MeV) and
dominates the net variation of Jf (TXE).

The same argument may be presented from another point of

view. The variation of the intrinsic expectation values of 〈Ĵ2〉int

for both fragments as functions of the curvilinear abscissa s

is displayed in Figs. 10 and 11. Combining this information
with the distribution patterns of Fig. 12 (again, for instance,
in the η = 0.1%, f = 0.5 case), we find that for low values
of TXE (4–5 MeV), the most probable value of s increases
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fragmentation. Dots mark the actual calculated results, curves serve
to guide the eye.
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FIG. 19. Same as Fig. 18, but for different values of � with
η = 0.1% and f = 0.5.

with TXE in a region of a marked decrease of 〈Ĵ2〉int with s

for both fragments. At higher TXE values, the same increase
of the most probable value of s occurs in a region where the

above 〈Ĵ2〉int expectation values are increasing with s.
Finally, because some authors (as, e.g., Wilkins and

collaborators [56]) made use of a different � value (1 MeV)
and because of the arbitrary character of the preferred value
of � even though it clearly satisfies the Born-Oppenheimer
condition in Eq. (44), we perform in one particular case (η =
0.1% and f = 0.5) the averaging for a choice of three different
values of � (1, 15, and 30 MeV). The corresponding results
displayed in Fig. 19 may be interpreted in the following way. At
low TXE values, the region of the (Q(1)

20 ,Q
(2)
20 ) plane spanned

by the allowed scission configurations is so limited that the
probability distribution w given by Eq. (36) takes the same
values for the different values of �, hence the independence
of Jf with respect to �. As a consequence, the previously
described decrease of Jf is found irrespective of any choice
of � values. In contrast, the available fragment-deformation
range gets larger as � increases. As expected then, upon using
small values of �, one emphasizes the importance of local
minima in Esc(s), which thus creates some fluctuations in
the curves of Jf as a function of TXE, arising from minute
variations of Esc(s) when changing TXE. On the other hand,
comparing the results obtained with � = 15 and 30 MeV,
one finds almost no differences. This justifies a posteriori the
choice of � = 15 MeV, which is the value retained in the
discussion of the next subsection.

E. Discussion of results

As apparent from the previous presentation, our results
are understandably contingent upon a retained value of the
parameter f specifying the partitioning of Efree. An exact
value of it is very difficult to assess experimentally. However,
the author of the pioneering work of Ref. [65] gave an
estimate of the fraction Ediss/�V of the energy release �V

between saddle and scission that is dissipated in fragment
excitation energy Ediss. This ratio is simply related to our f

parameter through f = 1 − Ediss/�V . This estimate given
by Gönnenwein [65] is based on a combinatorial analysis
of pair breaking to account for the odd-even staggering

effect observed in nuclear-charge yields from thermal- and
MeV-neutron-induced fission. More recently Rejmund et al.
[66] repeated the analysis of odd-even staggering in charge
yields within a statistical approach including within the BCS
approach the pairing effects on the nuclear level density.
These efforts indicate that Ediss/�V changes slightly with
the fissility parameter (from 220Th to 250Cf) but do not agree
on the variation. In the 252Cf region, Gönnenwein [65] found
a ratio Ediss/�V ≈ 0.44 ± 0.02, whereas Rejmund et al.
[66] obtained a lower value, Ediss/�V ≈ 0.34 ± 0.01. In
these analyses, the experimental data used are obtained for
compound-nucleus excitation energies in the 5–10 MeV range.
Given the uncertainties pertaining to the model-dependent
character of these calculations and to the deficiency of the BCS
description of weak pairing regimes encountered when pairs
begin to be broken, we deem it as a reasonable approximation
to retain the median value f = 0.5 for the discussion of our
results.

From these results, two features can be singled out. First, for
TXE � 5 MeV, the average angular momenta of the fragments
steadily increase. Irrespective of the retained value of η, we
find a rate of increase of Jf that is typically of the order of 1h̄
when TXE increases by 5 MeV. This is slightly less on average
than 1h̄ per emitted neutron. The second point which should
be stressed is that at low TXE values (typically 5 MeV), the
value of Jf is found in the 2h̄ range.

Both features are roughly consistent with the findings
of Ref. [13]. As amply discussed, one should not attempt
to go beyond such a qualitative comparison because of the
limitations of the current experimental approach and the
present theoretical estimate.

Since the average number of emitted neutrons ν is about
4 for 252Cf (see Ref. [67]), one can consider that the average
value of TXE is about 25 MeV. The resulting Jf value obtained
for f = 0.5 may be considered as slightly too small in view of
the average Jf value found years ago in Ref. [5]. This would
then give a hint that f should be closer to 1 than to 0. On the
basis of the results of Fig. 17 this would correspond to a value
of the prescission kinetic energy in the range of 10 (20) MeV
for η = 0.5% (0.1%). Of course, one should take this estimate
with all the caution requested by the approximate character of
our current approach.

The last comment that can be made relates to the necessary
choice for the parameter η. As we have already discussed, the
acceptable range for η is bounded within two limits rather
different in nature. The upper limit is imposed from the
condition that after scission at the very least no nucleonic
exchange should take place, which entails the vanishing of
a neck between the two fragments. The lower boundary is
imposed by the approximate character of our calculation of
the mutual Coulomb and nuclear energies. Below some limit,
typically of some 100 keV for the latter (some per thousand
in η), such a crude approach does not allow one to expect
sufficient accuracy for the definition of the scission points.
Beyond these considerations, one should further add that the
Born-Oppenheimer condition does not imply at all that a single
value of η should be retained. One may very well expect that
the scission points along a fission valley are distributed (see,
e.g., the tunneling between a “fission” and a “fusion” valley
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advocated in Ref. [68]). In that case, one does not have to
decide which value of η should be deemed as the most realistic
one. Instead, some averaging over a distribution may be more
relevant.

VIII. CONCLUSIONS

The primary goal of this paper is to contribute to a better
theoretical understanding of the microscopic mechanism at
work in the generation of angular momentum of fragments
issuing from a fission at zero or low excitation energy. We
have, first of all, drawn two lessons from a brief survey of
available experimental data.

On the one hand, the related experimental findings when
expressed in terms of angular momenta of primary fragments
do not constitute, by any means, a raw material, but rather
results yielded by a highly elaborated model-dependent treat-
ment. As a consequence, it is reasonable to take them as rough
indications of absolute values and, correlatively, to consider
as more serious constraints on any theory their variation with
some global parameter ruling the whole fission process (as,
e.g., the total excitation energy of the fragments).

On the other hand, a significant amount of data on fission-
fragment angular momenta has and still does come from the
observation of the population of isomeric states. In such cases,
we claim that neither the usual model-dependent processing
of the data nor the above-discussed simplified version of
the orientation-pumping mechanism is fit, without significant
adaptation, to such a peculiar situation. The reason for it lies
in the fact that the quasiparticle character of isomeric states
makes their rotational properties vastly different from those of
a ground-state band of a deformed even-even nucleus. Despite
the truly fascinating character of such data, embodying the
completely different nature of the mechanism at work, we
nevertheless have to exclude them, for the time being, from
the scope of our current limited theoretical investigation.

Bearing in mind these limitations, we then proceed to
discuss existing theoretical accounts of such an angular-
momentum generation which may be deemed as a rather
intriguing phenomenon. Indeed, in fluid mechanical terms,
it starts as a purely potential flow and ends up as a highly
vortical one in the center-of-mass system. The main common
characteristic of these models is that they rely on the thermal
excitation of some relevant collective modes to generate
angular momenta. It is our main contention that the major
reason for the existence of such finite angular momenta does
not lie primarily in thermal but rather in quantal fluctuations.
The latter are clearly issuing from a relevant version of the
Heisenberg principle for spatially polarized systems, giving
rise to the so-called orientation-pumping mechanism. Our aim
is thus to check whether, ruling out by hypothesis all other
possibly concurring sources of angular momentum, we can
explain from state-of-the-art microscopic calculations using
effective nucleon-nucleon forces, the bulk of their experimen-
tal values and their observed trend as a function of the total
excitation energy. The answer is clearly positive, resulting
from a detailed study of a particular pair of primary fragments
in the spontaneous fission of 252Cf, namely 106Mo+146Ba.

We should stress that in performing such an investigation,
we deliberately excluded any specific consideration of how the
system gets its spatially polarized character, thereby avoiding
the difficulties encountered in previous theoretical approaches.
Therefore, we cannot claim that we have completed a full
theoretical investigation of the process but rather that we
searched for the basic quantum mechanical rules that should
apply to the solution of any model relevant to that matter.

Nevertheless, in the process of doing so, we are induced
to paying particular attention to the more general question of
the quantitative definition of a scission point. The implications
of our study of these scission-point configurations reach far
beyond the mere problem of fission-fragment spins. They
might serve as ingredients, among others, of a much wanted
quantitative study of various fission distributions which are
generally thought to be mostly determined by the scission
configurations. Of course, a complete description of those
distributions should clearly include a study of the yields of
all possible fragment pairs. This subject is clearly not touched
upon here, since it would imply the inclusion of an additional
collective variable ruling the mass asymmetry, such as the total
octupole moment.

While the orientation-pumping mechanism appears as a
quite general consequence of the usual quantum mechanics,
its present practical implementation involves various further
approximations rendering the present work no more than an
exploratory approach even within its general purpose. The next
steps to take would include, for example, an adequate study
of the projection of the fragment intrinsic wave functions as
well as a proper account of shape fluctuations. In spite of all its
deficiencies, the present work yielding a somewhat reasonable
agreement with available data certainly provides incentive for
undertaking such an ambitious program.
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APPENDIX A: QUANTUM ROTOR IN
A POLARIZING FIELD

In the orientation-pumping model of Ref. [4], the distribu-
tion of fission fragments in angular momentum I is propor-
tional to the square of amplitudes aI , which are the overlaps
of the wave function of the “polarized” state representing the
collective motion within the deformed mean field, and the
states of a free rotor with good angular-momentum quantum
numbers I and M = 0 (M denoting the projection of the
angular momentum on the quantization axis).
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To calculate these amplitudes, let us first consider the model
Hamiltonian

H = − h̄2

2µ

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
+ V (θ ),

(A1)

with the following potential that modelizes the polarizing field

V (θ ) = 1
2C sin2 θ. (A2)

In Eqs. (A1) and (A2), the constants µ and C denote the inertia
and rigidity parameters, respectively. The exact eigenfunctions
of the Hamiltonian (A1) are called oblate spheroidal wave
functions [69].

When the orientation in space of the fissioning system is
well defined, the polarizing field V (θ ) is strong, so the rigidity
constant C is large, and the wave function of the polarized state
	(θ, ϕ) is expected to decrease rapidly with θ . As a result, 	

is an eigenfunction of the Hamiltonian H in the small angle
limit and satisfies the differential equation

− h̄2

2µ

[
1

θ

∂

∂θ

(
θ
∂	

∂θ

)
+ 1

θ2

∂2	

∂ϕ2

]
+ 1

2
Cθ2	(θ, ϕ)

= E	(θ, ϕ), (A3)

with the eigenvalue E. Equation (A3) is the Schrödinger
equation of a 2D isotropic angular harmonic oscillator, whose
exact eigenvalues and wave functions are given by [30]

Enm = (2n + |m| + 1)h̄ ω, (A4)

and

	nm(θ, ϕ) = Nnmη|m|L|m|
n (η)e−η/2eimϕ, (A5)

with the notation

η =
(

θ

θ0

)2

, (A6)

θ0 =
√

h̄(µC)−1/4. (A7)

The oscillator frequency ω and the normalization factor Nnm

are given by

ω =
√

C

µ
, (A8)

Nnm = 1

θ0
√

πn!(n + |m|)! , (A9)

and L
|m|
n denotes the associated Laguerre polynomial of

degree n.
Here we are interested in the lowest energy solution 	0 in

the case where m = 0 and in presence of a strong polarizing
field. The wave function 	0(θ ) is therefore a solution to the

equation

− h̄2

2µ

1

θ

d

dθ

(
θ
d	0

dθ

)
+ 1

2
Cθ2	0(θ ) = E	0(θ ) (A10)

and is given by

	0(θ ) = 1

θ0
√

π
e
− θ2

2θ2
0 . (A11)

Following Rasmussen and collaborators [30], we now expand
	0 onto good angular-momentum states Y 0


 (corresponding to
the spherical harmonics with m = 0)

	0(θ ) =
∞∑


=0

a
Y
0

 (θ ), (A12)

where the amplitudes a
 are defined by

a
 = 2π

∫ π

0
dθ sin θY 0


 (θ )	0(θ ). (A13)

Owing to the approximation (A11) and the smallness of θ0,
the range of θ values for which the integrand of Eq. (A13) is
sizable is restricted to [0; θ0]. Thus we can use the small angle
limit and extend the integration up to infinity in Eq. (A13). In
this limit, the spherical harmonic Y 0


 satisfies the equation

−1

θ

d

dθ

(
θ
dY 0

I

dθ

)
= 
(
 + 1)Y 0


 (θ ). (A14)

With the substitutions z = √

(
 + 1)θ and f (z) = Y 0


 (θ ),
Eq. (A14) can be brought to the form

z2 d2f

dz2 + z
df

dz
+ z2f (z) = 0, (A15)

which is the differential equation satisfied by the zero-order
Bessel function of the first kind J0(z). As a result, in the small
angle limit the spherical harmonic Y 0


 (θ ) is given by

Y 0

 (θ ) ≈

√
2
 + 1

4π
J0(

√

(
 + 1)θ ), (A16)

and the amplitude a
 therefore takes the form

a
 ≈
√

2
 + 1

θ0

∫ ∞

0
dθθJ0(

√

(
 + 1)θ )e

− θ2

2θ2
0 . (A17)

The integral can be calculated analytically [see Eq. (11.4.29)
of Ref. [69]], and we finally obtain

a
 ≈ θ0

√
2
 + 1e− θ2

0
2 
(
+1). (A18)

The expectation value of the square of the angular-

momentum operator L̂
2

in the ground state 	0 (normalized
to unity)

〈	0|L̂2|	0〉 =
∞∑


=0


(
 + 1)a2

 (A19)
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is approximately

〈	0|L̂2|	0〉 ≈ θ2
0

∞∑

=0


(
 + 1)(2
 + 1)e−θ2
0 
(
+1) (A20)

≈ θ2
0

∫ ∞

0
d

(
 + 1)(2
 + 1)e−θ2

0 
(
+1), (A21)

where
∫ ∞

0 d

(
 + 1)(2
 + 1)e−θ2
0 
(
+1) = 1/θ4

0 , that is,

〈	0|L̂2|	0〉 ≈ 1

θ2
0

. (A22)

The corresponding average value 
̄ of 
, such that

〈	0|L̂2|	0〉 = 
̄(
̄ + 1), is thus given by


̄ = 1

2

(√
1 + 4〈	0|L̂2|	0〉 − 1

)
≈ 1

θ0
, (A23)

since we are in the limit θ0 � 1. Note that keeping terms of
higher order in 1/θ0 in Eq. (A23) would not be consistent with
the fact that the expansion is stopped at order 2 in Eq. (A22).

APPENDIX B: MUTUAL COULOMB INTERACTION
ENERGY

We approximate the Coulomb interaction energy EC by
the expression given in Ref. [54] obtained by likening the
fragments to homogeneously charged, spheroidal droplets with
collinear symmetry axes coinciding with the fission direction:

EC

(
Q

(1)
20 ,Q

(2)
20 ,Dc.m.

) = Z1Z2e
2

Dc.m.

S(x1, x2), (B1)

where the eccentricity-like variable xi is defined through its
square as

x2
i = c2

i − a2
i

D2
c.m.

. (B2)

In Eq. (B1), the dimensionless function S, expressing the
departure from two spherical fragments, takes the form

S(x, y) = 3

40

[
1 + 11(x2 + y2)

x2y2
+ PxPy

(
(1 + x + y)3

x3y3

× ln(1 + x + y)(1 − 3(x + y) + 12xy

− 4(x2 + y2))

)]
. (B3)

In this expression, Px[f (x)] represents the even part of the
function f (x):

Px[f (x)] = f (x) + f ( − x)

2
. (B4)

In Eq. (B2), ci and ai denote the semiaxes of the fragment i

along the symmetry axis and in the perpendicular direction,
respectively. They are related to the quadrupole moment
Q

(i)
20 and the mean square radius 〈r2〉(i) in the spheroidal

approximation neglecting the diffuseness effect:

Q
(i)
20 = 2

5Ai

(
c2
i − a2

i

)
, (B5)

〈r2〉(i) = 1
5

(
2a2

i + c2
i

)
, (B6)

where Ai denotes the mass number of the fragment i. As can
be seen in Eq. (B2), prolate shapes (ci > ai) lead to real
xi values, whereas xi is purely imaginary for oblate shapes
(ci < ai). As expected, we have S(0, 0) = 1 for two spheres.

When the deformation of at least one fragment is small,
that is, when |x| � xmax and/or |y| � ymax, we use a Taylor
expansion. With threshold values xmax and ymax equal to 10−2,
for which the computation of EC using Eq. (B3) does not pose
any numerical problem, it is sufficient to include terms of order
2 at most. However, for completeness and possible uses with
higher values of xmax and ymax, we give expansions of S(x, y)
up to order 6:

|x| � xmax and |y| > ymax:

S(x, y) = 3

4y3

[
2y + (y2 − 1)ln

(
1 + y

1 − y

)]

×
(

1 − x2

5(y2 − 1)

)
− x4

(y2 − 1)3

×
(

3

35
+ (5 + 3y2)x2

105(y2 − 1)2

)
. (B7)

|x| > xmax and |y| � ymax: same as Eq. (B7) with x and y

interchanged.
|x| � xmax and |y| � ymax:

S(x, y) = 1 + x2 + y2

5
+ 6

25
x2y2 + 3

35
(x4 + y4)

+ 9

35
x2y2(x2 + y2) + x6 + y6

21
. (B8)

APPENDIX C: NUMERICAL ASPECTS

In this Appendix, we address the numerical issues that arise
when calculating quantities of physical interest at scission. To
set up the framework and make this Appendix self-contained,
we briefly recall some considerations already mentioned
in Sec. V. Our degrees of freedom are the center-of-mass
distance Dc.m. and the fragment elongations expressed as their
quadrupole moments Q

(1)
20 and Q

(2)
20 . The relevant scission-

configuration space S is therefore three-dimensional (3D). A
scission configuration is characterized by three conditions:∣∣∣∣EN

EC

∣∣∣∣ = η, (C1)

Efree � 0, (C2)

and

d � 0, (C3)

where EN and EC denote the nuclear and Coulomb interaction
energies, respectively, Efree is the available energy at scission
and d is the tip distance. The condition expressed by Eq. (C1)
gives Dc.m. as a function of Q

(1)
20 and Q

(2)
20 (single-valued and
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smooth as shown in Fig. 4), whereas Eqs. (C1) and (C3) limit
the set SQ of possible values for Q

(1)
20 and Q

(2)
20 at scission. To

these three conditions are added two limitations inherent to
practical calculations:

(
Q

(i)
20

)
min � Q

(i)
20 �

(
Q

(i)
20

)
max, (C4)

and

d � dmax. (C5)

Clearly Eq. (C4) introduces a truncation of SQ that has to
be limited to ranges of reasonable fragment shapes (rather
close to the ground-state shapes). In contrast, Eq. (C5) is
inconsequential when dmax is large enough (at least 6 fm
here). Finally, let us recall in what kind of physically relevant
quantities we are interested (called here “observables” even if
they are not measurable).

We essentially want to calculate constrained averages of
observables, that is, averaged over a subset of S corresponding
to scission configurations having the same total excitation
energy (TXE). We call CTXE(Ex) the locus of points of S
at which the function TXE(Dc.m.,Q

(1)
20 ,Q

(2)
20 ) takes a given

value Ex . In general, this constraint makes the subset CTXE(Ex)
a non-simply-connected skew curve. Each simply connected
piece noted C(i)

TXE(Ex) and indexed by i can be represented by
parametric equations of the form


Q

(1)
20 = fi(s),

Q
(2)
20 = gi(s),

Dc.m. = hi(s),

(C6)

where the curvilinear abscissa s along CTXE(Ex) has been
chosen as parameter. Since TXE is a continuous function of
Dc.m.,Q

(1)
20 , and Q

(2)
20 , so are the one-variable functions fi, gi,

and hi in their respective domains. The constrained average
XTXE(Ex) of any observable X is defined as the average of X

over the scission configurations along CTXE(Ex):

XTXE(Ex) =
Nc∑
i=1

∫
C(i)

TXE(Ex )
ds w(fi(s), gi(s), hi(s))

×X(fi(s), gi(s), hi(s)), (C7)

where w(Q(1)
20 ,Q

(2)
20 ,Dc.m.) denotes the probability of reaching

the scission configuration characterized by Q
(1)
20 ,Q

(2)
20 , and

Dc.m.. In Eq. (C7), the sum runs over the Nc simply connected
pieces of CTXE(Ex).

As discussed in Sec. VI, we represent the 3D curves
CTXE(Ex) by their projection on the (Q(1)

20 ,Q
(2)
20 ) plane but the

constrained averages are still calculated in the 3D space using

Eq. (C7). From now on we call CTXE the projection of the
3D curve, i.e., the iso-TXE contour level on the (Q(1)

20 ,Q
(2)
20 )

plane.
To obtain one such contour, we first discretize the Q

(1)
20 axis

and solve numerically the equation TXE(Q(1)
20 ,Q

(2)
20 ) for Q

(2)
20 .

Then we repeat this step upon interchanging the role of the two
fragment elongations. The reason for this is that the first step
is not appropriate for finding solutions to the above equation
when the tangent to the TXE contour becomes almost parallel
to the Q

(2)
20 axis, and conversely for the second step. Once the

solutions on the discretized (Q(1)
20 ,Q

(2)
20 ) plane are found after

the two steps, the corresponding points are connected with
segmented lines of minimal length between two consecutive
points. In practice, we have found that using a mesh size of
5 fm2 gives complete, very smooth contours (see Fig. 5).

In fact, a particularly difficult problem is to design a reliable
numerical algorithm to isolate the different pieces of CTXE.
For a non-simply-connected contour, the above algorithm
to connect scission points leads to large increases of the
curvilinear abscissa between some consecutive points. In most
practical cases, we have been able to detect these jumps by
comparing the distance �s between two consecutive points
of the sequence approximating CTXE with a critical value
�smax. When �s > �smax, we interpret the large increase
as a jump from a point of one piece of CTXE to a point of
another piece. Empirically we have found that by choosing
�smax =

√
(�x)2 + (�y)2 with �x = �y = 100 fm2, we

can eliminate all the spurious jumps.
To close this Appendix, we indicate how we calculate the

integral involved in Eq. (C7). For each complete TXE contour,
in the sense defined in Sec. VII B, we approximate the integral
by the trapezoidal rule along the segmented line representing
the contour CTXE but with the 3D Cartesian metric instead of
the 2D one used to construct CTXE. It is safe here to do so
because the third coordinate Dc.m. is slowly varying with the
other two. The resulting expression for the average of X for
a given value of TXE, noted X(TXE) for simplicity, takes the
form

X(TXE) ≈ 1

2

Nc∑
i=1

n(i)−1∑
k=1

�sk (wkXk + wk+1Xk+1) , (C8)

where n(i) is the number of actual grid points making the
subset i of CTXE. In Eq. (C8), �sk denotes the distance in the 3D
space between the point Pk and the next one, Pk+1. Similarly,
wk and Xk are the values taken by the scission-configuration
probability w and the observable X at point Pk , respectively.
Note that the dependence on TXE in the right member of
Eq. (C8) is hidden in the actual values of �s,w, and X at the
different points Pk belonging to the 3D curve.
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